In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Update Frequency: Daily
Current year to date. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
This data is not intended to represent a total number/sum of crimes, rather 1 = True and 0 = False.
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
***Starting on March 7th, 2024, the Los Angeles Police Department (LAPD) will adopt a new Records Management System for reporting crimes and arrests. This new system is being implemented to comply with the FBI's mandate to collect NIBRS-only data (NIBRS — FBI - https://www.fbi.gov/how-we-can-help-you/more-fbi-services-and-information/ucr/nibrs). During this transition, users will temporarily see only incidents reported in the retiring system. However, the LAPD is actively working on generating new NIBRS datasets to ensure a smoother and more efficient reporting system. *** **Update 1/18/2024 - LAPD is facing issues with posting the Crime data, but we are taking immediate action to resolve the problem. We understand the importance of providing reliable and up-to-date information and are committed to delivering it. As we work through the issues, we have temporarily reduced our updates from weekly to bi-weekly to ensure that we provide accurate information. Our team is actively working to identify and resolve these issues promptly. We apologize for any inconvenience this may cause and appreciate your understanding. Rest assured, we are doing everything we can to fix the problem and get back to providing weekly updates as soon as possible. ** This dataset reflects incidents of crime in the City of Los Angeles dating back to 2020. This data is transcribed from original crime reports that are typed on paper and therefore there may be some inaccuracies within the data. Some location fields with missing data are noted as (0°, 0°). Address fields are only provided to the nearest hundred block in order to maintain privacy. This data is as accurate as the data in the database. Please note questions or concerns in the comments.
This dataset reflects reported incidents of crime that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. Any use of the information for commercial purposes is strictly prohibited. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Each quarter, ACT Policing issues crime statistics illustrating the offences reported or becoming known in suburbs across Canberra.
The selected offences highlighted in the statistics include: assault, sexual offences, robbery, burglary, motor vehicle theft, other theft (such as shoplifting and fraud) and property damage. It is important to note that these numbers may fluctuate as new complainants come forward, more Traffic Infringement Notices are downloaded into the system, or when complaints are withdrawn.
It should also be noted that the individual geographical areas will not combine to the ACT totals due to the exclusion of rural sectors and other regions.
It is important for the community to understand there may be a straight-forward explanation for a spike in offences in their neighbourhood.
For example, sexual offences in Narrabundah increased from two in the January to March last year, to 32 in the first quarter of 2012. These 32 sexual offences relate to one historical case which was reported to police in January 2012, and which has since been finalised.
The smaller the number of reported offences involved, the greater the chance for a dramatic percentage increase.
An interactive crime map is also available on the ACT Policing website https://www.policenews.act.gov.au/crime-statistics-and-data/crime-statistics
These data on 19th- and early 20th-century police department and arrest behavior were collected between 1975 and 1978 for a study of police and crime in the United States. Raw and aggregated time-series data are presented in Parts 1 and 3 on 23 American cities for most years during the period 1860-1920. The data were drawn from annual reports of police departments found in the Library of Congress or in newspapers and legislative reports located elsewhere. Variables in Part 1, for which the city is the unit of analysis, include arrests for drunkenness, conditional offenses and homicides, persons dismissed or held, police personnel, and population. Part 3 aggregates the data by year and reports some of these variables on a per capita basis, using a linear interpolation from the last decennial census to estimate population. Part 2 contains data for 267 United States cities for the period 1880-1890 and was generated from the 1880 federal census volume, REPORT ON THE DEFECTIVE, DEPENDENT, AND DELINQUENT CLASSES, published in 1888, and from the 1890 federal census volume, SOCIAL STATISTICS OF CITIES. Information includes police personnel and expenditures, arrests, persons held overnight, trains entering town, and population.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that have occurred in the City of Chicago over the past year, minus the most recent seven days of data. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited.
The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://bit.ly/rk5Tpc.
Crime severity index (violent, non-violent, youth) and weighted clearance rates (violent, non-violent), Canada, provinces, territories and Census Metropolitan Areas, 1998 to 2024.
https://www.icpsr.umich.edu/web/ICPSR/studies/38649/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/38649/terms
This dataset contains county-level totals for the years 2002-2014 for eight types of crime: murder, rape, robbery, aggravated assault, burglary, larceny, motor vehicle theft, and arson. These crimes are classed as Part I criminal offenses by the United States Federal Bureau of Investigations (FBI) in their Uniform Crime Reporting (UCR) program. Each record in the dataset represents the total of each type of criminal offense reported in (or, in the case of missing data, attributed to) the county in a given year.
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
This project was designed to isolate the effects that individual crimes have on wage rates and housing prices, as gauged by individuals' and households' decisionmaking preferences changing over time. Additionally, this project sought to compute a dollar value that individuals would bear in their wages and housing costs to reduce the rates of specific crimes. The study used multiple decades of information obtained from counties across the United States to create a panel dataset. This approach was designed to compensate for the problem of collinearity by tracking how housing and occupation choices within particular locations changed over the decade considering all amenities or disamenities, including specific crime rates. Census data were obtained for this project from the Integrated Public Use Microdata Series (IPUMS) constructed by Ruggles and Sobek (1997). Crime data were obtained from the Federal Bureau of Investigation's Uniform Crime Reports (UCR). Other data were collected from the American Chamber of Commerce Researchers Association, County and City Data Book, National Oceanic and Atmospheric Administration, and Environmental Protection Agency. Independent variables for the Wages Data (Part 1) include years of education, school enrollment, sex, ability to speak English well, race, veteran status, employment status, and occupation and industry. Independent variables for the Housing Data (Part 2) include number of bedrooms, number of other rooms, building age, whether unit was a condominium or detached single-family house, acreage, and whether the unit had a kitchen, plumbing, public sewers, and water service. Both files include the following variables as separating factors: census geographic division, cost-of-living index, percentage unemployed, percentage vacant housing, labor force employed in manufacturing, living near a coastline, living or working in the central city, per capita local taxes, per capita intergovernmental revenue, per capita property taxes, population density, and commute time to work. Lastly, the following variables measured amenities or disamenities: average precipitation, temperature, windspeed, sunshine, humidity, teacher-pupil ratio, number of Superfund sites, total suspended particulate in air, and rates of murder, rape, robbery, aggravated assault, burglary, larceny, auto theft, violent crimes, and property crimes.
https://www.icpsr.umich.edu/web/ICPSR/studies/9589/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/9589/terms
These data examine the effects on total crime rates of changes in the demographic composition of the population and changes in criminality of specific age and race groups. The collection contains estimates from national data of annual age-by-race specific arrest rates and crime rates for murder, robbery, and burglary over the 21-year period 1965-1985. The data address the following questions: (1) Are the crime rates reported by the Uniform Crime Reports (UCR) data series valid indicators of national crime trends? (2) How much of the change between 1965 and 1985 in total crime rates for murder, robbery, and burglary is attributable to changes in the age and race composition of the population, and how much is accounted for by changes in crime rates within age-by-race specific subgroups? (3) What are the effects of age and race on subgroup crime rates for murder, robbery, and burglary? (4) What is the effect of time period on subgroup crime rates for murder, robbery, and burglary? (5) What is the effect of birth cohort, particularly the effect of the very large (baby-boom) cohorts following World War II, on subgroup crime rates for murder, robbery, and burglary? (6) What is the effect of interactions among age, race, time period, and cohort on subgroup crime rates for murder, robbery, and burglary? (7) How do patterns of age-by-race specific crime rates for murder, robbery, and burglary compare for different demographic subgroups? The variables in this study fall into four categories. The first category includes variables that define the race-age cohort of the unit of observation. The values of these variables are directly available from UCR and include year of observation (from 1965-1985), age group, and race. The second category of variables were computed using UCR data pertaining to the first category of variables. These are period, birth cohort of age group in each year, and average cohort size for each single age within each single group. The third category includes variables that describe the annual age-by-race specific arrest rates for the different crime types. These variables were estimated for race, age, group, crime type, and year using data directly available from UCR and population estimates from Census publications. The fourth category includes variables similar to the third group. Data for estimating these variables were derived from available UCR data on the total number of offenses known to the police and total arrests in combination with the age-by-race specific arrest rates for the different crime types.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Crime data from years prior to the current one. The data included in this dataset has been reviewed and approved by a Milwaukee Police Department supervisor and the Milwaukee Police Department’s Records Management Division. This approval process can take a few weeks from the reported date of the crime. For preliminary crime data, please visit the Milwaukee Police Department’s Crime Maps and Statistics dashboard at https://city.milwaukee.gov/police/Information-Services/Crime-Maps-and-Statistics.
Wisconsin Incident Based Report (WIBR) Group A Offenses.
The Crime Data represents incident level data defined by Wisconsin Incident Based Reporting System (WIBRS) codes. WIBRS reporting is a crime reporting standard and can not be compared to any previous UCR report. Therefore, the Crime Data may reflect:
Neither the City of Milwaukee nor the Milwaukee Police Department guarantee (either express or implied) the accuracy, completeness, timeliness, or correct sequencing of the Crime Data. The City of Milwaukee and the Milwaukee Police Department shall have no liability for any error or omission, or for the use of, or the results obtained from the use of the Crime Data. In addition, the City of Milwaukee and the Milwaukee Police Department caution against using the Crime Data to make decisions/comparisons regarding the safety of or the amount of crime occurring in a particular area. When reviewing the Crime Data, the site user should consider that:
The use of the Crime Data indicates the site user's unconditional acceptance of all risks associated with the use of the Crime Data.
To download XML and JSON files, click the CSV option below and click the down arrow next to the Download button in the upper right on its page. XY fields in data is in projection Wisconsin State Plane South NAD27 (WKID 32054).
This dataset includes all criminal offenses reported to the Colorado Springs Police Department. Each case report (incident) may have several offenses. Each offense may have multiple suspects and/or victims.
Important: This dataset provided by CSPD does not apply the same counting rules as official data reported to the Colorado Bureau of Investigations and the Federal Bureau of Investigation. This means comparisons to those datasets would be inaccurate.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Police recorded crime figures by Police Force Area and Community Safety Partnership areas (which equate in the majority of instances, to local authorities).
https://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-licensehttps://louisville-metro-opendata-lojic.hub.arcgis.com/pages/terms-of-use-and-license
The data provided in this dataset is preliminary in nature and may have not been investigated by a detective at the time of download. The data is therefore subject to change after a complete investigation. This data represents only calls for police service where a police incident report was taken. Due to the variations in local laws and ordinances involving crimes across the nation, whether another agency utilizes Uniform Crime Report (UCR) or National Incident Based Reporting System (NIBRS) guidelines, and the results learned after an official investigation, comparisons should not be made between the statistics generated with this dataset to any other official police reports. Totals in the database may vary considerably from official totals following the investigation and final categorization of a crime. Therefore, the data should not be used for comparisons with Uniform Crime Report or other summary statistics.Data is broken out by year into separate CSV files. Note the file grouping by year is based on the crime's Date Reported (not the Date Occurred).Older cases found in the 2003 data are indicative of cold case research. Older cases are entered into the Police database system and tracked but dates and times of the original case are maintained.Data may also be viewed off-site in map form for just the last 6 months on communitycrimemap.comData Dictionary:Field NameField DescriptionIncident Numberthe number associated with either the incident or used as reference to store the items in our evidence roomsDate Reportedthe date the incident was reported to LMPDDate Occurredthe date the incident actually occurredBadge IDBadge ID of responding OfficerOffense ClassificationNIBRS Reporting category for the criminal act committedOffense Code NameNIBRS Reporting code for the criminal act committedNIBRS_CODEthe code that follows the guidelines of the National Incident Based Reporting System. For more details visit https://ucr.fbi.gov/nibrs/2011/resources/nibrs-offense-codes/viewNIBRS Grouphierarchy that follows the guidelines of the FBI National Incident Based Reporting SystemWas Offense CompletedStatus indicating whether the incident was an attempted crime or a completed crime.LMPD Divisionthe LMPD division in which the incident actually occurredLMPD Beatthe LMPD beat in which the incident actually occurredLocation Categorythe type of location in which the incident occurred (e.g. Restaurant)Block Addressthe location the incident occurredCitythe city associated to the incident block locationZip Codethe zip code associated to the incident block locationContact:LMPD Open Records lmpdopenrecords@louisvilleky.gov
https://www.icpsr.umich.edu/web/ICPSR/studies/2824/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/2824/terms
CrimeStat III is a spatial statistics program for the analysis of crime incident locations, developed by Ned Levine and Associates under the direction of Ned Levine, PhD, that was funded by grants from the National Institute of Justice (grants 1997-IJ-CX-0040, 1999-IJ-CX-0044, 2002-IJ-CX-0007, and 2005-IJ-CX-K037). The program is Windows-based and interfaces with most desktop GIS programs. The purpose is to provide supplemental statistical tools to aid law enforcement agencies and criminal justice researchers in their crime mapping efforts. CrimeStat is being used by many police departments around the country as well as by criminal justice and other researchers. The program inputs incident locations (e.g., robbery locations) in 'dbf', 'shp', ASCII or ODBC-compliant formats using either spherical or projected coordinates. It calculates various spatial statistics and writes graphical objects to ArcGIS, MapInfo, Surfer for Windows, and other GIS packages. CrimeStat is organized into five sections: Data Setup Primary file - this is a file of incident or point locations with X and Y coordinates. The coordinate system can be either spherical (lat/lon) or projected. Intensity and weight values are allowed. Each incident can have an associated time value. Secondary file - this is an associated file of incident or point locations with X and Y coordinates. The coordinate system has to be the same as the primary file. Intensity and weight values are allowed. The secondary file is used for comparison with the primary file in the risk-adjusted nearest neighbor clustering routine and the duel kernel interpolation. Reference file - this is a grid file that overlays the study area. Normally, it is a regular grid though irregular ones can be imported. CrimeStat can generate the grid if given the X and Y coordinates for the lower-left and upper-right corners. Measurement parameters - This page identifies the type of distance measurement (direct, indirect or network) to be used and specifies parameters for the area of the study region and the length of the street network. CrimeStat III has the ability to utilize a network for linking points. Each segment can be weighted by travel time, travel speed, travel cost or simple distance. This allows the interaction between points to be estimated more realistically. Spatial Description Spatial distribution - statistics for describing the spatial distribution of incidents, such as the mean center, center of minimum distance, standard deviational ellipse, the convex hull, or directional mean. Spatial autocorrelation - statistics for describing the amount of spatial autocorrelation between zones, including general spatial autocorrelation indices - Moran's I , Geary's C, and the Getis-Ord General G, and correlograms that calculate spatial autocorrelation for different distance separations - the Moran, Geary, Getis-Ord correlograms. Several of these routines can simulate confidence intervals with a Monte Carlo simulation. Distance analysis I - statistics for describing properties of distances between incidents including nearest neighbor analysis, linear nearest neighbor analysis, and Ripley's K statistic. There is also a routine that assigns the primary points to the secondary points, either on the basis of nearest neighbor or point-in-polygon, and then sums the results by the secondary point values. Distance analysis II - calculates matrices representing the distance between points for the primary file, for the distance between the primary and secondary points, and for the distance between either the primary or secondary file and the grid. 'Hot spot' analysis I - routines for conducting 'hot spot' analysis including the mode, the fuzzy mode, hierarchical nearest neighbor clustering, and risk-adjusted nearest neighbor hierarchical clustering. The hierarchical nearest neighbor hot spots can be output as ellipses or convex hulls. 'Hot spot' analysis II - more routines for conducting hot spot analysis including the Spatial and Temporal Analysis of Crime (STAC), K-means clustering, Anselin's local Moran, and the Getis-Ord local G statistics. The STAC and K-means hot spots can be output as ellipses or convex hulls. All of these routines can simulate confidence intervals with a Monte Carlo simulation. Spatial Modeling Interpolation I - a single-variable kernel density estimation routine for producin
This dataset reflects reported incidents of crime (with the exception of murders where data exists for each victim) that occurred in the City of Chicago from 2001 to present, minus the most recent seven days. Data is extracted from the Chicago Police Department's CLEAR (Citizen Law Enforcement Analysis and Reporting) system. In order to protect the privacy of crime victims, addresses are shown at the block level only and specific locations are not identified. Should you have questions about this dataset, you may contact the Research & Development Division of the Chicago Police Department at 312.745.6071 or RandD@chicagopolice.org. Disclaimer: These crimes may be based upon preliminary information supplied to the Police Department by the reporting parties that have not been verified. The preliminary crime classifications may be changed at a later date based upon additional investigation and there is always the possibility of mechanical or human error. Therefore, the Chicago Police Department does not guarantee (either expressed or implied) the accuracy, completeness, timeliness, or correct sequencing of the information and the information should not be used for comparison purposes over time. The Chicago Police Department will not be responsible for any error or omission, or for the use of, or the results obtained from the use of this information. All data visualizations on maps should be considered approximate and attempts to derive specific addresses are strictly prohibited. The Chicago Police Department is not responsible for the content of any off-site pages that are referenced by or that reference this web page other than an official City of Chicago or Chicago Police Department web page. The user specifically acknowledges that the Chicago Police Department is not responsible for any defamatory, offensive, misleading, or illegal conduct of other users, links, or third parties and that the risk of injury from the foregoing rests entirely with the user. The unauthorized use of the words "Chicago Police Department," "Chicago Police," or any colorable imitation of these words or the unauthorized use of the Chicago Police Department logo is unlawful. This web page does not, in any way, authorize such use. Data is updated daily Tuesday through Sunday. The dataset contains more than 65,000 records/rows of data and cannot be viewed in full in Microsoft Excel. Therefore, when downloading the file, select CSV from the Export menu. Open the file in an ASCII text editor, such as Wordpad, to view and search. To access a list of Chicago Police Department - Illinois Uniform Crime Reporting (IUCR) codes, go to http://data.cityofchicago.org/Public-Safety/Chicago-Police-Department-Illinois-Uniform-Crime-R/c7ck-438e
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Since 2014, Eurostat and the UNODC have launched a joint annual data collection on crime and criminal justice statistics, using the UN crime trends questionnaire and complementary Eurostat requests
for specific areas of interest to the European Commission. The data and metadata are collected from National Statistical Institutes or other relevant authorities (mainly police and justice departments) in each EU Member State, EFTA country and EU potential members. On the Eurostat website, data are available for 41 jurisdictions since 2008 until 2018 data and for 38 jurisdictions since 2019 data (EU-27, Iceland, Liechtenstein, Norway, Bosnia and Herzegovina, Montenegro, North Macedonia, Albania, Serbia, Turkey, Kosovo(1)), having drop the data for the United Kingdom separately owing to three separate jurisdictions England and Wales, Scotland, Northern Ireland.
This joint data collection and other data collections carried out by Eurostat allows to gather information on:
Where available, data are broken down by sex, age groups (adults/juveniles), country of citizenship (foreigners or nationals) and other relevant variables. National data are available and for intentional homicide offences, city level data (largest cities) are available for some countries. Regional data at NUTS3 level are also available for some police-recorded offences.
Some historical series are available:
Total number of police-recorded crimes for the period 1950 – 2000
(1) under United Nations Security Council Resolution 1244/99
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
In February 2019, we updated the neighborhood assignment with regards to the new police record system.
The data set is refreshed on the third day of the month at 8:45 AM. The website will reflect the last time the data set was updated and the total count of rows. The grid on the “Data” tab will display the up to date data. However, in certain situations there is a delay in the refresh of the downloadable data file. Sometimes the downloadable file does not reflect the updates to the data in the portal. After a delay (duration has been variable; up to 30 minutes), the file will be updated on the server and then downloads will include the updated data.
In 2023, the District of Columbia had the highest reported violent crime rate in the United States, with 1,150.9 violent crimes per 100,000 of the population. Maine had the lowest reported violent crime rate, with 102.5 offenses per 100,000 of the population. Life in the District The District of Columbia has seen a fluctuating population over the past few decades. Its population decreased throughout the 1990s, when its crime rate was at its peak, but has been steadily recovering since then. While unemployment in the District has also been falling, it still has had a high poverty rate in recent years. The gentrification of certain areas within Washington, D.C. over the past few years has made the contrast between rich and poor even greater and is also pushing crime out into the Maryland and Virginia suburbs around the District. Law enforcement in the U.S. Crime in the U.S. is trending downwards compared to years past, despite Americans feeling that crime is a problem in their country. In addition, the number of full-time law enforcement officers in the U.S. has increased recently, who, in keeping with the lower rate of crime, have also made fewer arrests than in years past.