Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_60 _100.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_100 _250.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_250 _plus.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'total_crime': total crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'total_violent _crime': total violent crime - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft - 'tot_prop _crime': total property crime - 'arson': arson
Photo by David von Diemar on Unsplash
Facebook
TwitterIn 2025, Pietermaritzburg in South Africa ranked as the world's most dangerous city with a crime rate of 82 per 100,000 inhabitants. Five of the 10 cities with the highest crime rates worldwide are found in South Africa. The list does not include countries where war and conflict exist. South Africa dominates crime statistics When looking at crime rates, among the 10 most dangerous cities in the world, half of them are found in South Africa. The country is struggling with extremely high levels of inequality, and is struggling with high levels of crime and power outages, harming the country's economy and driving more people into unemployment and poverty. Crime in Latin America On the other hand, when looking at murder rates, Latin America dominates the list of the world's most dangerous countries. Violence in Latin America is caused in great part by drug trafficking, weapons trafficking, and gang wars.
Facebook
TwitterIn 2023, around 3,640.56 violent crimes per 100,000 residents were reported in Oakland, California. This made Oakland the most dangerous city in the United States in that year. Four categories of violent crimes were used: murder and non-negligent manslaughter; forcible rape; robbery; and aggravated assault. Only cities with a population of at least 200,000 were considered.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset contains different collected datasets with crime data of many large cities. Below are the descriptions for each seperate dataset. Note: Dataset properties and column may differ from each other since the information was collected by the local police in different styles and situations.
The Los Angeles dataset has the collected data on different crimes that happened in Los Angeles from 2000 up until May 2024. The columns are as follows:
DR_NO - Division of Records Number: Official file number made up of a 2 digit year, area ID, and 5 digits
Date Rptd - The date when the police found out about the crime
Date OCC - The actual date of the crime
Time OCC - In military time
Area - The LAPD has 21 Community Police Stations referred to as Geographic Areas within the department. These Geographic Areas are sequentially numbered from 1-21.
Area Name - The 21 Geographic Areas or Patrol Divisions are also given a name designation that references a landmark or the surrounding community that it is responsible for. For example 77th Street Division is located at the intersection of South Broadway and 77th Street, serving neighborhoods in South Los Angeles.
Rpt Dist No - A four-digit code that represents a sub-area within a Geographic Area. All crime records reference the "RD" that it occurred in for statistical comparisons. Find LAPD Reporting Districts on the LA City GeoHub at http://geohub.lacity.org/datasets/c4f83909b81d4786aa8ba8a74a4b4db1_4
Crm Cd - Indicates the crime committed. (Same as Crime Code 1)
Crm Cd Desc - Defines the Crime Code provided.
Mocodes - Modus Operandi: Activities associated with the suspect in commission of the crime.
Vict Age - The age of the victim
Vict Sex - The gender of the victim. They are as follows:
Vict Descent - Descent Code:
Premis Cd - The type of structure, vehicle, or location where the crime took place.
Premis Desc - Defines the Premise Code provided.
Weapon Used Cd - The type of weapon used in the crime.
Status - Status of the case. (IC is the default)
Status Desc - Defines the Status Code provided.
Crm Cd 1 - Indicates the crime committed. Crime Code 1 is the primary and most serious one. Crime Code 2, 3, and 4 are respectively less serious offenses. Lower crime class numbers are more serious.
Crm Cd 2 - May contain a code for an additional crime, less serious than Crime Code 1.
Crm Cd 3 - May contain a code for an additional crime, less serious than Crime Code 1.
Crm Cd 4 - May contain a code for an additional crime, less serious than Crime Code 1.
Location - Street address of crime incident rounded to the nearest hundred block to maintain anonymity.
Cross Street - Cross Street of rounded Address
LAT - Latitude
LON - Longitude
This dataset has 28 columns and 944K rows. I hope you will find it useful. God bless you
This dataset contains crime data on Chicago, from 2001 to present. The columns are as follows:
ID - Unique Identifier for the record
Case Number - The Chicago Police Department RD Number (Records Division Number), which is unique to the incident.
Date - Date when the incident occurred. this is sometimes a best estimate.
Block - The partially redacted address where the incident occurred, placing it on the same block as the actual address.
IUCR - The Illinois Unifrom Crime Reporting code. This is directly linked to the Primary Type and Description. See the list of IUCR codes at https://data.cityofchicago.org/d/c7ck-438e..
Primary Type - The primary description of the IUCR code.
Description - The secondary description of the IUCR code, a subcategory of the primary description.
Location Description - Description of the location where the incident occurred.
Arrest - Indicates whether an arrest was made.
Domestic - Indicates whether the incident was domestic-related as defined by the Illinois Domestic Violence Act.
Beat - Indicates the beat where the incident occurred. A beat is the smallest police geographic area – each beat has a dedicated police beat car. Three to five beats make up a police sector, and three sectors make up a police district. The Chicago Police Department has 22 police districts. See the beats at https://data.cityofchicago.org/d/aerh-rz74.
Distric...
Facebook
TwitterIn the 2024/25 reporting year, West Yorkshire Police reported a crime rate of 114.5 crimes per 1,000 population, the highest crime rate among the provided police force areas whose territories include large cities. Greater Manchester Police reported a crime rate of 108.2 crimes per 1,000 population and had the second-highest crime rate during this year.
Facebook
TwitterThis map shows a comparable measure of crime in the United States. The crime index compares the average local crime level to that of the United States as a whole. An index of 100 is average. A crime index of 120 indicates that crime in that area is 20 percent above the national average.The crime data is provided by Applied Geographic Solutions, Inc. (AGS). AGS created models using the FBI Uniform Crime Report databases as the primary data source and using an initial range of about 65 socio-economic characteristics taken from the 2000 Census and AGS’ current year estimates. The crimes included in the models include murder, rape, robbery, assault, burglary, theft, and motor vehicle theft. The total crime index incorporates all crimes and provides a useful measure of the relative “overall” crime rate in an area. However, these are unweighted indexes, meaning that a murder is weighted no more heavily than a purse snatching in the computations. The geography depicts states, counties, Census tracts and Census block groups. An urban/rural "mask" layer helps you identify crime patterns in rural and urban settings. The Census tracts and block groups help identify neighborhood-level variation in the crime data.------------------------The Civic Analytics Network collaborates on shared projects that advance the use of data visualization and predictive analytics in solving important urban problems related to economic opportunity, poverty reduction, and addressing the root causes of social problems of equity and opportunity. For more information see About the Civil Analytics Network.
Facebook
TwitterThis table contains data on the rate of violent crime (crimes per 1,000 population) for California, its regions, counties, cities and towns. Crime and population data are from the Federal Bureau of Investigations, Uniform Crime Reports. Rates above the city/town level include data from city, university and college, county, state, tribal, and federal law enforcement agencies. The table is part of a series of indicators in the Healthy Communities Data and Indicators Project of the Office of Health Equity. Ten percent of all deaths in young California adults aged 15-44 years are related to assault and homicide. In 2010, California law enforcement agencies reported 1,809 murders, 8,331 rapes, and over 95,000 aggravated assaults. African Americans in California are 11 times more likely to die of assault and homicide than Whites. More information about the data table and a data dictionary can be found in the About/Attachments section.
Facebook
TwitterIn 2022, the New Orleans-Metairie, LA metro area recorded the highest homicide rate of U.S. cities with a population over 250,000, at **** homicides per 100,000 residents, followed by the Memphis, TN-MS-AR metro area. However, homicide data was not recorded in all U.S. metro areas, meaning that there may be some cities with a higher homicide rate. St. Louis St. Louis, which had a murder and nonnegligent manslaughter rate of **** in 2022, is the second-largest city by population in Missouri. It is home to many famous treasures, such as the St. Louis Cardinals baseball team, Washington University in St. Louis, the Saint Louis Zoo, and the renowned Gateway Arch. It is also home to many corporations, such as Monsanto, Arch Coal, and Emerson Electric. The economy of St. Louis is centered around business and healthcare, and boasts ten Fortune 500 companies. Crime in St. Louis Despite all of this, St. Louis suffers from high levels of crime and violence. As of 2023, it was listed as the seventh most dangerous city in the world as a result of their extremely high murder rate. Not only does St. Louis have one of the highest homicide rates in the United States, it also reports one of the highest numbers of violent crimes. Despite high crime levels, the GDP of the St. Louis metropolitan area has been increasing since 2001.
Facebook
TwitterOpen Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
License information was derived automatically
A CSV file which is updated daily by 11am and includes crime incidents from November 1st, 2015 forward through September 2, 2025*. Homicides, rapes, robberies, aggravated assaults, burglaries, thefts, motor vehicle thefts, arsons, and drug offenses are included (based on the primary offense listed for each incident).
*Note: We want to inform our users that updates to this dataset is currently unavailable from September 3, 2025, forward. The city is actively working with our partners to restore regular data publishing and is committed to resuming daily updates as soon as possible. We appreciate your patience and understanding during this time. Our goal is to ensure the accuracy, consistency, and timeliness of the data we provide. Please check back for updates and thank you for your continued interest in open data.
Facebook
TwitterCrime severity index (violent, non-violent, youth) and weighted clearance rates (violent, non-violent), Canada, provinces, territories and Census Metropolitan Areas, 1998 to 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crime data from years prior to the current one. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The World Crime Index 2023 dataset provides records of crime rankings for cities worldwide, along with associated information on their respective countries. This dataset is focused on the year 2023 and includes the following columns:
This dataset enables data scientists to analyze and compare crime rankings across cities and countries, providing insights into the relative safety levels of different locations in the year 2023. By leveraging this dataset, researchers can conduct exploratory data analysis, perform comparative studies, and identify potential trends and patterns in crime rates globally for the specified year.
Facebook
TwitterThis dataset includes all valid felony, misdemeanor, and violation crimes reported to the New York City Police Department (NYPD) for all complete quarters so far this year (2017). For additional details, please see the attached data dictionary in the ‘About’ section.
Facebook
TwitterComprehensive crime statistics for Orange County including homicides, violent crime, property crime, and city-by-city breakdowns with five-year trend analysis.
Facebook
TwitterThe Part 1 crime rate captures incidents of homicide, rape, aggravated assault, robbery, burglary, larceny, and auto theft that are reported to the Police Department. These incidents are per 1,000 residents in the neighborhood to allow for comparison across areas. Source: Baltimore Police Department Years Available: 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update Frequency: Daily
Current year to date. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
This data is not intended to represent a total number/sum of crimes, rather 1 = True and 0 = False.
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
Facebook
TwitterNumber and rate (per 100,000 population) of homicide victims, Canada and Census Metropolitan Areas, 1981 to 2024.
Facebook
TwitterThis dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.
Facebook
TwitterThis study focused on the effect of economic resources and racial/ethnic composition on the change in crime rates from 1970-2004 in United States cities in metropolitan areas that experienced a large growth in population after World War II. A total of 352 cities in the following United States metropolitan areas were selected for this study: Atlanta, Dallas, Denver, Houston, Las Vegas, Miami, Orange County, Orlando, Phoenix, Riverside, San Bernardino, San Diego, Silicon Valley (Santa Clara), and Tampa/St. Petersburg. Selection was based on the fact that these areas developed during a similar time period and followed comparable development trajectories. In particular, these 14 areas, known as the "boomburbs" for their dramatic, post-World War II population growth, all faced issues relating to the rapid growth of tract-style housing and the subsequent development of low density, urban sprawls. The study combined place-level data obtained from the United States Census with crime data from the Uniform Crime Reports for five categories of Type I crimes: aggravated assaults, robberies, murders, burglaries, and motor vehicle thefts. The dataset contains a total of 247 variables pertaining to crime, economic resources, and race/ethnic composition.
Facebook
TwitterThis project was designed to isolate the effects that individual crimes have on wage rates and housing prices, as gauged by individuals' and households' decisionmaking preferences changing over time. Additionally, this project sought to compute a dollar value that individuals would bear in their wages and housing costs to reduce the rates of specific crimes. The study used multiple decades of information obtained from counties across the United States to create a panel dataset. This approach was designed to compensate for the problem of collinearity by tracking how housing and occupation choices within particular locations changed over the decade considering all amenities or disamenities, including specific crime rates. Census data were obtained for this project from the Integrated Public Use Microdata Series (IPUMS) constructed by Ruggles and Sobek (1997). Crime data were obtained from the Federal Bureau of Investigation's Uniform Crime Reports (UCR). Other data were collected from the American Chamber of Commerce Researchers Association, County and City Data Book, National Oceanic and Atmospheric Administration, and Environmental Protection Agency. Independent variables for the Wages Data (Part 1) include years of education, school enrollment, sex, ability to speak English well, race, veteran status, employment status, and occupation and industry. Independent variables for the Housing Data (Part 2) include number of bedrooms, number of other rooms, building age, whether unit was a condominium or detached single-family house, acreage, and whether the unit had a kitchen, plumbing, public sewers, and water service. Both files include the following variables as separating factors: census geographic division, cost-of-living index, percentage unemployed, percentage vacant housing, labor force employed in manufacturing, living near a coastline, living or working in the central city, per capita local taxes, per capita intergovernmental revenue, per capita property taxes, population density, and commute time to work. Lastly, the following variables measured amenities or disamenities: average precipitation, temperature, windspeed, sunshine, humidity, teacher-pupil ratio, number of Superfund sites, total suspended particulate in air, and rates of murder, rape, robbery, aggravated assault, burglary, larceny, auto theft, violent crimes, and property crimes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ The following datasets contain the crime rate for cities in the United States. The four datasets are separated based on population ranges.
File names: - 'crime_40 _60.csv': dataset for population ranging from 40,000 to 60,000. - 'crime_60 _100.csv': dataset for population ranging from 60,000 to 100,000. - 'crime_100 _250.csv': dataset for population ranging from 100,000 to 250,000. - 'crime_250 _plus.csv': dataset for population greater than 250,000.
For file: crime_40 _60.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_60 _100.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_100 _250.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'violent_crime': violent crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft
crime_250 _plus.csv: - 'states': name of the state - 'cities': name of the city - 'population': population of the city - 'total_crime': total crime - 'murder': murder and nonnegligent manslaughter - 'rape': forcible rape - 'robbery': robbery - 'agrv_ assault': agrv_ assault - 'total_violent _crime': total violent crime - 'prop_crime': property crime - 'burglary': burglary - 'larceny': larceny theft - 'vehicle_theft': motor vehicle theft - 'tot_prop _crime': total property crime - 'arson': arson
Photo by David von Diemar on Unsplash