In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 6th version of the 2010 Cross-Sectional User Database as released in July 2015 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
CROSS_SECT_SAMPLE_PUB_PT: Cross-sectional surveys capture the shape of the stream channel at a specific location by measuring elevations at intervals across the channel. Cross-sections are used to determine bankfull width, mean bankfull depth, and entrenchment of a channel at a specific point. Cross-sections are usually installed and monitored to track geomorphic change in a stream before and after a physical alteration to the channel; these surveys can detect erosion and deposition of stream sediment as well as changes to the shape (profile) of stream bed and banks. The cross-section table defined in this data standard stores the summary measurements. Raw data can be stored in a spreadsheet or document and related to the record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the dataset containing simulated and real data used in the analyses for the paper "High-throughput phenotyping methods for quantifying hair fiber morphology" and is part of the Hair Phenotyping Methods Project run by Tina Lasisi.
The data can be analyzed with the fibermorph Python package available on PyPi and Github.
This repository has 2 datasets with 2 different types of data:
Simulated hair data
Cross-sectional data (simulated ellipses)
Curvature data (simulated arcs)
Real hair data
Cross-sectional data (micrographs of hair fiber cross-sections)
Curvature data (longitudinal images of hair fiber fragments)
Visit the Hair Phenotyping Methods Project website for the most up to date information about this project and any updates relevant to this dataset.
Details
Simulated data
Cross-sectional data
These ellipses were simulated with a python script developed as part of fibemorph. A version of that code that doesn't require the original Python package has been made available with the dataset (sim_ellipse.py).
The script simulates a single cross-section per image.
Each image has a width of 5200px and a height of 3900 with a resolution set to 4.25 px/micron.
Curvature data
An R script used for curvature simulation, written by Arslan Zaidi, has also been made available with this dataset (sim_curvature.R).
The script generates 25 arcs per image. We used a set length of 1.57.
Each image has a resolution of 132 px/mm.
Please note that due to the use of random generations, it is not possible to recreate the exact same datasets that are saved here.
Real data
The real data images are very large files and have been split into multiple zip files. Please check the specific instructions for unzipping split zip files for your OS.
The images are from hair samples collected by the Shriver Lab at Penn State. There were a total of 192 samples, although not all images made it past quality control so certain IDs may have cross-section images but not curvature images or vice versa.
The images have been de-identified and the hair samples for these individuals were collected with informed consent and ethical approval by The Pennsylvania State University Institutional Review Board (#44929 and #45727).
Cross-sectional data
We developed and used this protocol to embed, section, and image the hairs.
We embedded 6 samples per person and took images of both sides of the sectioned sample (A and B). These should be mirror images of each other.
Curvature data
We developed and used this protocol to cut, wash, and image the hairs.
We used 3-5 hairs per person where available. A number of samples did not have enough hair for this, so the images contain fewer fragments. We have made these available for full transparency although we filtered them from our analyses downstream.
Please see the GitHub repository for additional related participant data we used in our analyses.
This file contains all of the cases and variables that are in the original 2012 General Social Survey, but is prepared for easier use in the classroom. Changes have been made in two areas. First, to avoid confusion when constructing tables or interpreting basic analysis, all missing data codes have been set to system missing. Second, many of the continuous variables have been categorized into fewer categories, and added as additional variables to the file.
The General Social Surveys (GSS) have been conducted by the National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. This data file has all cases and variables asked on the 2012 GSS. There are a total of 4,820 cases in the data set but their initial sampling years vary because the GSS now contains panel cases. Sampling years can be identified with the variable SAMPTYPE.
The 2012 GSS featured special modules on religious scriptures, the environment, dance and theater performances, health care system, government involvement, health concerns, emotional health, financial independence and income inequality.
