100+ datasets found
  1. f

    10-fold cross-validation results.

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Thomas W. Kelsey; Phoebe Wright; Scott M. Nelson; Richard A. Anderson; W. Hamish B Wallace (2023). 10-fold cross-validation results. [Dataset]. http://doi.org/10.1371/journal.pone.0022024.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Thomas W. Kelsey; Phoebe Wright; Scott M. Nelson; Richard A. Anderson; W. Hamish B Wallace
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean squared error (MSE) for the model with highest is given for both the training set (90% of the dataset) and the test set (the remaining 10%) for each of the ten folds. Since – both for individual folds and on average – the errors are similar, we consider the model to be validated. The and peak ages are for the highest ranked model returned by TableCurve2D for each fold.

  2. h

    alpaca-train-validation-test-split

    • huggingface.co
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Doula Isham Rashik Hasan (2023). alpaca-train-validation-test-split [Dataset]. https://huggingface.co/datasets/disham993/alpaca-train-validation-test-split
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 12, 2023
    Authors
    Doula Isham Rashik Hasan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Dataset Card for Alpaca

    I have just performed train, test and validation split on the original dataset. Repository to reproduce this will be shared here soon. I am including the orignal Dataset card as follows.

      Dataset Summary
    

    Alpaca is a dataset of 52,000 instructions and demonstrations generated by OpenAI's text-davinci-003 engine. This instruction data can be used to conduct instruction-tuning for language models and make the language model follow instruction better.… See the full description on the dataset page: https://huggingface.co/datasets/disham993/alpaca-train-validation-test-split.

  3. f

    Data from: Analysis, Modeling, and Target-Specific Predictions of Linear...

    • acs.figshare.com
    xlsx
    Updated Nov 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Boris Vishnepolsky; Maya Grigolava; Andrei Gabrielian; Alex Rosenthal; Darrell Hurt; Michael Tartakovsky; Malak Pirtskhalava (2023). Analysis, Modeling, and Target-Specific Predictions of Linear Peptides Inhibiting Virus Entry [Dataset]. http://doi.org/10.1021/acsomega.3c07521.s001
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 24, 2023
    Dataset provided by
    ACS Publications
    Authors
    Boris Vishnepolsky; Maya Grigolava; Andrei Gabrielian; Alex Rosenthal; Darrell Hurt; Michael Tartakovsky; Malak Pirtskhalava
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Antiviral peptides (AVPs) are bioactive peptides that exhibit the inhibitory activity against viruses through a range of mechanisms. Virus entry inhibitory peptides (VEIPs) make up a specific class of AVPs that can prevent envelope viruses from entering cells. With the growing number of experimentally verified VEIPs, there is an opportunity to use machine learning to predict peptides that inhibit the virus entry. In this paper, we have developed the first target-specific prediction model for the identification of new VEIPs using, along with the peptide sequence characteristics, the attributes of the envelope proteins of the target virus, which overcomes the problem of insufficient data for particular viral strains and improves the predictive ability. The model’s performance was evaluated through 10 repeats of 10-fold cross-validation on the training data set, and the results indicate that it can predict VEIPs with 87.33% accuracy and Matthews correlation coefficient (MCC) value of 0.76. The model also performs well on an independent test set with 90.91% accuracy and MCC of 0.81. We have also developed an automatic computational tool that predicts VEIPs, which is freely available at https://dbaasp.org/tools?page=linear-amp-prediction.

  4. f

    Dataset

    • figshare.com
    application/x-gzip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Moynuddin Ahmed Shibly (2023). Dataset [Dataset]. http://doi.org/10.6084/m9.figshare.13577873.v1
    Explore at:
    application/x-gzipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Moynuddin Ahmed Shibly
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This is an open source - publicly available dataset which can be found at https://shahariarrabby.github.io/ekush/ . We split the dataset into three sets - train, validation, and test. For our experiments, we created two other versions of the dataset. We have applied 10-fold cross validation on the train set and created ten folds. We also created ten bags of datasets using bootstrap aggregating method on the train and validation sets. Lastly, we created another dataset using pre-trained ResNet50 model as feature extractor. On the features extracted by ResNet50 we have applied PCA and created a tabilar dataset containing 80 features. pca_features.csv is the train set and pca_test_features.csv is the test set. Fold.tar.gz contains the ten folds of images described above. Those folds are also been compressed. Similarly, Bagging.tar.gz contains the ten compressed bags of images. The original train, validation, and test sets are in Train.tar.gz, Validation.tar.gz, and Test.tar.gz, respectively. The compression has been performed for speeding up the upload and download purpose and mostly for the sake of convenience. If anyone has any question about how the datasets are organized please feel free to ask me at shiblygnr@gmail.com .I will get back to you in earliest time possible.

  5. t

    FAIR Dataset for Disease Prediction in Healthcare Applications

    • test.researchdata.tuwien.ac.at
    bin, csv, json, png
    Updated Apr 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf (2025). FAIR Dataset for Disease Prediction in Healthcare Applications [Dataset]. http://doi.org/10.70124/5n77a-dnf02
    Explore at:
    csv, json, bin, pngAvailable download formats
    Dataset updated
    Apr 14, 2025
    Dataset provided by
    TU Wien
    Authors
    Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf; Sufyan Yousaf
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset Description

    Context and Methodology

    • Research Domain/Project:
      This dataset was created for a machine learning experiment aimed at developing a classification model to predict outcomes based on a set of features. The primary research domain is disease prediction in patients. The dataset was used in the context of training, validating, and testing.

    • Purpose of the Dataset:
      The purpose of this dataset is to provide training, validation, and testing data for the development of machine learning models. It includes labeled examples that help train classifiers to recognize patterns in the data and make predictions.

    • Dataset Creation:
      Data preprocessing steps involved cleaning, normalization, and splitting the data into training, validation, and test sets. The data was carefully curated to ensure its quality and relevance to the problem at hand. For any missing values or outliers, appropriate handling techniques were applied (e.g., imputation, removal, etc.).

    Technical Details

    • Structure of the Dataset:
      The dataset consists of several files organized into folders by data type:

      • Training Data: Contains the training dataset used to train the machine learning model.

      • Validation Data: Used for hyperparameter tuning and model selection.

      • Test Data: Reserved for final model evaluation.

      Each folder contains files with consistent naming conventions for easy navigation, such as train_data.csv, validation_data.csv, and test_data.csv. Each file follows a tabular format with columns representing features and rows representing individual data points.

    • Software Requirements:
      To open and work with this dataset, you need VS Code or Jupyter, which could include tools like:

      • Python (with libraries such as pandas, numpy, scikit-learn, matplotlib, etc.)

    Further Details

    • Reusability:
      Users of this dataset should be aware that it is designed for machine learning experiments involving classification tasks. The dataset is already split into training, validation, and test subsets. Any model trained with this dataset should be evaluated using the test set to ensure proper validation.

    • Limitations:
      The dataset may not cover all edge cases, and it might have biases depending on the selection of data sources. It's important to consider these limitations when generalizing model results to real-world applications.

  6. Data from: Time-Split Cross-Validation as a Method for Estimating the...

    • acs.figshare.com
    • figshare.com
    txt
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert P. Sheridan (2023). Time-Split Cross-Validation as a Method for Estimating the Goodness of Prospective Prediction. [Dataset]. http://doi.org/10.1021/ci400084k.s001
    Explore at:
    txtAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    ACS Publications
    Authors
    Robert P. Sheridan
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    Cross-validation is a common method to validate a QSAR model. In cross-validation, some compounds are held out as a test set, while the remaining compounds form a training set. A model is built from the training set, and the test set compounds are predicted on that model. The agreement of the predicted and observed activity values of the test set (measured by, say, R2) is an estimate of the self-consistency of the model and is sometimes taken as an indication of the predictivity of the model. This estimate of predictivity can be optimistic or pessimistic compared to true prospective prediction, depending how compounds in the test set are selected. Here, we show that time-split selection gives an R2 that is more like that of true prospective prediction than the R2 from random selection (too optimistic) or from our analog of leave-class-out selection (too pessimistic). Time-split selection should be used in addition to random selection as a standard for cross-validation in QSAR model building.

  7. R

    Solar flare forecasting based on magnetogram sequences learning with MViT...

    • redu.unicamp.br
    • data.niaid.nih.gov
    • +1more
    Updated Jul 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Repositório de Dados de Pesquisa da Unicamp (2024). Solar flare forecasting based on magnetogram sequences learning with MViT and data augmentation [Dataset]. http://doi.org/10.25824/redu/IH0AH0
    Explore at:
    Dataset updated
    Jul 15, 2024
    Dataset provided by
    Repositório de Dados de Pesquisa da Unicamp
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
    Description

    Source codes and dataset of the research "Solar flare forecasting based on magnetogram sequences learning with MViT and data augmentation". Our work employed PyTorch, a framework for training Deep Learning models with GPU support and automatic back-propagation, to load the MViTv2 s models with Kinetics-400 weights. To simplify the code implementation, eliminating the need for an explicit loop to train and the automation of some hyperparameters, we use the PyTorch Lightning module. The inputs were batches of 10 samples with 16 sequenced images in 3-channel resized to 224 × 224 pixels and normalized from 0 to 1. Most of the papers in our literature survey split the original dataset chronologically. Some authors also apply k-fold cross-validation to emphasize the evaluation of the model stability. However, we adopt a hybrid split taking the first 50,000 to apply the 5-fold cross-validation between the training and validation sets (known data), with 40,000 samples for training and 10,000 for validation. Thus, we can evaluate performance and stability by analyzing the mean and standard deviation of all trained models in the test set, composed of the last 9,834 samples, preserving the chronological order (simulating unknown data). We develop three distinct models to evaluate the impact of oversampling magnetogram sequences through the dataset. The first model, Solar Flare MViT (SF MViT), has trained only with the original data from our base dataset without using oversampling. In the second model, Solar Flare MViT over Train (SF MViT oT), we only apply oversampling on training data, maintaining the original validation dataset. In the third model, Solar Flare MViT over Train and Validation (SF MViT oTV), we apply oversampling in both training and validation sets. We also trained a model oversampling the entire dataset. We called it the "SF_MViT_oTV Test" to verify how resampling or adopting a test set with unreal data may bias the results positively. GitHub version The .zip hosted here contains all files from the project, including the checkpoint and the output files generated by the codes. We have a clean version hosted on GitHub (https://github.com/lfgrim/SFF_MagSeq_MViTs), without the magnetogram_jpg folder (which can be downloaded directly on https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531804/dataset_ss2sff.zip) and the output and checkpoint files. Most code files hosted here also contain comments on the Portuguese language, which are being updated to English in the GitHub version. Folders Structure In the Root directory of the project, we have two folders: magnetogram_jpg: holds the source images provided by Space Environment Artificial Intelligence Early Warning Innovation Workshop through the link https://tianchi-competition.oss-cn-hangzhou.aliyuncs.com/531804/dataset_ss2sff.zip. It comprises 73,810 samples of high-quality magnetograms captured by HMI/SDO from 2010 May 4 to 2019 January 26. The HMI instrument provides these data (stored in hmi.sharp_720s dataset), making new samples available every 12 minutes. However, the images from this dataset were collected every 96 minutes. Each image has an associated magnetogram comprising a ready-made snippet of one or most solar ARs. It is essential to notice that the magnetograms cropped by SHARP can contain one or more solar ARs classified by the National Oceanic and Atmospheric Administration (NOAA). Seq_Magnetogram: contains the references for source images with the corresponding labels in the next 24 h. and 48 h. in the respectively M24 and M48 sub-folders. M24/M48: both present the following sub-folders structure: Seqs16; SF_MViT; SF_MViT_oT; SF_MViT_oTV; SF_MViT_oTV_Test. There are also two files in root: inst_packages.sh: install the packages and dependencies to run the models. download_MViTS.py: download the pre-trained MViTv2_S from PyTorch and store it in the cache. M24 and M48 folders hold reference text files (flare_Mclass...) linking the images in the magnetogram_jpg folders or the sequences (Seq16_flare_Mclass...) in the Seqs16 folders with their respective labels. They also hold "cria_seqs.py" which was responsible for creating the sequences and "test_pandas.py" to verify head info and check the number of samples categorized by the label of the text files. All the text files with the prefix "Seq16" and inside the Seqs16 folder were created by "criaseqs.py" code based on the correspondent "flare_Mclass" prefixed text files. Seqs16 folder holds reference text files, in which each file contains a sequence of images that was pointed to the magnetogram_jpg folders. All SF_MViT... folders hold the model training codes itself (SF_MViT...py) and the corresponding job submission (jobMViT...), temporary input (Seq16_flare...), output (saida_MVIT... and MViT_S...), error (err_MViT...) and checkpoint files (sample-FLARE...ckpt). Executed model training codes generate output, error, and checkpoint files. There is also a folder called "lightning_logs" that stores logs of trained models. Naming pattern for the files: magnetogram_jpg: follows the format "hmi.sharp_720s...magnetogram.fits.jpg" and Seqs16: follows the format "hmi.sharp_720s...to.", where: hmi: is the instrument that captured the image sharp_720s: is the database source of SDO/HMI. : is the identification of SHARP region, and can contain one or more solar ARs classified by the (NOAA). : is the date-time the instrument captured the image in the format yyyymmdd_hhnnss_TAI (y:year, m:month, d:day, h:hours, n:minutes, s:seconds). : is the date-time when the sequence starts, and follow the same format of . : is the date-time when the sequence ends, and follow the same format of . Reference text files in M24 and M48 or inside SF_MViT... folders follows the format "flare_Mclass_.txt", where: : is Seq16 if refers to a sequence, or void if refers direct to images. : "24h" or "48h". : is "TrainVal" or "Test". The refers to the split of Train/Val. : void or "_over" after the extension (...txt_over): means temporary input reference that was over-sampled by a training model. All SF_MViT...folders: Model training codes: "SF_MViT_M+_", where: : void or "oT" (over Train) or "oTV" (over Train and Val) or "oTV_Test" (over Train, Val and Test); : "24h" or "48h"; : "oneSplit" for a specific split or "allSplits" if run all splits. : void is default to run 1 GPU or "2gpu" to run into 2 gpus systems; Job submission files: "jobMViT_", where: : point the queue in Lovelace environment hosted on CENAPAD-SP (https://www.cenapad.unicamp.br/parque/jobsLovelace) Temporary inputs: "Seq16_flare_Mclass_.txt: : train or val; : void or "_over" after the extension (...txt_over): means temporary input reference that was over-sampled by a training model. Outputs: "saida_MViT_Adam_10-7", where: : k0 to k4, means the correlated split of the output, or void if the output is from all splits. Error files: "err_MViT_Adam_10-7", where: : k0 to k4, means the correlated split of the error log file, or void if the error file is from all splits. Checkpoint files: "sample-FLARE_MViT_S_10-7-epoch=-valid_loss=-Wloss_k=.ckpt", where: : epoch number of the checkpoint; : corresponding valid loss; : 0 to 4.

  8. Data from: Self-Supervised Representation Learning on Neural Network Weights...

    • zenodo.org
    • data.niaid.nih.gov
    bin
    Updated Nov 13, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kontantin Schürholt; Kontantin Schürholt; Dimche Kostadinov; Damian Borth; Dimche Kostadinov; Damian Borth (2021). Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction - Datasets [Dataset]. http://doi.org/10.5281/zenodo.5645138
    Explore at:
    binAvailable download formats
    Dataset updated
    Nov 13, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Kontantin Schürholt; Kontantin Schürholt; Dimche Kostadinov; Damian Borth; Dimche Kostadinov; Damian Borth
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Datasets to NeurIPS 2021 accepted paper "Self-Supervised Representation Learning on Neural Network Weights for Model Characteristic Prediction".

    Datasets are pytorch files containing a dictionary with training, validation and test sets. Train, validation and test sets are custom dataset classes which inherit from the standard torch dataset class. Corresponding code an be found at https://github.com/HSG-AIML/NeurIPS_2021-Weight_Space_Learning.

    Datasets 41, 42, 43 and 44 are our dataset format wrapped around the zoos from Unterthiner et al, 2020 (https://github.com/google-research/google-research/tree/master/dnn_predict_accuracy)

    Abstract:
    Self-Supervised Learning (SSL) has been shown to learn useful and information-preserving representations. Neural Networks (NNs) are widely applied, yet their weight space is still not fully understood. Therefore, we propose to use SSL to learn neural representations of the weights of populations of NNs. To that end, we introduce domain specific data augmentations and an adapted attention architecture. Our empirical evaluation demonstrates that self-supervised representation learning in this domain is able to recover diverse NN model characteristics. Further, we show that the proposed learned representations outperform prior work for predicting hyper-parameters, test accuracy, and generalization gap as well as transfer to out-of-distribution settings.

  9. E-Commerce Product Reviews - Dataset for ML

    • kaggle.com
    zip
    Updated Dec 16, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Furkan Gözükara (2021). E-Commerce Product Reviews - Dataset for ML [Dataset]. https://www.kaggle.com/furkangozukara/turkish-product-reviews
    Explore at:
    zip(580369522 bytes)Available download formats
    Dataset updated
    Dec 16, 2021
    Authors
    Furkan Gözükara
    Description

    -> If you use Turkish_Product_Reviews_by_Gozukara_and_Ozel_2016 dataset please cite: https://dergipark.org.tr/en/pub/cukurovaummfd/issue/28708/310341

    @research article { cukurovaummfd310341, journal = {Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi}, issn = {1019-1011}, eissn = {2564-7520}, address = {Çukurova Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi Yayın Kurulu Başkanlığı 01330 ADANA}, publisher = {Cukurova University}, year = {2016}, volume = {31}, pages = {464 - 482}, doi = {10.21605/cukurovaummfd.310341}, title = {Türkçe ve İngilizce Yorumların Duygu Analizinde Doküman Vektörü Hesaplama Yöntemleri için Bir Deneysel İnceleme}, key = {cite}, author = {Gözükara, Furkan and Özel, Selma Ayşe} }

    https://doi.org/10.21605/cukurovaummfd.310341

    -> Turkish_Product_Reviews_by_Gozukara_and_Ozel_2016 dataset is composed as below: ->-> Top 50 E-commerce sites in Turkey are crawled and their comments are extracted. Then randomly 2000 comments selected and manually labelled by a field expert. ->-> After manual labeling the selected comments is done, 600 negative and 600 positive comments are left. ->-> This dataset contains these comments.

    -> English_Movie_Reviews_by_Pang_and_Lee_2004 ->-> Pang, B., Lee, L., 2004. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts, In Proceedings of the 42nd annual meeting on Association for Computational Linguistics (p. 271). ->-> Source: https://www.cs.cornell.edu/people/pabo/movie-review-data/ | polarity dataset v2.0 - review_polarity.tar.gz

    -> English_Movie_Reviews_Sentences_by_Pang_and_Lee_2005 ->-> Pang, B., Lee, L., 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales, In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics (pp. 115-124), Association for Computational Linguistics ->-> Source: https://www.cs.cornell.edu/people/pabo/movie-review-data/ | sentence polarity dataset v1.0 - rt-polaritydata.tar.gz

    -> English_Product_Reviews_by_Blitzer_et_al_2007 ->-> Article of the dataset: Blitzer, J., Dredze, M., Pereira, F., 2007. Biographies, bollywood, boom-boxes and blenders: Domain adaptation for sentiment classification, In ACL (Vol. 7, pp. 440-447). ->-> Source: http://www.cs.jhu.edu/~mdredze/datasets/sentiment/ | processed_acl.tar.gz

    -> Turkish_Movie_Reviews_by_Demirtas_and_Pechenizkiy_2013 ->-> Demirtas, E., Pechenizkiy, M., 2013. Cross-lingual polarity detection with machine translation, In Proceedings of the Second International Workshop on Issues of Sentiment Discovery and Opinion Mining (p. 9). ACM. ->-> http://www.win.tue.nl/~mpechen/projects/smm/#Datasets Turkish_Movie_Sentiment.zip

    -> The dataset files are provided as used in the article. -> Weka files are generated with Raw Frequency of terms rather than used Weighting Schemes

    -> The folder Cross_Validation contains 10-fold cross-validation each fold files. -> Inside Cross_Validation folder, each turn of the cross-validation is named as test_X where X is the turn number -> Inside test_X folder * Test_Set_Negative_RAW: Contains raw negative class Test data of that cross-validation turn * Test_Set_Negative_Processed: Contains pre-processed negative class Test data of that cross-validation turn * Test_Set_Positive_RAW: Contains raw positive class Test data of that cross-validation turn * Test_Set_Positive_Processed: Contains pre-processed positive class Test data of that cross-validation turn * Train_Set_Negative_RAW: Contains raw negative class Train data of that cross-validation turn * Train_Set_Negative_Processed: Contains pre-processed negative class Train data of that cross-validation turn * Train_Set_Positive_RAW: Contains raw positive class Train data of that cross-validation turn * Train_Set_Positive_Processed: Contains pre-processed positive class Train data of that cross-validation turn * Train_Set_For_Weka: Contains processed Train set formatted for Weka * Test_Set_For_Weka: Contains processed Test set formatted for Weka

    -> The folder Entire_Dataset contains files for Entire Dataset * Negative_Processed: Contains all negative comments processed data * Positive_Processed: Contains all positive comments processed data * Negative_RAW: Contains all negative comments RAW data * Positive_RAW: Contains all positive comments RAW data * Entire_Dataset_WEKA: Contains all documents processed data in WEKA format

  10. Iris Dataset - Logistic Regression

    • kaggle.com
    Updated Mar 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tanya Ganesan (2019). Iris Dataset - Logistic Regression [Dataset]. https://www.kaggle.com/tanyaganesan/iris-dataset-logistic-regression/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 8, 2019
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Tanya Ganesan
    Description

    Visualization of Iris Species Dataset:

    https://i.imgur.com/XqkskaX.png">

    • The data has four features.
    • Each subplot considers two features.
    • From the figure it can be observed that the data points for species Iris-setosa are clubbed together and for the other two species they sort of overlap.

    Classification using Logistic Regression:

    • There are 50 samples for each of the species. The data for each species is split into three sets - training, validation and test.
      • The training data is prepared separately for the three species. For instance, if the species is Iris-Setosa, then the corresponding outputs are set to 1 and for the other two species they are set to 0.
      • The training data sets are modeled separately. Three sets of model parameters(theta) are obtained. A sigmoid function is used to predict the output.
      • Gradient descent method is used to converge on 'theta' using a cost function.

    https://i.imgur.com/USfd26D.png"> https://i.imgur.com/AAxz3Ma.png"> https://i.imgur.com/kLNQPu1.png">

    Choosing best model:

    • Polynomial features are included to train the model better. Including more polynomial features will better fit the training set, but it may not give good results on validation set. The cost for training data decreases as more polynomial features are included.
      • So, to know which one is the best fit, first training data set is used to find the model parameters which is then used on the validation set. Whichever gives the least cost on validation set is chosen as the better fit to the data.
      • A regularization term is included to keep a check overfitting of the data as more polynomial features are added.

    Observations: - For Iris-Setosa, inclusion of polynomial features did not do well on the cross validation set. - For Iris-Versicolor, it seems more polynomial features needs to be included to be more conclusive. However, polynomial features up to the third degree was being used already, hence the idea of adding more features was dropped.

    https://i.imgur.com/RT0rsHU.png"> https://i.imgur.com/wsOFfi0.png"> https://i.imgur.com/tQkla35.png">

    https://i.imgur.com/GzPuAsT.png"> https://i.imgur.com/CBnjTki.png"> https://i.imgur.com/tF103lm.png">

    Bias-Variance trade off:

    • A check is done to see if the model will perform better if more features are included. The number of samples is increased in steps, the corresponding model parameters and cost are calculated. The model parameters obtained can then used to get the cost using validation set.
    • So if the costs for both sets converge, it is an indication that fit is good.

    https://i.imgur.com/UNh0Veo.png"> https://i.imgur.com/Ae9ObBR.png"> https://i.imgur.com/oHrjRLF.png">

    Training error:

    • The heuristic function should ideally be 1 for positive outputs and 0 for negative.
    • It is acceptable if the heuristic function is >=0.5 for positive outputs and < 0.5 for negative outputs.
    • The training error is calculated for all the sets. Observations: It performs very well for Iris-Setosa and Iris-Virginica. Except for validation set for Iris-Versicolor, rest have been modeled pretty well.

    https://i.imgur.com/WwB6B55.png"> https://i.imgur.com/Pj0c0NJ.png"> https://i.imgur.com/i3Wpzt8.png">

    https://i.imgur.com/62HanTn.png"> https://i.imgur.com/jj5sATL.png"> https://i.imgur.com/yVJvpkW.png">

    https://i.imgur.com/HyCRIb7.png"> https://i.imgur.com/MblLr1C.png"> https://i.imgur.com/zcDHt58.png">

    Accuracy: The highest probability (from heuristic function) obtained is predicted to be the species it belongs to. The accuracy came out to be 93.33% for validation data. And surprisingly 100% for test data.

    Improvements that can be done: A more sophisticated algorithm for finding the model parameters can be used instead of gradient descent. The training data, validation and test data can be chosen randomly to get the best performance.

  11. O

    Data from: FREDo

    • opendatalab.com
    • paperswithcode.com
    zip
    Updated Mar 18, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Karlsruhe Institute of Technology (2023). FREDo [Dataset]. https://opendatalab.com/OpenDataLab/FREDo
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 18, 2023
    Dataset provided by
    Karlsruhe Institute of Technology
    Description

    FREDo is a Few-Shot Document-Level Relation Extraction Benchmark based on DocRED and SciERC. The dataset is divided into four subsets: training set (62 relations), validation set (16 relations), in-domain test set (16 relations), and cross-domain test set (7 relations).

  12. Secom Dataset

    • kaggle.com
    Updated Oct 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    G Creatives (2023). Secom Dataset [Dataset]. https://www.kaggle.com/datasets/gcreatives/secom-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 4, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    G Creatives
    Description

    Title: SECOM Data Set

    Abstract: Data from a semi-conductor manufacturing process

    Data Set Characteristics: Multivariate Number of Instances: 1567 Area: Computer Attribute Characteristics: Real Number of Attributes: 591 Date Donated: 2008-11-19 Associated Tasks: Classification, Causal-Discovery Missing Values? Yes

    Source:

    Authors: Michael McCann, Adrian Johnston

    Data Set Information:

    A complex modern semi-conductor manufacturing process is normally under consistent surveillance via the monitoring of signals/variables collected from sensors and or process measurement points. However, not all of these signals are equally valuable in a specific monitoring system. The measured signals contain a combination of useful information, irrelevant information as well as noise. It is often the case that useful information is buried in the latter two. Engineers typically have a much larger number of signals than are actually required. If we consider each type of signal as a feature, then feature selection may be applied to identify the most relevant signals. The Process Engineers may then use these signals to determine key factors contributing to yield excursions downstream in the process. This will enable an increase in process throughput, decreased time to learning and reduce the per unit production costs.

    To enhance current business improvement techniques the application of feature selection as an intelligent systems technique is being investigated.

    The dataset presented in this case represents a selection of such features where each example represents a single production entity with associated measured features and the labels represent a simple pass/fail yield for in house line testing, figure 2, and associated date time stamp. Where .1 corresponds to a pass and 1 corresponds to a fail and the data time stamp is for that specific test point.

    Using feature selection techniques it is desired to rank features according to their impact on the overall yield for the product, causal relationships may also be considered with a view to identifying the key features.

    Results may be submitted in terms of feature relevance for predictability using error rates as our evaluation metrics. It is suggested that cross validation be applied to generate these results. Some baseline results are shown below for basic feature selection techniques using a simple kernel ridge classifier and 10 fold cross validation.

    Baseline Results: Pre-processing objects were applied to the dataset simply to standardize the data and remove the constant features and then a number of different feature selection objects selecting 40 highest ranked features were applied with a simple classifier to achieve some initial results. 10 fold cross validation was used and the balanced error rate (*BER) generated as our initial performance metric to help investigate this dataset.

    SECOM Dataset: 1567 examples 591 features, 104 fails

    FSmethod (40 features) BER % True + % True - % S2N (signal to noise) 34.5 +-2.6 57.8 +-5.3 73.1 +2.1 Ttest 33.7 +-2.1 59.6 +-4.7 73.0 +-1.8 Relief 40.1 +-2.8 48.3 +-5.9 71.6 +-3.2 Pearson 34.1 +-2.0 57.4 +-4.3 74.4 +-4.9 Ftest 33.5 +-2.2 59.1 +-4.8 73.8 +-1.8 Gram Schmidt 35.6 +-2.4 51.2 +-11.8 77.5 +-2.3

    Attribute Information:

    Key facts: Data Structure: The data consists of 2 files the dataset file SECOM consisting of 1567 examples each with 591 features a 1567 x 591 matrix and a labels file containing the classifications and date time stamp for each example.

    As with any real life data situations this data contains null values varying in intensity depending on the individuals features. This needs to be taken into consideration when investigating the data either through pre-processing or within the technique applied.

    The data is represented in a raw text file each line representing an individual example and the features seperated by spaces. The null values are represented by the 'NaN' value as per MatLab.

  13. f

    MCC on cross validation and independent test-set.

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salvatore Cosentino; Mette Voldby Larsen; Frank Møller Aarestrup; Ole Lund (2023). MCC on cross validation and independent test-set. [Dataset]. http://doi.org/10.1371/journal.pone.0077302.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Salvatore Cosentino; Mette Voldby Larsen; Frank Møller Aarestrup; Ole Lund
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Column 2, the MCC obtained in the 5-fold cross validation (CV) by each of the 10 models. Column 3, the MCC of the individual TM models and the COMPL model (last line) when tested on independent test data from the corresponding phyla/classis. Column 4, the MCC of the WDM model when tested on independent test data from specific phyla/classis.1Organisms of phylum/class for which no TM model is available were tested using COMPL model. COMPL was trained on all organisms from classes or phyla for which only either pathogenic or non-pathogenic strains were available.2MCC for WDM on the same test-set used for COMPL.3Overall MCC for all the TM models and the COMPL model.

  14. Dataset for "Exploring the viability of a machine learning based multimodel...

    • zenodo.org
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous Review; Anonymous Review (2025). Dataset for "Exploring the viability of a machine learning based multimodel for quantitative precipitation forecast post-processing" [Dataset]. http://doi.org/10.5281/zenodo.14923826
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous Review; Anonymous Review
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Title: Dataset for "Exploring the viability of a machine learning based multimodel for quantitative precipitation forecast post-processing"

    Description:
    This dataset supports the study presented in the paper "Exploring the viability of a machine learning based multimodel for quantitative precipitation forecast post-processing". The work focuses on improving quantiative precipitation forecast over the Piedmont and Aosta Valley regions in Italy by blending outputs from four Numerical Weather Prediction (NWP) models using machine learning architectures including Multi-Layer Perceptrons (MLPs), U-Net and Residual U-Net as Convolutional Neural Networks (CNNs), and NWIOI as observational data (Turco et al., 2013).

    Observational data from NWIOI serve as the ground truth for model training. The dataset contains 406 gridded precipitation events from 2018 to 2022.

    Dataset contents:

    • obs.zip: NWIOI observed precipitation data (.csv format, one file per event)
    • subsets.zip: Events dates for 10 different training-validation-test sets, retrieved with 10-fold cross validation (.csv format, one file per set and per split)
    • domain_mask.csv: Binary mask (1 for grid points in the study area, 0 otherwise)
    • allevents_dates_zenodo.csv: Summary statistics and classification of all events by intensity and nature, used for subsets creation with 10-fold cross validation

    Citations:

    • NWIOI: Turco, M., Zollo, A. L., Ronchi, C., De Luigi, C., & Mercogliano, P. (2013). Assessing gridded observations for daily precipitation extremes in the Alps with a focus on northwest Italy. Natural Hazards and Earth System Sciences, 13(6), 1457–1468.
  15. Customer Churn - Decision Tree & Random Forest

    • kaggle.com
    Updated Jul 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    vikram amin (2023). Customer Churn - Decision Tree & Random Forest [Dataset]. https://www.kaggle.com/datasets/vikramamin/customer-churn-decision-tree-and-random-forest
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 6, 2023
    Dataset provided by
    Kaggle
    Authors
    vikram amin
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description
    • Main objective: Find out customers who will churn and who will not.
    • Methodology: It is a classification problem. We will use decision tree and random forest to predict the outcome.
    • Steps Involved
    • Read the data
    • Check for data types https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F1ffb600d8a4b4b36bc25e957524a3524%2FPicture1.png?generation=1688638600831386&alt=media" alt="">
    1. Change character vector to factor vector as this is as classification problem
    2. Drop the variable which is not significant for the analysis. We drop "customerID".
    3. Check for missing values. None are found.
    4. Split the data into train and test so we can use the train data for building the model and use test data for prediction. We split this into 80-20 ratio (train/test) using the sample function.
    5. Install and run libraries (rpart, rpart.plot, rattle, RColorBrewer, caret)
    6. Run decision tree using rpart function. The dependent variable is Churn and 19 other independent variables

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8d3442e6c82d8026c6a448e4780ab38c%2FPicture2.png?generation=1688638685268853&alt=media" alt=""> 9. Plot the decision tree

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F9ab0591e323dc30fe116c79f6d014d06%2FPicture3.png?generation=1688638747644320&alt=media" alt="">

    Average customer churn is 27%. The churn can take place if the tenure is more than >=7.5 and there is no internet service

    1. Tuning the model
    2. Define the search grid using the expand.grid function
    3. Set up the control parameters through 5 fold cross validation
    4. When we print the model we get the best CP = 0.01 and an accuracy of 79.00%

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F16080ac04d3743ec238227e1ef2c8269%2FPicture4.png?generation=1688639197455166&alt=media" alt="">

    1. Predict the model
    2. Find out the variables which are most and least significant. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F61beb4224e9351cfc772147c43800502%2FPicture5.png?generation=1688639468638950&alt=media" alt="">

    Significant variables are Internet Service, Tenure and the least significant are Streaming Movies, Tech Support.

    USE RANDOM FOREST

    1. Run library(randomForest). Here we are using the default ntree (500) and mtry (p/3) where p is the number of independent variables. https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc27fe7e83f0b53b7e067371b69c7f4a7%2FPicture6.png?generation=1688640478682685&alt=media" alt="">

      Through confusion matrix, accuracy is coming 79.27%. The accuracy is marginally higher than that of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and much higher when predicting "Yes".

    2. Plot the model showing which variables reduce the gini impunity the most and least. Total charges and tenure reduce the gini impunity the most while phone service has the least impact.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fec25fc3ba74ab9cef1a81188209512b1%2FPicture7.png?generation=1688640726235724&alt=media" alt="">

    1. Predict the model and create a new data frame showing the actuals vs predicted values

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F50aa40e5dd676c8285020fd2fe627bf1%2FPicture8.png?generation=1688640896763066&alt=media" alt="">

    1. Plot the model so as to find out where the OOB (out of bag ) error stops decreasing or becoming constant. As we can see that the error stops decreasing between 100 to 200 trees. So we decide to take ntree = 200 when we tune the model.

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F87211e1b218c595911fbe6ea2806e27a%2FPicture9.png?generation=1688641103367564&alt=media" alt="">

    Tune the model mtry=2 has the lowest OOB error rate

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6057af5bb0719b16f1a97a58c3d4aa1d%2FPicture10.png?generation=1688641391027971&alt=media" alt="">

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc7045eba4ee298c58f1bd0230c24c00d%2FPicture11.png?generation=1688641605829830&alt=media" alt="">

    Use random forest with mtry = 2 and ntree = 200

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F01541eff1f9c6303591aa50dd707b5f5%2FPicture12.png?generation=1688641634979403&alt=media" alt="">

    Through confusion matrix, accuracy is coming 79.71%. The accuracy is marginally higher than that of default (when ntree was 500 and mtry was 4) i.e 79.27% and of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and m...

  16. t

    Synthetic pdf testset for file format validation - Vdataset - LDM

    • service.tib.eu
    Updated Nov 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Synthetic pdf testset for file format validation - Vdataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/rdr-doi-10-22000-53
    Explore at:
    Dataset updated
    Nov 28, 2024
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Abstract: This data set presents a corpus of light-weight files designed to test the validation criteria of JHOVE's PDF module against "well-formedness". Test cases are based on structural requirements for PDF files as per ISO 32000-1:2008 standard. The basis for all test files is a single page, one line document with no special features such as linearization. While such a light-weight document only allows to check against a fragment of standard requirements, the focus was put on basic structure violations at the header, trailer, document catalog, page tree node and cross-reference levels. The test set also checks for basic violations at the page node, page resource and stream object level. The accompanying spreadsheet briefly categorizes and describes the test set and includes the outcome when running the test set against JHOVE 1.16, PDF-hul 1.8 as well as Adobe Acrobat Professional XI Pro (11.0.15). The spreadsheet also includes a codecov coverage statistic for the test set in relation to the JHOVE 1.16, PDF-hul 1.8 module. Further information can be found in the paper "A PDF Test-Set for Well-Formedness Validation in JHOVE - The Good, the Bad and the Ugly", published in the proceedings of the 14th International Conference on Digital Preservation (Kyoto, Japan, September 25-29 2017). While the spreadsheet only contains results of running the test set against JHOVE, it can be used as a ground truth for any file format validation process.

  17. Z

    AeroSonicDB (YPAD-0523): Labelled audio dataset for acoustic detection and...

    • data.niaid.nih.gov
    • zenodo.org
    Updated Aug 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Downward, Blake (2024). AeroSonicDB (YPAD-0523): Labelled audio dataset for acoustic detection and classification of aircraft [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8000468
    Explore at:
    Dataset updated
    Aug 1, 2024
    Dataset authored and provided by
    Downward, Blake
    License

    Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
    License information was derived automatically

    Description

    AeroSonicDB (YPAD-0523): Labelled audio dataset for acoustic detection and classification of aircraftVersion 1.1.2 (November 2023)

    [UPDATE: June 2024]

    Version 2.0 is currently in beta and can be found at https://zenodo.org/records/12775560. The repository is currently restricted, however you can gain access by emailing Blake Downward at aerosonicdb@gmail.com, or by submitting the following Google Form.

    Version 2 vastly extends the number of Aircraft audio samples to over 3,000 (V1 contains 625 aircraft sampes), for more than 38 hours of strongly annotated aircraft audio (V1 contains 8.9 hours of aircraft audio).

    Publication

    When using this data in an academic work, please reference the dataset DOI and version. Please also reference the following paper which describes the methodology for collecting the dataset and presents baseline model results.

    Downward, B., & Nordby, J. (2023). The AeroSonicDB (YPAD-0523) Dataset for Acoustic Detection and Classification of Aircraft. ArXiv, abs/2311.06368.

    Description

    AeroSonicDB:YPAD-0523 is a specialised dataset of ADS-B labelled audio clips for research in the fields of environmental noise attribution and machine listening, particularly acoustic detection and classification of low-flying aircraft. Audio files in this dataset were recorded at locations in close proximity to a flight path approaching or departing Adelaide International Airport's (ICAO code: YPAD) primary runway, 05/23. Recordings are initially labelled from radio (ADS-B) messages received from the aircraft overhead, then human verified and annotated with the first and final moments which the target aircraft is audible.

    A total of 1,895 audio clips are distributed across two top-level classes, "Aircraft" (8.87 hours) and "Silence" (3.52 hours). The aircraft class is then further broken-down into four subclasses, which broadly describe the structure of the aircraft and propulsion mechanism. A variety of additional "airframe" features are provided to give researchers finer control of the dataset, and the opportunity to develop ontologies specific to their own use case.

    For convenience, the dataset has been split into training (10.04 hours) and testing (2.35 hours) subsets, with the training set further split into 5 distinct folds for cross-validation. These splits are performed to prevent data-leakage between folds and the test set, ensuring samples collected in the same recording session (distinct in time, location and microphone) are assigned to the same fold.

    Researchers may find applications for this dataset in a number of fields; particularly aircraft noise isolation and noise monitoring in an urban environment, development of passive acoustic systems to assist radar technology, and understanding the sources of aircraft noise to help manufacturers design less-noisy aircraft.

    Audio data

    ADS-B (Automatic Dependent Surveillance–Broadcast) messages transmitted directly from aircraft are used to automatically trigger, capture and label audio samples. A 60-second recording is triggered when an aircraft transmits a message indicating it is within a specified distance of the recording device (see "Location data" below for specifics). The resulting audio file is labelled with the unique ICAO identifier code for the aircraft, as well as its last reported altitude, date, time, location and microphone. The recording is then human verified and annotated with timestamps for the first and last moments the aircraft is audible. In total, AeroSonicDB contains 625 recordings of low-altitude aircraft - varying in length from 18 to 60 seconds, for a total of 8.87 hours of aircraft audio.

    A collection of urban background noise without aircraft (silence) is included with the dataset as a means of distinguishing location specific environmental noises from aircraft noises. 10-second background noise, or "silence" recordings are triggered only when there are no aircraft broadcasting they are within a specified distance of the recording device (see "Location data" below). These "silence" recordings are also human verified to ensure no aircraft noise is present. The dataset contains 1,270 clips of silence/urban background noise.

    Location data

    Recordings have been collected from three (3) locations. GPS coordinates for each location are provided in the "locations.json" file. In order to protect privacy, coordinates have been provided for a road or public space nearby the recording device instead of its exact location.

    Location: 0Situated in a suburban environment approximately 15.5km north-east of the start/end of the runway. For Adelaide, typical south-westerly winds bring most arriving aircraft past this location on approach. Winds from the north or east will cause aircraft to take-off to the north-east, however not all departing aircraft will maintain a course to trigger a recording at this location. The "trigger distance" for this location is set for 3km to ensure small/slower aircraft and large/faster aircraft are captured within a sixty-second recording.

    "Silence" or ambient background noises at this location include; cars, motorbikes, light-trucks, garbage trucks, power-tools, lawn mowers, construction sounds, sirens, people talking, dogs barking and a wide range of Australian native birds (New Holland Honeyeaters, Wattlebirds, Australian Magpies, Australian Ravens, Spotted Doves, Rainbow Lorikeets and others).

    Location: 1Situated approximately 500m south-east of the south-eastern end of the runway, this location is nearby recreational areas (golf course, skate park and parklands) with a busy road/highway inbetween the location and runway. This location features heavy winds and road traffic, as well as people talking, walking and riding, and also birds such as the Australian Magpie and Noisy Miner. The trigger distance for this location is set to 1km. Due to their low altitude aircraft are louder, but audible for a shorter time compared to "Location 0".

    Location: 2As an alternative to "Location 1", this location is situated approximately 950m south-east of the end of the runway. This location has a wastewater facility to the north, a residential area to the south and a popular beach to the west. This location offers greater wind protection and further distance from airport and highway noises. Ambient background sounds feature close proximity cars and motorbikes, cyclists, people walking, nail guns and other construction sounds, as well as the local birds mentioned above.

    Aircraft metadata

    Supplementary "airframe" metadata for all aircraft has been gathered to help broaden the research possibilities from this dataset. Airframe information was collected and cross-checked from a number of open-source databases. The author has no reason to beleive any significant errors exist in the "aircraft_meta" files, however future versions of this dataset plan to obtain aircraft information directly from ICAO (International Civil Aviation Organization) to ensure a single, verifiable source of information.

    Class/subclass ontology (minutes of recordings)

    1. no aircraft (211) 0: no aircraft (211)

    2. aircraft (533) 1: piston-propeller aeroplane (30) 2: turbine-propeller aeroplane (90) 3: turbine-fan aeroplane (409) 4: rotorcraft (4) The subclasses are a combination of the "airframe" and "engtype" features. Piston and Turboshaft rotorcraft/helicopters have been combined into a single subclass due to the small number of samples. Data splits

    Audio recordings have been split into training (81%) and test (19%) sets. The training set has further been split into 5 folds, giving researchers a common split to perform 5-fold cross-validation to ensure reproducibility and comparable results. Data leakage into the test set has been avoided by ensuring recordings are disjointed from the training set by time and location - meaning samples in the test set for a particular location were recorded after any samples included in the training set for that particular location.

    Labelled data

    The entire dataset (training and test) is referenced and labelled in the "sample_meta.csv" file. Each row contains a reference to a unique recording, its meta information, annotations and airframe features.

    Alternatively, these labels can be derived directly from the filename of the sample (see below). The "aircraft_meta.csv" and "aircraft_meta.json" files can be used to reference aircraft specific features - such as; manufacturer, engine type, ICAO type designator etc. (see "Columns/Labels" below for all features).

    File naming convention

    Audio samples are in WAV format, with some metadata stored in the filename.

    Basic Convention

    "Aircraft ID + Date + Time + Location ID + Microphone ID"

    "XXXXXX_YYYY-MM-DD_hh-mm-ss_X_X"

    Sample with aircraft

    {hex_id} _ {date} _ {time} _ {location_id} _ {microphone_id} . {file_ext}

    7C7CD0_2023-05-09_12-42-55_2_1.wav

    Sample without aircraft

    "Silence" files are denoted with six (6) leading zeros rather than an aircraft hex code. All relevant metadata for "silence" samples are contained in the audio filename, and again in the accompanying "sample_meta.csv"

    000000 _ {date} _ {time} _ {location_id} _ {microphone_id} . {file_ext}

    000000_2023-05-09_12-30-55_2_1.wav

    Columns/Labels

    (found in sample_meta.csv, aircraft_meta.csv/json files)

    train-test: Train-test split (train, test)

    fold: Digit from 1 to 5 splitting the training data 5 ways (else test)

    filename: The filename of the audio recording

    date: Date of the recording

    time: Time of the recording

    location: ID for the location of the recording

    mic: ID of the microphone used

    class: Top-level label for the recording (eg. 0 = No aircraft, 1 = Aircraft audible)

    subclass: Subclass label for the recording (eg. 0 = No aircraft, 3 = Turbine-fan aeroplane)

    altitude: Approximate altitude of the aircraft (in feet) at the start of the recording

    hex_id: Unique ICAO 24-bit address for the aircraft recorded

    session: Unique recording

  18. d

    Evaluation results of the xMEN entity linking toolkit for multiple benchmark...

    • search.dataone.org
    • datadryad.org
    Updated Dec 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Borchert; Ignacio Llorca; Roland Roller; Bert Arnrich; Matthieu-P. Schapranow (2024). Evaluation results of the xMEN entity linking toolkit for multiple benchmark datasets [Dataset]. http://doi.org/10.5061/dryad.15dv41p6h
    Explore at:
    Dataset updated
    Dec 22, 2024
    Dataset provided by
    Dryad Digital Repository
    Authors
    Florian Borchert; Ignacio Llorca; Roland Roller; Bert Arnrich; Matthieu-P. Schapranow
    Description

    This dataset contains the benchmark results of the xMEN toolkit for cross-lingual medical entity linking on the following, publicly available benchmark datasets:

    Mantra Gold Standard Corpus (multilingual) Quaero (French) BRONCO150 (German) DisTEMIST (Spanish) MedMentions (English + machine-translated multilingual versions)

    For each dataset, we evaluate the default xMEN pipeline with different steps of candidate generation and weakly-supervised and fully-supervised re-ranking on the test sets or 5-fold-cross-validation (for BRONCO150).Users of xMEN can use these data to compare their own results to the current state-of-the-art performance on these benchmarks, when loaded through the BigBIO library., Evaluation of xMEN on datasets loaded from BigBIO dataloaders., , # xMEN Benchmark Results

    https://doi.org/10.5061/dryad.15dv41p6h

    Description of the data and file structure

    Evaluation of xMEN candidate generation + re-ranking (weakly and fully supervised) on various benchmark datasets.

    Files and variables

    Each file refers to a subset of a particular benchmark dataset.

    For each subset, we run candidate generation + weakly-supervised ([filename]_ws.csv) or fully-supervised ([filename]_fs.csv)Â

    BenchmarkSubsetfile_name
    MantraGermanmantra_de
    Englishmantra_en
    Spanishmantra_es
    Frenchmantra_fr
    Dutchmantra_nl
    Quaero-quaero
    BRONCODiagnosesbronco_diagnoses
    Medicationsbronco_medica...
  19. cars_wagonr_swift

    • kaggle.com
    zip
    Updated Sep 11, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ajay (2019). cars_wagonr_swift [Dataset]. https://www.kaggle.com/ajaykgp12/cars-wagonr-swift
    Explore at:
    zip(44486490 bytes)Available download formats
    Dataset updated
    Sep 11, 2019
    Authors
    Ajay
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    Data science beginners start with curated set of data, but it's a well known fact that in a real Data Science Project, major time is spent on collecting, cleaning and organizing data . Also domain expertise is considered as important aspect of creating good ML models. Being an automobile enthusiast, I tool up this challenge to collect images of two of the popular car models from a used car website, where users upload the images of the car they want to sell and then train a Deep Neural Network to identify model of a car from car images. In my search for images I found that approximately 10 percent of the cars pictures did not represent the intended car correctly and those pictures have to be deleted from final data.

    Content

    There are 4000 images of two of the popular cars (Swift and Wagonr) in India of make Maruti Suzuki with 2000 pictures belonging to each model. The data is divided into training set with 2400 images , validation set with 800 images and test set with 800 images. The data was randomized before splitting into training, test and validation set.

    The starter kernal is provided for keras with CNN. I have also created github project documenting advanced techniques in pytorch and keras for image classification like data augmentation, dropout, batch normalization and transfer learning

    Inspiration

    1. With small dataset like this, how much accuracy can we achieve and whether more data is always better. The baseline model trained in Keras achieves 88% accuracy on validation set, can we achieve even better performance and by how much.

    2. Is the data collected for the two car models representative of all possible car from all over country or there is sample bias .

    3. I would also like someone to extend the concept to build a use case so that if user uploads an incorrect car picture of car , the ML model could automatically flag it. For example user uploading incorrect model or an image which is not a car

  20. R

    Emotion Detection Dataset

    • universe.roboflow.com
    zip
    Updated Mar 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Computer Vision Projects (2025). Emotion Detection Dataset [Dataset]. https://universe.roboflow.com/computer-vision-projects-zhogq/emotion-detection-y0svj
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 26, 2025
    Dataset authored and provided by
    Computer Vision Projects
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Emotions Bounding Boxes
    Description

    Emotion Detection Model for Facial Expressions

    Project Description:

    In this project, we developed an Emotion Detection Model using a curated dataset of 715 facial images, aiming to accurately recognize and categorize expressions into five distinct emotion classes. The emotion classes include Happy, Sad, Fearful, Angry, and Neutral.

    Objectives: - Train a robust machine learning model capable of accurately detecting and classifying facial expressions in real-time. - Implement emotion detection to enhance user experience in applications such as human-computer interaction, virtual assistants, and emotion-aware systems.

    Methodology: 1. Data Collection and Preprocessing: - Assembled a diverse dataset of 715 images featuring individuals expressing different emotions. - Employed Roboflow for efficient data preprocessing, handling image augmentation and normalization.

    1. Model Architecture:

      • Utilized a convolutional neural network (CNN) architecture to capture spatial hierarchies in facial features.
      • Implemented a multi-class classification approach to categorize images into the predefined emotion classes.
    2. Training and Validation:

      • Split the dataset into training and validation sets for model training and evaluation.
      • Fine-tuned the model parameters to optimize accuracy and generalization.
    3. Model Evaluation:

      • Evaluated the model's performance on an independent test set to assess its ability to generalize to unseen data.
      • Analyzed confusion matrices and classification reports to understand the model's strengths and areas for improvement.
    4. Deployment and Integration:

      • Deployed the trained emotion detection model for real-time inference.
      • Integrated the model into applications, allowing users to interact with systems based on detected emotions.

    Results: The developed Emotion Detection Model demonstrates high accuracy in recognizing and classifying facial expressions across the defined emotion classes. This project lays the foundation for integrating emotion-aware systems into various applications, fostering more intuitive and responsive interactions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Thomas W. Kelsey; Phoebe Wright; Scott M. Nelson; Richard A. Anderson; W. Hamish B Wallace (2023). 10-fold cross-validation results. [Dataset]. http://doi.org/10.1371/journal.pone.0022024.t004

10-fold cross-validation results.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jun 10, 2023
Dataset provided by
PLOS ONE
Authors
Thomas W. Kelsey; Phoebe Wright; Scott M. Nelson; Richard A. Anderson; W. Hamish B Wallace
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

The mean squared error (MSE) for the model with highest is given for both the training set (90% of the dataset) and the test set (the remaining 10%) for each of the ten folds. Since – both for individual folds and on average – the errors are similar, we consider the model to be validated. The and peak ages are for the highest ranked model returned by TableCurve2D for each fold.

Search
Clear search
Close search
Google apps
Main menu