Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages.
All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages. All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.
Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Objective: To examine if the rankings of state HIV age-standardized death rates (ASDRs) changed if different standard population (SP) was used.
Design: A cross-sectional population-based observational study. Setting 36 states in the United States.
Participants: People died from 2015 to 2019.
Main outcome measures: State HIV ASDR using 4 SPs, namely WHO2000, US2000, US2mor020, and Eur2011–2030.
Results: The rankings of 19 states did not change when ASDRs were calculated using US2000 and US2020. Of the 17 states whose rankings changed, the rankings of 9 states calculated using US2000 were higher than those calculated using US2020; in 8 states, the rankings were lower. The states with the greatest changes in rankings between US2000 and US2020 were Kentucky (12th and 9th, respectively) and Massachusetts (8th and 11th, respectively).
Conclusions: State ASDRs calculated using the current official SP (US2000) weigh middle-age HIV death rates more heavily than older-age HIV death rates, resulting in lower ASDRs among states with higher older-age HIV death rates.
The probability of dying between birth and the exact age of 1, expressed per 1,000 live births. The data is sorted by both sex and total and includes a range of values from 1900 to 2019. The calculation for infant mortality rates is derived from a standard period abridged life table using the age-specific deaths and mid-year population counts from civil registration data. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.
Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes
Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.
Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages.
Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health.
Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data.
Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
A word on the flaws of numbers like this
People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Respiratory Disease, numbers and rates by gender, as 3-year range. Smoking is the major cause of chronic obstructive pulmonary disease (COPD), one of the major Respiratory diseases. COPD (which includes chronic bronchitis and emphysema) results in many hospital admissions. Respiratory diseases can also be caused by environmental factors (such as pollution, or housing conditions) and influenza. Respiratory disease mortality rates show a socio-economic gradient. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID) Public Health Outcomes Framework (PHOF) indicator 4.07i. This data is updated annually.
Excel workbook of age-standardised baseline mortality rates (BMRs) for each US county by race and ethnicity used for calculating racial-ethnic disparities in health burdens for air pollution from the major oil and gas lifecycle stages in the United States.The workbook includes 3 sheets:BMRs for all-cause mortality in 25+ years population for calculating premature mortality from exposure to fine particular matter (PM2.5).BMRs for all-cause mortality in 65+ years population for calculating premature mortality from exposure to nitrogen dioxide (NO2), andBMRs for all-ages chronic obstructive pulmonary disease (COPD) mortality from exposure to ozone air pollution.Raw BMRs from the US US Centers for Disease Control and Prevention Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER) are processed to gap fill data not reported at the county level. This data gap filling is detailed in Vohra et al. (2025) Science Advances, "The health burden and racial-ethnic disparities of air pollution from the major oil and gas lifecycle stages in the United States", doi:10.1126/sciadv.adu2241.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Cardiovascular Disease, numbers and rates by gender, as 3-year moving-averages. Cardiovascular Disease include heart diseases and stroke, and others. Socio-economic and lifestyle factors are associated with circulatory disease deaths and inequalities in circulatory disease rates. Modifiable risk factors include smoking, excess weight, diet, and physical inactivity. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: NHS Digital (now part of NHS England) Compendium hub, dataset unique identifier P00395. This data is updated annually. Note: Compendium Mortality Consultation 2022 NHS Digital is currently analysing the results of the consultation that closed on 14 September 2022. In the meantime the next publication is on hold. 6 February 2023 10:55 AM
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages.
Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: NHS Health and Social Care Information Centre (NHS-HSCIC) (Dataset unique identifier P00399). This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from Liver Disease, numbers and rates by gender, as 3-year moving-averages.
Most liver disease is preventable and much is influenced by alcohol consumption and obesity prevalence, which are both amenable to public health interventions.
Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.
A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.
Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 4.06i. The data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages. Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), indicator ID 40501, E05a. This data is updated annually.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Life expectancy at a given age is a summary measure of mortality rates present in a population (estimated as the area under the survival curve), and represents the average number of years an individual at that age is expected to live if current age-specific mortality rates apply now and in the future. A complementary metric is the number of Life Years Lost, which is used to measure the reduction in life expectancy for a specific group of persons, for example those diagnosed with a specific disease or condition (e.g. smoking). However, calculation of life expectancy among those with a specific disease is not straightforward for diseases that are not present at birth, and previous studies have considered a fixed age at onset of the disease, e.g. at age 15 or 20 years. In this paper, we present the R package lillies (freely available through the Comprehensive R Archive Network; CRAN) to guide the reader on how to implement a recently-introduced method to estimate excess Life Years Lost associated with a disease or condition that overcomes these limitations. In addition, we show how to decompose the total number of Life Years Lost into specific causes of death through a competing risks model, and how to calculate confidence intervals for the estimates using non-parametric bootstrap. We provide a description on how to use the method when the researcher has access to individual-level data (e.g. electronic healthcare and mortality records) and when only aggregated-level data are available.
Abstract copyright UK Data Service and data collection copyright owner. The dataset was originally created to allow the construction of age-specific mortality series and cohort mortality series for particular diseases, from the mid-nineteenth century to the present (in conjunction with the comparable mortality database created by the Office of National Statistics which covers 1901 – present). The dataset is fairly comprehensive and therefore allows both fine analysis of trends in single causes and also the construction of consistent aggregated categories of causes over time. Additionally, comparison of trends in individual causes can be used to infer transfers of deaths between categories over time, that may cause artifactual changes in mortality rates of particular causes. The data are presented by sex, allowing calculation of sex ratios. The age-specific and annual nature of the dataset allows the analysis of cause-specific mortality by birth cohort (assuming low migration at the national level). The database can be used in conjunction with the ONS database “Historic Mortality and Population Data, 1901-1992”, already in the UK Data Archive collection as SN 2902, to create continuous cause-of-death series for the period 1848-1992 (or later, if using more recent versions of the ONS database).
In 2023, the crude birth rate in live births per 1,000 inhabitants in the Philippines stood at 16.02. Between 1960 and 2023, the figure dropped by 31.14, though the decline followed an uneven course rather than a steady trajectory.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically