Albuquerque, NM 2016 crimes. Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis). Data obtained from the Albuquerque Police Department (see ABQ Data). Note: Composite of all crime types reported by APD.
In 2023, around 3,640.56 violent crimes per 100,000 residents were reported in Oakland, California. This made Oakland the most dangerous city in the United States in that year. Four categories of violent crimes were used: murder and non-negligent manslaughter; forcible rape; robbery; and aggravated assault. Only cities with a population of at least 200,000 were considered.
Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis, and Enrich Layer) and the ArcGIS R Bridge. The EBest function, part of the spdep package was used to calculate an Empirical Bayes smoothed crime rate with 2016 population estimates. This procedure is presented as part of the R-ArcGIS Workflow Demo on GeoNet.Relative Burglary Risk is the natural log (Ln) of the kernel density of burglaries g(x) divided by the kernel density of households g(y) calculated using CrimeStat. Note: Ten months of burglary data (the minimum required) were used for this initial analysis. Also Note: These locations are one-half kilometer square polygons. It will be updated in the future as more data from the Albuquerque Police Department is obtained (see ABQ Data).Please see the web map for another similar way to present these results.More information at (http://www.unm.edu/~lspear/other_nm.html).
In 2020, Memphis, TN-MS-AR reported 1,358.8 violent crimes per 100,000 inhabitants, the most out of any metro area in the United States. Monroe, LA followed closely behind, with a violent crime rate of 1,308.5 crimes per 100,000 inhabitants.
This map runs this app - http://nmcdc.maps.arcgis.com/home/item.html?id=958544e5eebd4501be8b70f71e2ef925Instructions for Using Premium content on a Public Map:https://www.esri.com/arcgis-blog/products/arcgis-living-atlas/local-government/including-online-demographic-maps-in-your-public-maps-and-apps/
The purpose of this data collection was to measure the validity or accuracy of four recidivism prediction instruments: the INSLAW, RAND, SFS81, and CGR scales. These scales estimate the probability that criminals will commit subsequent crimes quickly, that individuals will commit crime frequently, that inmates who are eligible for release on parole will commit subsequent crimes, and that defendants awaiting trial will commit crimes while on pretrial arrest or detention. The investigators used longitudinal data from five existing independent studies to assess the validity of the four predictive measures in question. The first data file was originally collected by the Vera Institute of Justice in New York City and was derived from an experimental evaluation of a jobs training program called the Alternative Youth Employment Strategies Project implemented in Albuquerque, New Mexico, Miami, Florida, and New York City, New York. The second file contains data from a RAND Corporation study, EFFECTS OF PRISON VERSUS PROBATION IN CALIFORNIA, 1980-1982 (ICPSR 8700), from offenders in Alameda and Los Angeles counties, California. Parts 3 through 5 pertain to serious juvenile offenders who were incarcerated during the 1960s and 1970s in three institutions of the California Youth Authority. A portion of the original data for these parts was taken from EARLY IDENTIFICATION OF THE CHRONIC OFFENDER, 1978-1980: CALIFORNIA. All files present demographic and socioeconomic variables such as birth information, race and ethnicity, education background, work and military experience, and criminal history, including involvement in criminal activities, drug addiction, and incarceration episodes. From the variables in each data file, standard variables across all data files were constructed. Constructed variables included those on background (such as drug use, arrest, conviction, employment, and education history), which were used to construct the four predictive scales, and follow-up variables concerning arrest and incarceration history. Scores on the four predictive scales were estimated.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Albuquerque, NM 2016 crimes. Created using ArcGIS Pro Geoprocessing tools (Create Space Time Cube, Emerging Hot Spot Analysis). Data obtained from the Albuquerque Police Department (see ABQ Data). Note: Composite of all crime types reported by APD.