The GSS has switched from a repeating, cross-section design to a combined repeating cross-section and panel-component design. This file has a rolling panel design, with the 2008 GSS as the base year for the first panel. A sub-sample of 2,000 GSS cases from 2008 was selected for reinterview in 2010 and again in 2012 as part of the GSSs in those years. The 2010 GSS consisted of a new cross-section plus the reinterviews from 2008. The 2012 GSS consists of a new cross-section of 1,974, the first reinterview wave of the 2010 panel cases with 1,551 completed cases, and the second and final reinterview of the 2008 panel with 1,295 completed cases. Altogether, the 2012 GSS had 4,820 cases (1,974 in the new 2012 panel, 1,551 in the 2010 panel, and 1,295 in the 2008 panel).
To download syntax files for the GSS that reproduce well-known religious group recodes, including RELTRAD, please visit the "/research/syntax-repository-list" Target="_blank">ARDA's Syntax Repository.
A data set designed to provide a cross-sectional description of health, mental, and social status of the oldest-old segment of the elderly population in Israel, and to serve as a baseline for a multiple-stage research program to correlate demographic, health, and functional status with subsequent mortality, selected morbidity, and institutionalization. Study data are based on a sample of Jewish subjects aged 75+, alive and living in Israel on January 1, 1989, randomly selected from the National Population Register (NPR), a complete listing of the Israeli population maintained by the Ministry of the Interior. The NPR is updated on a routine basis with births, deaths, and in and out migration, and corrected by linkage with census data. The sample was stratified by age (five 5-year age groups: 75-79, 80-84, 85-89, 90-94, 95+), sex, and place of birth (Israel, Asia-Africa, Europe-America). One hundred subjects were randomly selected in each of the 30 strata. However, there were less than 100 individuals of each sex aged 95+ born in Israel, so all were selected for the sample. The total group included 2,891 individuals living both in the community and in institutions. A total of 1,820 (76%) of the 75-94 age group were interviewed during 1989-1992. An additional cognitive exam (Folstein) and a 24-hour dietary recall interview were added in the second round. Kibbutz Residents Sample The kibbutz is a social and economic unit based on equality among members, common property and work, collaborative consumption, and democracy in decision making. There are 250 kibbutzim in Israel, and their population constitutes about 3% of the country''s total population. All kibbutz residents in the country aged 85+, both members and parents, were selected for interviewing, of whom 80.4% (n=652) were interviewed. A matched sample aged 75-84 was selected, and 85.9% (n=674) were successfully interviewed. The original interview took approximately two hours to administer, and collected extensive information concerning the socio-demographic, physical, health, functioning, life events (including Holocaust), depression, mental status, and social network characteristics of the sample. The questionnaire used for kibbutz residents in the follow-up interview is identical to that utilized in the national random sample. Data Availability: Mortality data for both the national and kibbutz samples are available for analysis as a result of the linkage to the NPR file updated as of June 2000. The fieldwork for first follow up was completed as of September 1994 and for the second follow up as of December 2002. The data file of the three phases of the study is ready for analysis. * Dates of Study: 1989-1992 * Study Features: Longitudinal, International * Sample Size: 2,891
The General Social Surveys (GSS) have been conducted by the "https://www.norc.org/Pages/default.aspx" Target="_blank">National Opinion Research Center (NORC) annually since 1972, except for the years 1979, 1981, and 1992 (a supplement was added in 1992), and biennially beginning in 1994. The GSS are designed to be part of a program of social indicator research, replicating questionnaire items and wording in order to facilitate time-trend studies. The 2008 GSS featured special modules on attitudes toward science and technology, self-employment, terrorism preparation, global economics, sports and leisure, social inequality, sexual behaviors and religion. Items on religion covered denominational affiliation, church attendance, religious upbringing, personal beliefs, and religious experiences.
The GSS is in transition from a replicating cross-sectional design to a design that uses rotating panels. In 2008 there were two components: a new 2008 cross-section with 2,023 cases and the first re-interviews (panel) with 1,536 respondents from the 2006 GSS. The 2,023 cases in the cross-section have been previously released as a part of the 1972-2008 cumulative data. This new release includes those 1,536 re-interviewed panel cases along with the 2,023 cases. Please note that this is not a cumulative file - those cases and variables not surveyed in 2008 are excluded. Also note that, although those 1,536 cases were from the 2006 sample, this release does not include their responses in 2006. We plan to release a data file with the previous responses in the future. This release introduces new variables that were asked only of the panel cases of the 2008 GSS. The majority of variables introduced are related to the 2007 International Social Survey Program (ISSP) module on leisure time and sports.
To download syntax files for the GSS that reproduce well-known religious group recodes, including RELTRAD, please visit the "/research/syntax-repository-list" Target="_blank">ARDA's Syntax Repository.
The data in this deposit were collected as part of the B@SEBALL project (Biodiversity at School Environments - Benefits for All). The project investigated how biodiversity in the school environment can positively affect children’s health and mental well-being. B@SEBALL also investigated the opportunities for reducing health inequalities among children via biodiversity at school environments. The data are organized according to the Frictionless Data Package standard. All child-level and school-level data have been anonymized. Each data package is a collection of csv files and a json file. The json file holds descriptive information for all variables in all csv files. The zip file contains two frictionless data packages. The data packages contain information on 37 primary schools and 513 children. These data packages only store information for participants that gave consent for a particular part of the study and that gave consent for long-term storage of the data. There may therefore be slight differences between results published as part of the project consortium, which could make use of participant data that did not give consent for long-term data storage, and reproduction of these results based on the data in this data repository. We also note that the derived variables in the derived data package were calculated with these participants included and removal of participants for which we had no long-term storage consent was done after these calculations. As part of the project, microbiome data were also collected (both from cheek swabs on the children and from environmental samples), but this part of the data are not a part of this deposit and will be deposited in the European Nucleotide Archive (ENA).
This dataset contains 42 individual images that are part of a single sample. The individual images can be combined into a single image via image stitching. These data are provided as an example so that different image stitching methods may be tested. Some of the features of this data that make the image stitching challenging are: the color gradient across the screen due to the differential interference contrast technique, the deep scratches that exist on some of the images but may appear to change position due to the slight changes in lighting conditions between different images depending on position of the scratch on the image.
The EICV4 survey (Enquête Intégrale sur les Conditions de Vie des ménages) was conducted over a 12-month cycle from October 2013 to October 2014. Data collection was divided into 10 cycles in order to represent seasonality in the income and consumption data. A main cross-sectional sample survey, a panel survey and a VUP sample survey were conducted simultaneously.
The EICV4 provides information on poverty and living conditions in Rwanda and measures changes over time as part of the on-going monitoring of the Poverty Reduction Strategy and other Government policies. The survey data are also very important for national accounts and updating the consumer price index (CPI).
National coverage.
Households
All household members (variable s1q15 identifies household membership).
Sample survey data [ssd]
The EICV4 cross sectional (CS) sample includes two independent subsets selected using different sampling frames: 1) A new EICV4 sample of households in enumeration areas (EAs) selected using the 2012 Rwanda Population and Housing Census frame and 2) a panel of households selected from 177 EICV3 villages. A new listing of households was conducted in both the panel and new sample clusters in order to update the frame for the CS Survey. The sample households in the new CS sample EAs were selected from the new listing.
1) The new EICV4 sample The main sampling frame for the EICV4 is based on the 2012 Rwanda Census. The primary sampling units (PSUs) are the 2012 census Enumeration Areas (EAs). In the Census, each EA was classified as urban, semi-urban, peri-urban or rural. The urban areas include Kigali-Ville and the district capitals. The semi-urban areas generally correspond to smaller towns that have service facilities and markets. The peri-urban areas currently have the characteristics of rural areas, but they are located on the periphery of urban areas and are designated for future development. For the EICV4 sampling frame, the semi-urban areas were grouped with the urban strata, and the peri-urban areas with the rural strata. This results in a final distribution of 17.2% urban households and 82.8% rural households in the sampling frame. EAs in the 177 EICV3 sample villages selected for the panel study were excluded from the sampling frame, in order to avoid any overlap between the two samples.
The new EICV4 sample of 12,312 households was selected using a stratified two-stage design. At the first stage, sample EAs were selected within each stratum (district) with probability proportional to size (PPS) from the ordered list of EAs in the sampling frame. The EAs are implicitly stratified by urban and rural strata within each district, ordered first by urban, semi-urban, peri-urban and rural areas, and then geographically by sector, cellule, village and EA codes. This first stage sampling procedure provides a proportional allocation of the sample to the urban and rural areas of each district. At the second stage, households in each sample EA are selected from the listing. For the three districts in Kigali Province, 9 households were selected in each sample EA as original households; for the remaining 27 districts, 12 households were selected in each sample EA as original households. In addition, a reserve sample of 3 replacement households were selected for each sample EA in Kigali Province and 4 replacement households for each sample EA in the remaining provinces.
This new EICV4 sample contains 12,312 households, including 12,233 original households and 79 replacement households.
2) Households from 177 EICV3 villages used for panel study The second component of the EICV4 cross sectional sample consists of all the sample households interviewed inside the 177 EICV3 villages selected for the panel study (including any replacements households and panel split households inside the clusters).
Within each of the 177 villages, all households that were interviewed during EICV3 were included in the cross-sectional sample. When an EICV3 sample household moved and a new household occupied the same house in the cluster, it was interviewed for the Cross-Sectional Survey, and assigned a PID (dependency) code of 94. If an EICV3 household was empty or not found, a random replacement household was selected for the EICV4 Cross-Sectional Survey from the new listing of the sample cluster, and assigned a PID code of 95. The sample households with PID codes 94 and 95 are only used for the cross-sectional study, not the panel study.
This second component of the cross-sectional sample includes 2108 households drawn from the 177 EICV3 villages sampled for the panel study. These include 1604 original EICV3 households, 181 dependent household splitting from the original household in the same cluster, along with 243 households living in the dwelling formerly occupied by a panel household and 80 replacement households in the cluster in order to have 9/12 households per cluster.
The reason why we combine the EICV4 data from the new and panel clusters for the CS analysis is to obtain the most accurate CS estimates. In the case of the CS estimates from the combined samples, the additional data from the 177 sample panel clusters will result in a significant reduction in the variance component of the MSE. Although the bias of the CS data from the sample panel clusters may slightly increase the bias component, this bias is very small compared to the corresponding reduction in the variance component. Therefore the CS results from the EICV4 data for the combined new and panel clusters can be considered more accurate than the corresponding results using only the EICV4 data for the new sample clusters.
In total, the final EICV4 cross-sectional sample contains 14,419 households.
3) Assignment of EAs to cycles and sub-cycles Data collection covering a period of 12 month is divided into 10 cycles to represent seasonality in consumption, income, employment and agricultural activity patterns. For rural enumeration, each cycle is further divided into two sub-cycles. For the 177 EICV3 villages, the cycle and sub-cycle were pre-determined. Households were re-interviewed in the same cycle, correponding to the same time of the year as they were in EICV3. To assign cycles to the new EICV4 sample EAs, random cycle numbers from 1 to 10 were generated to identify the selection sequence. For the 27 districts outside Kigali, sub-cycle numbers of 1 or 2 were assigned systematically with a random start. This process ensured that the final distribution of the sample EAs to cycles and sub-cycles was geographically representative within each district.
Face-to-face paper [f2f]
The same questionnaire was used for cross-sectional, panel and VUP samples. Part A of the questionnaire contains modules on household and individual information. Part B is on agriculture and consumption. The questionnaire was developed in English, and translated into Kinyarwanda.
Questionnaire design took into account the requests raised by major data users and stakeholders, as well as consistency with the previous EICV questionnaires. In addition to methodological improvements, some simplifications were made:
-The major changes introduced in this survey were changes to Section 6, the Economic Activity. Further questioning was added on unemployment and underemployment in response to questions from users, and also to comply with international standards. The section was simplified to enable the analysis to be undertaken by local analysts.
-The Section on the VUP participation was expanded to provide more information, better classification of beneficiaries and to provide greater consistency within the questionnaire. The same questionnaire is to be used on the separate VUP sample which runs in parallel with the EICV4.
-The health section was reduced to try to cut respondent burden, as health-related information is being collected by Demographic and Health Surveys (DHS).
-The expenditure section was changed in minor ways to provide better information for national accounts (housing investment) and for CPI weights (retail outlets).
Questionnaire was tested in pilot surveys and amended in time prior to the fieldwork starting in October 2013. The complete questionnaire is provided as external resources.
A day before the interview started, the enumerator, accompanied by a controller, did an introduction to household, explaining how often they will come in that household and delivering a letter indicating that the HH has been selected.
During the field work, after each cycle, the data processing team produced tables and reports of inconsistencies, which were checked by the field supervisor. The data entry system also contained consistency checks that alerted the data entry operators. In case of an alert, the questionnaire was sent back to the supervisor of data entry for correction.
Out of the 12,312 sample households selected in the new sample clusters for EICV4, only 79 were non-interviews, for a response rate of 99.4% for this sample. All of the 79 non-interviews were replaced. There were only 12 refusals, and there were few cases of houses that were empty or not found, given that the listing was conducted very close to the interviewing period.
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
Reduced cross section as measured in the SVX data sample for Q**2 = 3.50 GeV**2. Additional 3 PCT luminosity uncertainty...
Background: Facebook addiction is said to occur when an individual spends an excessive amount of time on Facebook, disrupting one’s daily activities and social life. The present study aimed to find out the level of Facebook addiction in the Nepalese context and briefly discuss the crimes associated with its unintended use. Methods: A descriptive cross-sectional study was conducted in the Department of Forensic Medicine of Lumbini Medical College. The study instrument was the Bergen Facebook Addiction Scale typed into a Google Form and sent randomly to Facebook contacts of the authors. The responses were downloaded in a Microsoft Excel spreadsheet and analyzed using Statistical Package for Social Sciences version 16. Results: The study consisted of 103 Nepalese participants, of which 54 (52.42%) were males and 49 females (47.58%). There were 11 participants (10.68%) who had more than one Facebook account. When different approaches were applied it was observed that 8.73% (n=9) to 39.80% (...
Background
The Labour Force Survey (LFS) is a unique source of information using international definitions of employment and unemployment and economic inactivity, together with a wide range of related topics such as occupation, training, hours of work and personal characteristics of household members aged 16 years and over. It is used to inform social, economic and employment policy. The LFS was first conducted biennially from 1973-1983. Between 1984 and 1991 the survey was carried out annually and consisted of a quarterly survey conducted throughout the year and a 'boost' survey in the spring quarter (data were then collected seasonally). From 1992 quarterly data were made available, with a quarterly sample size approximately equivalent to that of the previous annual data. The survey then became known as the Quarterly Labour Force Survey (QLFS). From December 1994, data gathering for Northern Ireland moved to a full quarterly cycle to match the rest of the country, so the QLFS then covered the whole of the UK (though some additional annual Northern Ireland LFS datasets are also held at the UK Data Archive). Further information on the background to the QLFS may be found in the documentation.
Longitudinal data
The LFS retains each sample household for five consecutive quarters, with a fifth of the sample replaced each quarter. The main survey was designed to produce cross-sectional data, but the data on each individual have now been linked together to provide longitudinal information. The longitudinal data comprise two types of linked datasets, created using the weighting method to adjust for non-response bias. The two-quarter datasets link data from two consecutive waves, while the five-quarter datasets link across a whole year (for example January 2010 to March 2011 inclusive) and contain data from all five waves. A full series of longitudinal data has been produced, going back to winter 1992. Linking together records to create a longitudinal dimension can, for example, provide information on gross flows over time between different labour force categories (employed, unemployed and economically inactive). This will provide detail about people who have moved between the categories. Also, longitudinal information is useful in monitoring the effects of government policies and can be used to follow the subsequent activities and circumstances of people affected by specific policy initiatives, and to compare them with other groups in the population. There are however methodological problems which could distort the data resulting from this longitudinal linking. The ONS continues to research these issues and advises that the presentation of results should be carefully considered, and warnings should be included with outputs where necessary.
LFS Documentation
The documentation available from the Archive to accompany LFS datasets largely consists of the latest version of each user guide volume alongside the appropriate questionnaire for the year concerned. However, volumes are updated periodically by ONS, so users are advised to check the latest documents on the ONS Labour Force Survey - User Guidance pages before commencing analysis. This is especially important for users of older QLFS studies, where information and guidance in the user guide documents may have changed over time.
Occupation data for 2021 and 2022 data files
The ONS has identified an issue with the collection of some occupational data in 2021 and 2022 data files in a number of their surveys. While they estimate any impacts will be small overall, this will affect the accuracy of the breakdowns of some detailed (four-digit Standard Occupational Classification (SOC)) occupations, and data derived from them. Further information can be found in the ONS article published on 11 July 2023: Revision of miscoded occupational data in the ONS Labour Force Survey, UK: January 2021 to September 2022.
2022 Weighting
The population totals used for the latest LFS estimates use projected growth rates from Real Time Information (RTI) data for UK, EU and non-EU populations based on 2021 patterns. The total population used for the LFS therefore does not take into account any changes in migration, birth rates, death rates, and so on since June 2021, and hence levels estimates may be under- or over-estimating the true values and should be used with caution. Estimates of rates will, however, be robust.
This study was deposited in 2008, as a result of the move from seasonal to calendar quarters for the QLFS, and the reweighting process to 2007-2008 population figures. It combines data from previously-available QLFS seasonal five-quarter longitudinal datasets. The depositor has advised that small revisions to the data may have been made during this process, but they should not be significant.Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Citing the Data
If you use this data be sure to cite the paper that describes the work, as well as this Zenodo DOI.
Paper Abstract
Stellar, substellar, and planetary atmosphere models are all highly sensitive to the input opacities and subject to errors arising from incomplete line lists and the lack of appropriate pressure-broadening parameters. Generational differences between various state-of-the-art stellar/planetary models are primarily because of incomplete and outdated atomic and molecular line lists. Addressing this, here we present a database of pre-computed molecular absorption cross-sections for all isotopologues of key atmospheric absorbers relevant to late-type stellar, brown dwarf, and planetary atmospheres: MgH, AlH, CaH, TiH, CrH, FeH, SiO, TiO, VO, and H2O. The pressure and temperature ranges of the computed opacities are between 10-6--3000 bar and 75--4000 K, and their spectral ranges are 0.25--330 micron for many cases where possible. For cases with no published pressure-broadening data, we use collision theory to bridge the gap. We also probe the effect of absorption cross-sections calculated from different line lists in the context of Ultra-Hot Jupiter and M-dwarf atmospheres. Using 1-D self-consistent radiative-convective thermochemical equilibrium models, we report significant variations in the theoretical spectra and thermal profiles of substellar atmospheres. With a 2000 K representative Ultra-Hot Jupiter, we report variations of up to 320 and 80 ppm in transmission and thermal emission spectra, respectively, and differences of up to 130 K in the thermal profile between 0.1 mbar and 10 bars. For a 3000 K M-dwarf, we find differences of up to 125% in the spectra and 60 K in the thermal profiles between 1 mbar and 100 bars. We find that the most significant differences arise due to the choice of TiO line lists, primarily below 1 micron, with minor variations because of metal hydride differences in the near-infrared. In sum, we present (1) a database of pre-computed molecular absorption cross-sections to mitigate shortcomings for pre-existing incomplete line lists, and (2) quantify biases that arise when characterizing substellar/exoplanet atmospheres due to line list differences, therefore highlighting the importance of correct and complete opacities for eventual applications to high precision spectroscopy and photometry.
About the Data
All the molecules, except H2O, are computed on a 1460 pressure-temperature (P-T) grid. H2O is computed on a 1060 pressure-temperature grid. Each filename has an associated number that corresponds to a P-T point. You can find the grid information in grid1060.txt, and grid1460.txt.
Reading Data on a 1460 Grid Python
import pandas as pd import numpy as np
g1460 = pd.read_csv('grid1460.csv')
file_number = g1460.loc[((g1460['pressure_bar']==1e-3) & (g1460['temperature_K']==1400)) ,'file_number'].values[0] numw = g1460.loc[(g1460['file_number']==file_number) ,'number_wave_pts'].values[0] delwn = g1460.loc[(g1460['file_number']==file_number) ,'delta_wavenumber'].values[0] start = g1460.loc[(g1460['file_number']==file_number) ,'start_wavenumber'].values[0]
file_to_read = '/data/weighted_cxs/weighted_AlH_1460/p_{0}'.format(file_number)
cx_data = np.fromfile(file_to_read) wavenumber_grid = np.arange(numw)*delwn + start
Reading Data on a 1060 Grid with Python
import pandas as pd import numpy as np
g1060 = pd.read_csv('grid1060.csv')
file_number = g1060.loc[((g1060['pressure_bar']==1e-3) & (g1060['temperature_K']==1400)) ,'file_number'].values[0]
file_to_read = '/data/weighted_cxs/weighted_H2O_1060/H2O_H2HE_POKAZATEL_1060.{0}'.format(file_number)
data = pd.read_csv(file_to_read, delim_whitespace=True, header=None, names = ['wavenumber','cx']) cx_data = data['cx'] wavenumber_grid = data['wavenumber']
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
Since 1991, the country has been utilizing cross-sectional sample data to monitor the well-being of the Zambian population, as was the case with the 1996 and 1998 LCMS surveys. However, in 2002/2003 a different methodology was employed to collect and analyze data. The survey was designed to collect data for a period of 12 months.
The Living Conditions Monitoring Survey IV (LCMSIV) was intended to highlight and monitor the living conditions of the Zambian society. The survey included a set of priority indicators on poverty and living conditions to be repeated regularly.
The main objective of the Living Conditions Monitoring Survey IV (LCMSIV) is to provide the basis for comparison of poverty estimates derived from cross-sectional survey data. In addition, the survey provides a basis on which to: - - Monitor the impact of government policies and donor support on the well being of the Zambian population. - Monitor poverty and its distribution in Zambia. - Provide various users with a set of reliable indicators against which to monitor development. - Identify vulnerable groups in society and enhance targeting in policy implementation. - Develop new weights for the Consumer Price Indices and generate information that is required to produce National Accounts Statistics.
The Living Conditions Monitoring Survey IV had a nationwide coverage on a sample basis. It covered both rural and urban areas in all the nine provinces. The survey was designed to provide data for each and every district in Zambia.
This survey was carried out under the provisions of the Census and Statistics Act, Chapter 425 of the Laws of Zambia. All persons residing in Zambia except for foreign diplomats accredited to embassies and high commissions at the time of the survey were required by this act to provide the necessary information.
Excluded from the sample were institutional populations in hospitals, boarding schools, colleges, universities, prisons, hotels, refugee camps, orphanages, military camps and bases and diplomats accredited to Zambia in embassies and high commissions. Private households living around these institutions and cooking separately were included such as teachers whose houses are within the premises of a school, doctors and other workers living on or around hospital premises, police living in police camps in separate houses, etc. Persons who were in hospitals, boarding schools, etc. but were usual members of households were included in their respective households. Ordinary workers other than diplomats working in embassies and high commissions were included in the survey also. Others with diplomatic status working in the UN, World Bank etc. were included. Also included were persons or households who live in institutionalized places such as hostels, lodges, etc. but cook separately. The major distinguishing factor between eligible and non eligible households in the survey is the cooking and eating separately versus food provided by an institution in a common/communal dining hall or eating place. The former cases were included while the latter were excluded.
Sample survey data [ssd]
Sample Stratification and Allocation The sampling frame used for LCMSIV survey was developed from the 2000 census of population and housing. The country is administratively demarcated into 9 provinces, which are further divided into 72 districts. The districts are further subdivided into 155 constituencies, which are also divided into wards. Wards consist of Census Supervisory Areas (CSA), which are further subdivided into Standard Enumeration areas (SEAs). For the purposes of this survey, SEAs constituted the ultimate Primary Sampling Units (PSUs).In order to have equal precision in the estimates in all the districts and at the same time take into account variation in the sizes of the district, the survey adopted the Square Root sample allocation method, (Lesli Kish, 1987). This approach offers a better compromise between equal and proportional allocation methods in terms of reliability of both combined and separate estimates. The allocation of the sample points (PSUs) to rural and urban strata was almost proportional.A sample size of about 1,048 SEAs and approximately 20,000 households was drawn.
Sample Selection The LCMS IV employed a two-stage stratified cluster sample design whereby during the first stage, 1048 SEAs were selected with Probability Proportional to Estimated Size (PPES). The size measure was taken from the frame developed from the 2000 census of population and housing. During the second stage, households were systematically selected from an enumeration area listing. The survey was designed to provide reliable estimates at district, provincial, rural/urban and national levels. The LCMS IV survey commenced by listing all the households in the selected SEAs. In the case of rural SEAs, households were stratified according to their agricultural activity status. Therefore, there were four explicit strata created in each rural SEA namely, the Small Scale Stratum (SSS), the Medium Scale Stratum (MSS), the Large Scale Stratum (LSS) and the Non-agricultural Stratum (NAS). For the purposes of the LCMSIV survey, about 7, 5 and 3 households were supposed to be selected from the SSS, MSS and NAS, respectively. The large scale households were selected on a 100 percent basis. The urban SEAs were implicitly stratified into low cost, medium cost and high cost areas according to CSO's and local authority classification of residential areas. About 15 and 25 households were sampled from rural and urban SEAs, respectively.However, the number of rural households selected in some cases exceeded the desired sample size of 15 households due to the 100 percent sampling of large scale farming households.The formulae used in selecting SEAs is provided in section 2.3.3 of the Survey Report in External Resources.
Selection of Households The selection of households from various strata was preceded by assigning fully responding households sampling serial numbers. The circular systematic sampling method was used to select households. The method assumes that households are arranged in a circle (G. Kalton, 1983) and the following relationship applies:
Let N = nk, Where: N = Total number of households assigned sampling serial numbers in a stratum n = Total desired sample size to be drawn from a stratum in an SEA k = The sampling interval in a given SEA calculated as k=N/n.
Face-to-face [f2f]
Two types of questionnaires were used in the survey. These are:- 1. The Listing Booklet - for listing all the households residing in the selected Standard Enumeration Areas (SEAs) 2. The Main questionnaire - for collecting detailed information on all household members.
The data from the LCMSIV survey was processed and analysed using the CSPRO and the Statistical Analysis System (SAS) softwares respectively. Data entry was done from all the provincial offices with 100 percent verification, whilst data cleaning and analysis was undertaken at CSO’s headquarters
In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The fifth revision of the 2010 Cross-Sectional User Database as released in May 2014 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Documentation.
Mixed
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
In 2007, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The sixth revision of the 2007 Cross-Sectional User Database is documented here.
National
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Documentation.
Mixed
In 2005, the EU-SILC instrument covered all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The fifth revision of the 2005 Cross-Sectional User Database is documented here.
National
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Documentation.
Mixed
In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 6th version of the 2010 Cross-Sectional User Database as released in July 2015 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed