MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the appended data set of the two waves of ACCESS survey from 2014-15 and 2018 for panel data analysis.
Since 1991, the country has been utilizing cross-sectional sample data to monitor the well-being of the Zambian population, as was the case with the 1996 and 1998 LCMS surveys. However, in 2002/2003 a different methodology was employed to collect and analyze data. The survey was designed to collect data for a period of 12 months.
The Living Conditions Monitoring Survey IV (LCMSIV) was intended to highlight and monitor the living conditions of the Zambian society. The survey included a set of priority indicators on poverty and living conditions to be repeated regularly.
The main objective of the Living Conditions Monitoring Survey IV (LCMSIV) is to provide the basis for comparison of poverty estimates derived from cross-sectional survey data. In addition, the survey provides a basis on which to: - - Monitor the impact of government policies and donor support on the well being of the Zambian population. - Monitor poverty and its distribution in Zambia. - Provide various users with a set of reliable indicators against which to monitor development. - Identify vulnerable groups in society and enhance targeting in policy implementation. - Develop new weights for the Consumer Price Indices and generate information that is required to produce National Accounts Statistics.
The Living Conditions Monitoring Survey IV had a nationwide coverage on a sample basis. It covered both rural and urban areas in all the nine provinces. The survey was designed to provide data for each and every district in Zambia.
This survey was carried out under the provisions of the Census and Statistics Act, Chapter 425 of the Laws of Zambia. All persons residing in Zambia except for foreign diplomats accredited to embassies and high commissions at the time of the survey were required by this act to provide the necessary information.
Excluded from the sample were institutional populations in hospitals, boarding schools, colleges, universities, prisons, hotels, refugee camps, orphanages, military camps and bases and diplomats accredited to Zambia in embassies and high commissions. Private households living around these institutions and cooking separately were included such as teachers whose houses are within the premises of a school, doctors and other workers living on or around hospital premises, police living in police camps in separate houses, etc. Persons who were in hospitals, boarding schools, etc. but were usual members of households were included in their respective households. Ordinary workers other than diplomats working in embassies and high commissions were included in the survey also. Others with diplomatic status working in the UN, World Bank etc. were included. Also included were persons or households who live in institutionalized places such as hostels, lodges, etc. but cook separately. The major distinguishing factor between eligible and non eligible households in the survey is the cooking and eating separately versus food provided by an institution in a common/communal dining hall or eating place. The former cases were included while the latter were excluded.
Sample survey data [ssd]
Sample Stratification and Allocation The sampling frame used for LCMSIV survey was developed from the 2000 census of population and housing. The country is administratively demarcated into 9 provinces, which are further divided into 72 districts. The districts are further subdivided into 155 constituencies, which are also divided into wards. Wards consist of Census Supervisory Areas (CSA), which are further subdivided into Standard Enumeration areas (SEAs). For the purposes of this survey, SEAs constituted the ultimate Primary Sampling Units (PSUs).In order to have equal precision in the estimates in all the districts and at the same time take into account variation in the sizes of the district, the survey adopted the Square Root sample allocation method, (Lesli Kish, 1987). This approach offers a better compromise between equal and proportional allocation methods in terms of reliability of both combined and separate estimates. The allocation of the sample points (PSUs) to rural and urban strata was almost proportional.A sample size of about 1,048 SEAs and approximately 20,000 households was drawn.
Sample Selection The LCMS IV employed a two-stage stratified cluster sample design whereby during the first stage, 1048 SEAs were selected with Probability Proportional to Estimated Size (PPES). The size measure was taken from the frame developed from the 2000 census of population and housing. During the second stage, households were systematically selected from an enumeration area listing. The survey was designed to provide reliable estimates at district, provincial, rural/urban and national levels. The LCMS IV survey commenced by listing all the households in the selected SEAs. In the case of rural SEAs, households were stratified according to their agricultural activity status. Therefore, there were four explicit strata created in each rural SEA namely, the Small Scale Stratum (SSS), the Medium Scale Stratum (MSS), the Large Scale Stratum (LSS) and the Non-agricultural Stratum (NAS). For the purposes of the LCMSIV survey, about 7, 5 and 3 households were supposed to be selected from the SSS, MSS and NAS, respectively. The large scale households were selected on a 100 percent basis. The urban SEAs were implicitly stratified into low cost, medium cost and high cost areas according to CSO's and local authority classification of residential areas. About 15 and 25 households were sampled from rural and urban SEAs, respectively.However, the number of rural households selected in some cases exceeded the desired sample size of 15 households due to the 100 percent sampling of large scale farming households.The formulae used in selecting SEAs is provided in section 2.3.3 of the Survey Report in External Resources.
Selection of Households The selection of households from various strata was preceded by assigning fully responding households sampling serial numbers. The circular systematic sampling method was used to select households. The method assumes that households are arranged in a circle (G. Kalton, 1983) and the following relationship applies:
Let N = nk, Where: N = Total number of households assigned sampling serial numbers in a stratum n = Total desired sample size to be drawn from a stratum in an SEA k = The sampling interval in a given SEA calculated as k=N/n.
Face-to-face [f2f]
Two types of questionnaires were used in the survey. These are:- 1. The Listing Booklet - for listing all the households residing in the selected Standard Enumeration Areas (SEAs) 2. The Main questionnaire - for collecting detailed information on all household members.
The data from the LCMSIV survey was processed and analysed using the CSPRO and the Statistical Analysis System (SAS) softwares respectively. Data entry was done from all the provincial offices with 100 percent verification, whilst data cleaning and analysis was undertaken at CSO’s headquarters
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Characteristics of baseline covariates and standardized bias before and after PS adjusted using weighting by the odds in 20% of the total respondents, a cross sectional study in five cities, china, 2007–2008 (n = 3,179). (PDF)
To improve reporting transparency and research integrity, some journals have begun publishing study protocols and statistical analysis plans alongside trial publications. To determine the overall availability and characteristics of protocols and statistical analysis plans this study reviewed all randomized clinical trials (RCT) published in 2016 in the following 5 general medicine journals: Annals of Internal Medicine, BMJ, JAMA, Lancet, and NEJM. Characteristics of RCTs were extracted from the publication and clinical trial registry. A detailed assessment of protocols and statistical analysis plans was conducted in a 20% random sample of trials. Dataset contains extraction sheets (as SAS data files), code to calculate the values in the tables in the manuscript, and a supplemental file with additional notes on methods used in the study.
Across the social sciences scholars regularly pool effects over substantial periods of time, a practice that produces faulty inferences if the underlying data generating process is dynamic. To help researchers better perform principled analyses of time-varying processes, we develop a two-stage procedure based upon techniques for permutation testing and statistical process monitoring. Given time series cross-sectional data, we break the role of time through permutation inference and produce a null distribution that reflects a time-invariant data generating process. The null distribution then serves as a stable reference point, enabling the detection of effect changepoints. In Monte Carlo simulations our randomization technique outperforms alternatives for changepoint analysis. A particular benefit of our method is that, by establishing the bounds for time-invariant effects before interacting with actual estimates, it is able to differentiate stochastic fluctuations from genuine changes. We demonstrate the method's utility by applying it to a popular study on the relationship between alliances and the initiation of militarized interstate disputes. The example illustrates how the technique can help researchers make inferences about where changes occur in dynamic relationships and ask important questions about such changes.
In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 6th version of the 2010 Cross-Sectional User Database as released in July 2015 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
The data and programs replicate tables and figures from "Reworking Wild Bootstrap Based Inference for Clustered Errors", by Webb. Please see the ReadMe file for additional details. Note: There are two master files, one reruns the entire set of Monte Carlos. The other reproduces tables from previously stored Monte Carlo p-values.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Researchers typically analyze time-series-cross-section data with a binary dependent variable (BTSCS) using ordinary logit or probit. However, BTSCS observations are likely to violate the independence assumption of the ordinary logit or probit statistical model. It is well known that if the observations are temporally related that the results of an ordinary logit or probit analysis may be misleading. In this paper, we provide a simple diagnostic for temporal dependence and a simple remedy. Our remedy is based on the idea that BTSCS data is identical to grouped duration data. This remedy does not require the BTSCS analyst to acquire any further methodological skills and it can be easily implemented in any standard statistical software package. While our approach is suitable for any type of BTSCS data, we provide examples and applications from the field of International Relations, where BTSCS data is frequently used. We use our methodology to re-assess Oneal and Russett's (1997) findings regarding the relationship between economic interdependence, democracy, and peace. Our analyses show that 1) their finding that economic interdependence is associated with peace is an artifact of their failure to account for temporal dependence and 2) their finding that democracy inhibits conflict is upheld even taking duration dependence into account.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These zip files contain important process data of our study, which were generated based on the adopted empirical data and were used in many computational experiments; for instance, various null configuration models for the empirical network.
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
This item contains all data and statistical code to replicate the analysis presented in the preprint entitled "Using rapid online surveys to assess perceptions during infectious disease outbreaks: a cross-sectional survey on Covid-19 among the general public in the United States and United Kingdom".
Background: Given the extensive time needed to conduct a nationally representative household survey and the commonly low response rate in phone surveys, rapid online surveys may be a promising method to assess and track knowledge and perceptions among the general public during fast-moving infectious disease outbreaks. Objective: To apply rapid online surveying to determine knowledge and perceptions of coronavirus disease 2019 (Covid-19) among the general public in the United States (US) and the United Kingdom (UK). Methods: An online questionnaire was administered to 3,000 adults residing in the US and 3,000 adults residing in the UK who had registered with Prolific Academic to participate in online research. Strata by age (18 - 27, 28 - 37, 38 - 47, 48 - 57, or 58 years), sex (male or female), and ethnicity (White, Black or African American, Asian or Asian Indian, Mixed, or “Other”), and all permutations of these strata, were established. The number of participants who could enrol in each of these strata was calculated to reflect the distribution in the US and UK general population. Enrolment into the survey within the strata was on a first-come, first-served basis. Participants completed the questionnaire between February 23 and March 2 2020. Results: 2,986 and 2,988 adults residing in the US and the UK, respectively, completed the questionnaire. 64.4% (1,924/2,986) of US and 51.5% (1,540/2,988) of UK participants had a tertiary education degree. 67.5% (2,015/2,986) of US participants had a total household income between $20,000 and $99,999, and 74.4% (2,223/2,988) of UK participants had a total household income between £15,000 and £74,999. US and UK participants’ median estimate for the probability of a fatal disease course among those infected with SARS-CoV-2 was 5.0% (IQR: 2.0% – 15.0%) and 3.0% (IQR: 2.0% – 10.0%), respectively. Participants generally had good knowledge of the main mode of disease transmission and common symptoms of Covid-19. However, a substantial proportion of participants had misconceptions about how to prevent an infection and the recommended care-seeking behavior. For instance, 37.8% (95% CI: 36.1% – 39.6%) of US and 29.7% (95% CI: 28.1% – 31.4%) of UK participants thought that wearing a common surgical mask was ‘highly effective’ in protecting them from acquiring Covid-19. 25.6% (95% CI: 24.1% – 27.2%) of US and 29.6% (95% CI: 28.0% – 31.3%) of UK participants thought it prudent to refrain from eating at Chinese restaurants. Around half (53.8% [95% CI: 52.1% – 55.6%] of US and 39.1% [95% CI: 37.4% –40.9%] of UK participants) thought that children were at an especially high risk of death when infected with SARS-CoV-2. Conclusions: The distribution of participants by total household income and education followed approximately that of the general population. The findings from this online survey could guide information campaigns by public health authorities, clinicians, and the media. More broadly, rapid online surveys could be an important tool in tracking the public’s knowledge and misperceptions during rapidly moving infectious disease outbreaks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The increasing availability of multivariate data within biomedical research calls for appropriate statistical methods that can describe and model complex relationships between variables. The extended ANOVA simultaneous component analysis (ASCA+) framework combines general linear models and principal component analysis (PCA) to decompose and visualize the separate effects of experimental factors. It has recently been demonstrated how linear mixed models can be included in the framework to analyze data from longitudinal experimental designs with repeated measurements (RM-ASCA+). The ALASCA package for R makes the ASCA+ framework accessible for general use and includes multiple methods for validation and visualization. The package is especially useful for longitudinal data and the ability to easily adjust for covariates is an important strength. This paper demonstrates how the ALASCA package can be applied to gain insights into multivariate data from interventional as well as observational designs. Publicly available data sets from four studies are used to demonstrate the methods available (proteomics, metabolomics, and transcriptomics).
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This zip file contains important process data of our study, which were generated based on the adopted empirical data and were used in many computational experiments; for instance, various null configuration models for the empirical network.
Please note: This is a Synthetic data file, also known as a Dummy file - it is not real data. This synthetic file should not be used for purposes other than to develop an test computer programs that are to be submitted by remote access. Each record in the synthetic file matches the format and content parameters of the real Statistics Canada Master File with which it is associated, but the data themselves have been 'made up'. They do NOT represent responses from real individuals and should NOT be used for actual analysis. These data are provided solely for the purpose of testing statistical package 'code' (e.g. SPSS syntax, SAS programs, etc.) in preperation for analysis using the associated Master File in a Research Data Centre, by Remote Job Submission, or by some other means of secure access. If statistical analysis 'code' works with the synthetic data, researchers can have some confidence that the same code will run successfully against the Master File data in the Resource Data Centres. In the fall of 1991, the National Health Information Council recommended that an ongoing national survey of population health be conducted. This recommendation was based on consideration of the economic and fiscal pressures on the health care systems and the requirement for information with which to improve the health status of the population in Canada. Commencing in April 1992, Statistics Canada received funding for development of a National Population Health Survey (NPHS). The NPHS collects information related to the health of the Canadian population and related socio-demographic information to: aid in the development of public policy by providing measures of the level, trend and distribution of the health status of the population, provide data for analytic studies that will assist in understanding the determinants of health, and collect data on the economic, social, demographic, occupational and environmental correlates of health. In addition the NPHS seeks to increase the understanding of the relationship between health status and health care utilization, including alternative as well as traditional services, and also to allow the possibility of linking survey data to routinely collected administrative data such as vital statistics, environmental measures, community variables, and health services utilization. The NPHS collects information related to the health of the Canadian population and related socio-demographic information. It is composed of three components: the Households, the Health Institutions, and the North components. The Household component started in 1994/1995 and is conducted every two years. The first two cycles (1994/1995, 1996/1997) were both cross-sectional and longitudinal. The NPHS longitudinal sample includes 17,276 persons from all ages in 1994/1995 and these same persons are to be interviewed every two years. Each cycle, a common set of health questions is asked to the respondents. This allows for the analysis of changes in the health of the respondents over time. In addition to the common set of questions, the questionnaire does include focus content and supplements that change from cycle to cycle. Health Canada, Public Health Agency of Canada and provincial ministries of health use NPHS longitudinal data to plan, implement and evaluate programs and health policies to improve health and the efficiency of health services. Non-profit health organizations and researchers in the academic fields use the information to move research ahead and to improve health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract Background Life quality of workers influences on development and productivity of work and it can be influenced by several sociodemographic and labor factors. Objective To evaluate the associated factors with quality of life of University workers from southern Santa Catarina State. Method A cross-sectional study with 214 workers was carried out. WHOQOL-Bref was used to evaluate the quality of life. The quality of life domains were associated to exposure variables. The statistical analysis T-test for independent samples and analysis of variance, followed by the Bonferroni test were used. Results The mean of quality of life domains were: 74.64 (±13.52) for the physical domain, 71.12 (±12.85) for the psychological, 76.94 (±13.98) for social relations domain and 61.94 (±16.30) for the environment domain. Males presented higher mean for the physical, psychological and social relations domains. Workers older than 38 years of age presented higher means in the psychological domain. In the social relations domain, the highest mean was observed among individuals aged 18 to 27 years. In those individuals who slept less than 8 hours a day, the mean of the physical domain were smaller. Conclusion It is necessary the development of actions to prevent and promote life quality at work focusing on employees who had the lowest averages of the domains of that.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cerebral white matter lesions (WML) are major risk factors for bipolar disorder (BD). However, studies on the association between cerebral WML volume and BD risk are limited. This study aimed to investigate the relationship between cerebral WML volume and BD incidence. This is a secondary retrospective analysis of patients (N = 146, 72 males, 74 females, mean age = 41.77 years) who have previously undergone magnetic resonance imaging examinations. Information was obtained from the Dryad database. Univariate analysis, piecewise linear regression model, and multivariable logistic regression model were used for statistical analysis. A non-linear relationship was recognized between the cerebral WML volume and BD incidence, in which the inflection point of the WML volume was 6,200 mm3. The effect sizes and confidence intervals on the left and right sides of the emphasis point were 1.0009 (1.0003, 1.0015) and 0.9988 (0.9974, 1.0003), respectively. Subgroup analysis (WML volume
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background and objectivesPractice-based research (PBR) is of pivotal importance for hospital pharmacists which not only up-grades the profession but also improves the patient care. This study aimed to evaluate the attitude, perception, willingness, motivation and barriers to PBR among hospital pharmacists in Pakistan.MethodsA descriptive, cross sectional study design was employed. Data were collected between 1st December, 2017 and 1st March, 2018 from 130 hospital pharmacists employed in 41 hospitals of Lahore, Pakistan. A survey instrument comprising of six sections was designed to determine the attitude, perception, willingness, motivation and barriers to PBR. Data were analyzed by using Statistical Package for Social Sciences (IBM SPSS Statistics for Windows, version 21.0, Armonk, NY: IBM Corp.). The normality of the data was determined through Shapiro-Wilks and Kolmogorov-Smirnov tests. Independent Samples Mann-Whitney U Test and Independent Samples Kruskal-Wallis Test were carried out to test if there were differences among the characteristics of the hospital pharmacists. Logistic regression analysis was used to figure out the factors associated with attitude, perceptions, willingness and motivation towards PBR. A p-value
In 2010, the EU-SILC instrument covered 32 countries, that is, all EU Member States plus Iceland, Turkey, Norway, Switzerland and Croatia. EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labor, education and health observations only apply to persons aged 16 and over. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The fifth revision of the 2010 Cross-Sectional User Database as released in May 2014 is documented here.
The survey covers following countries: Austria; Belgium; Bulgaria; Croatia; Cyprus; Czech Republic; Denmark; Estonia; Finland; France; Germany; Greece; Spain; Ireland; Italy; Latvia; Lithuania; Luxembourg; Hungary; Malta; Netherlands; Poland; Portugal; Romania; Slovenia; Slovakia; Sweden; United Kingdom; Iceland; Norway; Turkey; Switzerland
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Documentation.
Mixed
EU-SILC has become the EU reference source for comparative statistics on income distribution and social exclusion at European level, particularly in the context of the "Program of Community action to encourage cooperation between Member States to combat social exclusion" and for producing structural indicators on social cohesion for the annual spring report to the European Council. The first priority is to be given to the delivery of comparable, timely and high quality cross-sectional data.
There are two types of datasets: 1) Cross-sectional data pertaining to fixed time periods, with variables on income, poverty, social exclusion and living conditions. 2) Longitudinal data pertaining to individual-level changes over time, observed periodically - usually over four years.
Social exclusion and housing-condition information is collected at household level. Income at a detailed component level is collected at personal level, with some components included in the "Household" section. Labour, education and health observations only apply to persons 16 and older. EU-SILC was established to provide data on structural indicators of social cohesion (at-risk-of-poverty rate, S80/S20 and gender pay gap) and to provide relevant data for the two 'open methods of coordination' in the field of social inclusion and pensions in Europe.
The 7th version of the 2008 Cross-Sectional User Database (UDB) as released in July 2015 is documented here.
The survey covers following countries: Austria, Belgium, Bulgaria, Czech Republic, Denmark, Germany, Estonia, Greece, Spain, France, Ireland, Italy, Cyprus, Latvia, Lithuania, Luxembourg, Hungary, Malta, Netherlands, Poland, Portugal, Romania, Slovenia, Slovakia, Finland, Sweden, United Kingdom, Iceland, Norway.
Small parts of the national territory amounting to no more than 2% of the national population and the national territories listed below may be excluded from EU-SILC: France - French Overseas Departments and territories; Netherlands - The West Frisian Islands with the exception of Texel; Ireland - All offshore islands with the exception of Achill, Bull, Cruit, Gorumna, Inishnee, Lettermore, Lettermullan and Valentia; United kingdom - Scotland north of the Caledonian Canal, the Scilly Islands.
The survey covered all household members over 16 years old. Persons living in collective households and in institutions are generally excluded from the target population.
Sample survey data [ssd]
On the basis of various statistical and practical considerations and the precision requirements for the most critical variables, the minimum effective sample sizes to be achieved were defined. Sample size for the longitudinal component refers, for any pair of consecutive years, to the number of households successfully interviewed in the first year in which all or at least a majority of the household members aged 16 or over are successfully interviewed in both the years.
For the cross-sectional component, the plans are to achieve the minimum effective sample size of around 131.000 households in the EU as a whole (137.000 including Iceland and Norway). The allocation of the EU sample among countries represents a compromise between two objectives: the production of results at the level of individual countries, and production for the EU as a whole. Requirements for the longitudinal data will be less important. For this component, an effective sample size of around 98.000 households (103.000 including Iceland and Norway) is planned.
Member States using registers for income and other data may use a sample of persons (selected respondents) rather than a sample of complete households in the interview survey. The minimum effective sample size in terms of the number of persons aged 16 or over to be interviewed in detail is in this case taken as 75 % of the figures shown in columns 3 and 4 of the table I, for the cross-sectional and longitudinal components respectively.
The reference is to the effective sample size, which is the size required if the survey were based on simple random sampling (design effect in relation to the 'risk of poverty rate' variable = 1.0). The actual sample sizes will have to be larger to the extent that the design effects exceed 1.0 and to compensate for all kinds of non-response. Furthermore, the sample size refers to the number of valid households which are households for which, and for all members of which, all or nearly all the required information has been obtained. For countries with a sample of persons design, information on income and other data shall be collected for the household of each selected respondent and for all its members.
At the beginning, a cross-sectional representative sample of households is selected. It is divided into say 4 sub-samples, each by itself representative of the whole population and similar in structure to the whole sample. One sub-sample is purely cross-sectional and is not followed up after the first round. Respondents in the second sub-sample are requested to participate in the panel for 2 years, in the third sub-sample for 3 years, and in the fourth for 4 years. From year 2 onwards, one new panel is introduced each year, with request for participation for 4 years. In any one year, the sample consists of 4 sub-samples, which together constitute the cross-sectional sample. In year 1 they are all new samples; in all subsequent years, only one is new sample. In year 2, three are panels in the second year; in year 3, one is a panel in the second year and two in the third year; in subsequent years, one is a panel for the second year, one for the third year, and one for the fourth (final) year.
According to the Commission Regulation on sampling and tracing rules, the selection of the sample will be drawn according to the following requirements:
Community Statistics on Income and Living Conditions. Article 8 of the EU-SILC Regulation of the European Parliament and of the Council mentions: 1. The cross-sectional and longitudinal data shall be based on nationally representative probability samples. 2. By way of exception to paragraph 1, Germany shall supply cross-sectional data based on a nationally representative probability sample for the first time for the year 2008. For the year 2005, Germany shall supply data for one fourth based on probability sampling and for three fourths based on quota samples, the latter to be progressively replaced by random selection so as to achieve fully representative probability sampling by 2008. For the longitudinal component, Germany shall supply for the year 2006 one third of longitudinal data (data for year 2005 and 2006) based on probability sampling and two thirds based on quota samples. For the year 2007, half of the longitudinal data relating to years 2005, 2006 and 2007 shall be based on probability sampling and half on quota sample. After 2007 all of the longitudinal data shall be based on probability sampling.
Detailed information about sampling is available in Quality Reports in Related Materials.
Mixed
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
R Scripts contain statistical data analisys for streamflow and sediment data, including Flow Duration Curves, Double Mass Analysis, Nonlinear Regression Analysis for Suspended Sediment Rating Curves, Stationarity Tests and include several plots.