31 datasets found
  1. Z

    Russian Short-Term Mortality Fluctuations database

    • data.niaid.nih.gov
    Updated Dec 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodina, Olga (2023). Russian Short-Term Mortality Fluctuations database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10280663
    Explore at:
    Dataset updated
    Dec 7, 2023
    Dataset provided by
    Rodina, Olga
    Sergeev, Egor
    Churilova, Elena
    Jdanov, Dmitri
    Timonin, Sergei
    Shchur, Aleksey
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description
    1. Database contents The Russian Short-Term Mortality Fluctuations database (RusSTMF) contains a series of standardized and crude death rates for men, women and both sexes for Russia as a whole and its regions for the period from 2000 to 2021. All the output indicators presented in the database are calculated based on data of deaths registered by the Vital Registry Office. The weekly death counts are calculated based on depersonalized individual data provided by the Russian Federal State Statistics Service (Rosstat) at the request of the HSE. Time coverage: 03.01.2000 (Week 1) – 31.12.2021 (Week 1148)
    2. A brief description of the input data on deaths Date of death: date of occurrence Unit of time: week First and last days of the week: Monday – Sunday First and last week of the year: The weeks are organized according to ISO 8601:2004 guidelines. Each week of the year, including the first and last, contains 7 days. In order to get 7-day weeks, the days of previous years are included in this first week (if January 1 fell on Tuesday, Wednesday or Thursday) or in the last calendar week (if December 31 fell on Thursday, Friday or Saturday). Age groups: the entire population Sex: men, women, both sexes (men and women combined) Restrictions and data changes: data on deaths in the Pskov region were excluded for weeks 9-13 of 2012 Note: Deaths with an unknown date of occurrence (unknown year, month, or day) account for about 0.3% of all deaths and are excluded from the calculation of week-age-specific and standardized death rates.
    3. Description of the week-specific mortality rates data file Week-specific standardized death rates for Russia as a whole and its regions are contained in a single data file presented in .csv format. The format of data allows its uploading into any system for statistical analysis. Each record (row) in the data file contains data for one calendar year, one week, one territory, one sex. The decimal point is dot (.) The first element of the row is the territory code ("PopCode" column), the second element is the year ("Year" column), the third element ("Week" column) is the week of the year, the fourth element ("Sex" column) is sex (F – female, M – male, B – both sexes combined). This is followed by a column "CDR" with the value of the crude death rate and "SDR" with the value of the standardized death rate. If the indicator cannot be calculated for some combination of year, sex, and territory, then the corresponding meaningful data elements in the data file are replaced with ".".
  2. e

    Deaths from All Causes

    • data.europa.eu
    csv, html
    Updated May 30, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2020). Deaths from All Causes [Dataset]. https://data.europa.eu/data/datasets/deaths-from-all-causes
    Explore at:
    csv, htmlAvailable download formats
    Dataset updated
    May 30, 2020
    Dataset authored and provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages.

    All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities.

    Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.

    Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.

  3. Deaths from All Causes - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 8, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.io (2017). Deaths from All Causes - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-all-causes
    Explore at:
    Dataset updated
    May 8, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Area covered
    Lincolnshire
    Description

    This data shows premature deaths (Age under 75), numbers and rates by gender, as 3-year moving-averages. All-Cause Mortality rates are a summary indicator of population health status. All-cause mortality is related to Life Expectancy, and both may be influenced by health inequalities. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator ID 108. This data is updated annually.

  4. Crude birth rate, age-specific fertility rates and total fertility rate...

    • www150.statcan.gc.ca
    • datasets.ai
    • +3more
    Updated Sep 25, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2024). Crude birth rate, age-specific fertility rates and total fertility rate (live births) [Dataset]. http://doi.org/10.25318/1310041801-eng
    Explore at:
    Dataset updated
    Sep 25, 2024
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Crude birth rates, age-specific fertility rates and total fertility rates (live births), 2000 to most recent year.

  5. Impacts of using different standard populations in calculating...

    • zenodo.org
    bin
    Updated Jun 5, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shu-Yu Tai; Fu-Wen Liang; Yen-Yee Hng; Yi-Hsuan Lo; Tsung-Hsueh Lu; Shu-Yu Tai; Fu-Wen Liang; Yen-Yee Hng; Yi-Hsuan Lo; Tsung-Hsueh Lu (2022). Impacts of using different standard populations in calculating age-standardized death rates when age-specific death rates in the populations being compared do not have a consistent relationship: A cross-sectional population-based observational study on US state HIV death rates [Dataset]. http://doi.org/10.5061/dryad.41ns1rng8
    Explore at:
    binAvailable download formats
    Dataset updated
    Jun 5, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Shu-Yu Tai; Fu-Wen Liang; Yen-Yee Hng; Yi-Hsuan Lo; Tsung-Hsueh Lu; Shu-Yu Tai; Fu-Wen Liang; Yen-Yee Hng; Yi-Hsuan Lo; Tsung-Hsueh Lu
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Objective: To examine if the rankings of state HIV age-standardized death rates (ASDRs) changed if different standard population (SP) was used.

    Design: A cross-sectional population-based observational study. Setting 36 states in the United States.

    Participants: People died from 2015 to 2019.

    Main outcome measures: State HIV ASDR using 4 SPs, namely WHO2000, US2000, US2mor020, and Eur2011–2030.

    Results: The rankings of 19 states did not change when ASDRs were calculated using US2000 and US2020. Of the 17 states whose rankings changed, the rankings of 9 states calculated using US2000 were higher than those calculated using US2020; in 8 states, the rankings were lower. The states with the greatest changes in rankings between US2000 and US2020 were Kentucky (12th and 9th, respectively) and Massachusetts (8th and 11th, respectively).

    Conclusions: State ASDRs calculated using the current official SP (US2000) weigh middle-age HIV death rates more heavily than older-age HIV death rates, resulting in lower ASDRs among states with higher older-age HIV death rates.

  6. a

    Infant Mortality Rate

    • hub.arcgis.com
    • globalmidwiveshub.org
    Updated Jun 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Direct Relief (2021). Infant Mortality Rate [Dataset]. https://hub.arcgis.com/maps/DirectRelief::infant-mortality-rate
    Explore at:
    Dataset updated
    Jun 1, 2021
    Dataset authored and provided by
    Direct Relief
    Area covered
    Description

    The probability of dying between birth and the exact age of 1, expressed per 1,000 live births. The data is sorted by both sex and total and includes a range of values from 1900 to 2019. The calculation for infant mortality rates is derived from a standard period abridged life table using the age-specific deaths and mid-year population counts from civil registration data. This data is sourced from the UN Inter-Agency Group for Child Mortality Estimation. The UN IGME uses the same estimation method across all countries to arrive at a smooth trend curve of age-specific mortality rates. The estimates are based on high quality nationally representative data including statistics from civil registration systems, results from household surveys, and censuses. The child mortality estimates are produced in conjunction with national level agencies such as a country’s Ministry of Health, National Statistics Office, or other relevant agencies.

  7. Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status

    • data.cdc.gov
    • data.virginia.gov
    • +2more
    csv, xlsx, xml
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response, Epidemiology Task Force (2023). Rates of COVID-19 Cases or Deaths by Age Group and Vaccination Status [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Rates-of-COVID-19-Cases-or-Deaths-by-Age-Group-and/3rge-nu2a
    Explore at:
    xlsx, xml, csvAvailable download formats
    Dataset updated
    Feb 22, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response, Epidemiology Task Force
    Description

    Data for CDC’s COVID Data Tracker site on Rates of COVID-19 Cases and Deaths by Vaccination Status. Click 'More' for important dataset description and footnotes

    Dataset and data visualization details: These data were posted on October 21, 2022, archived on November 18, 2022, and revised on February 22, 2023. These data reflect cases among persons with a positive specimen collection date through September 24, 2022, and deaths among persons with a positive specimen collection date through September 3, 2022.

    Vaccination status: A person vaccinated with a primary series had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after verifiably completing the primary series of an FDA-authorized or approved COVID-19 vaccine. An unvaccinated person had SARS-CoV-2 RNA or antigen detected on a respiratory specimen and has not been verified to have received COVID-19 vaccine. Excluded were partially vaccinated people who received at least one FDA-authorized vaccine dose but did not complete a primary series ≥14 days before collection of a specimen where SARS-CoV-2 RNA or antigen was detected. Additional or booster dose: A person vaccinated with a primary series and an additional or booster dose had SARS-CoV-2 RNA or antigen detected on a respiratory specimen collected ≥14 days after receipt of an additional or booster dose of any COVID-19 vaccine on or after August 13, 2021. For people ages 18 years and older, data are graphed starting the week including September 24, 2021, when a COVID-19 booster dose was first recommended by CDC for adults 65+ years old and people in certain populations and high risk occupational and institutional settings. For people ages 12-17 years, data are graphed starting the week of December 26, 2021, 2 weeks after the first recommendation for a booster dose for adolescents ages 16-17 years. For people ages 5-11 years, data are included starting the week of June 5, 2022, 2 weeks after the first recommendation for a booster dose for children aged 5-11 years. For people ages 50 years and older, data on second booster doses are graphed starting the week including March 29, 2022, when the recommendation was made for second boosters. Vertical lines represent dates when changes occurred in U.S. policy for COVID-19 vaccination (details provided above). Reporting is by primary series vaccine type rather than additional or booster dose vaccine type. The booster dose vaccine type may be different than the primary series vaccine type. ** Because data on the immune status of cases and associated deaths are unavailable, an additional dose in an immunocompromised person cannot be distinguished from a booster dose. This is a relevant consideration because vaccines can be less effective in this group. Deaths: A COVID-19–associated death occurred in a person with a documented COVID-19 diagnosis who died; health department staff reviewed to make a determination using vital records, public health investigation, or other data sources. Rates of COVID-19 deaths by vaccination status are reported based on when the patient was tested for COVID-19, not the date they died. Deaths usually occur up to 30 days after COVID-19 diagnosis. Participating jurisdictions: Currently, these 31 health departments that regularly link their case surveillance to immunization information system data are included in these incidence rate estimates: Alabama, Arizona, Arkansas, California, Colorado, Connecticut, District of Columbia, Florida, Georgia, Idaho, Indiana, Kansas, Kentucky, Louisiana, Massachusetts, Michigan, Minnesota, Nebraska, New Jersey, New Mexico, New York, New York City (New York), North Carolina, Philadelphia (Pennsylvania), Rhode Island, South Dakota, Tennessee, Texas, Utah, Washington, and West Virginia; 30 jurisdictions also report deaths among vaccinated and unvaccinated people. These jurisdictions represent 72% of the total U.S. population and all ten of the Health and Human Services Regions. Data on cases among people who received additional or booster doses were reported from 31 jurisdictions; 30 jurisdictions also reported data on deaths among people who received one or more additional or booster dose; 28 jurisdictions reported cases among people who received two or more additional or booster doses; and 26 jurisdictions reported deaths among people who received two or more additional or booster doses. This list will be updated as more jurisdictions participate. Incidence rate estimates: Weekly age-specific incidence rates by vaccination status were calculated as the number of cases or deaths divided by the number of people vaccinated with a primary series, overall or with/without a booster dose (cumulative) or unvaccinated (obtained by subtracting the cumulative number of people vaccinated with a primary series and partially vaccinated people from the 2019 U.S. intercensal population estimates) and multiplied by 100,000. Overall incidence rates were age-standardized using the 2000 U.S. Census standard population. To estimate population counts for ages 6 months through 1 year, half of the single-year population counts for ages 0 through 1 year were used. All rates are plotted by positive specimen collection date to reflect when incident infections occurred. For the primary series analysis, age-standardized rates include ages 12 years and older from April 4, 2021 through December 4, 2021, ages 5 years and older from December 5, 2021 through July 30, 2022 and ages 6 months and older from July 31, 2022 onwards. For the booster dose analysis, age-standardized rates include ages 18 years and older from September 19, 2021 through December 25, 2021, ages 12 years and older from December 26, 2021, and ages 5 years and older from June 5, 2022 onwards. Small numbers could contribute to less precision when calculating death rates among some groups. Continuity correction: A continuity correction has been applied to the denominators by capping the percent population coverage at 95%. To do this, we assumed that at least 5% of each age group would always be unvaccinated in each jurisdiction. Adding this correction ensures that there is always a reasonable denominator for the unvaccinated population that would prevent incidence and death rates from growing unrealistically large due to potential overestimates of vaccination coverage. Incidence rate ratios (IRRs): IRRs for the past one month were calculated by dividing the average weekly incidence rates among unvaccinated people by that among people vaccinated with a primary series either overall or with a booster dose. Publications: Scobie HM, Johnson AG, Suthar AB, et al. Monitoring Incidence of COVID-19 Cases, Hospitalizations, and Deaths, by Vaccination Status — 13 U.S. Jurisdictions, April 4–July 17, 2021. MMWR Morb Mortal Wkly Rep 2021;70:1284–1290. Johnson AG, Amin AB, Ali AR, et al. COVID-19 Incidence and Death Rates Among Unvaccinated and Fully Vaccinated Adults with and Without Booster Doses During Periods of Delta and Omicron Variant Emergence — 25 U.S. Jurisdictions, April 4–December 25, 2021. MMWR Morb Mortal Wkly Rep 2022;71:132–138. Johnson AG, Linde L, Ali AR, et al. COVID-19 Incidence and Mortality Among Unvaccinated and Vaccinated Persons Aged ≥12 Years by Receipt of Bivalent Booster Doses and Time Since Vaccination — 24 U.S. Jurisdictions, October 3, 2021–December 24, 2022. MMWR Morb Mortal Wkly Rep 2023;72:145–152. Johnson AG, Linde L, Payne AB, et al. Notes from the Field: Comparison of COVID-19 Mortality Rates Among Adults Aged ≥65 Years Who Were Unvaccinated and Those Who Received a Bivalent Booster Dose Within the Preceding 6 Months — 20 U.S. Jurisdictions, September 18, 2022–April 1, 2023. MMWR Morb Mortal Wkly Rep 2023;72:667–669.

  8. Deaths from Suicide - Dataset - data.gov.uk

    • ckan.publishing.service.gov.uk
    Updated Jul 11, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Deaths from Suicide - Dataset - data.gov.uk [Dataset]. https://ckan.publishing.service.gov.uk/dataset/deaths-from-suicide
    Explore at:
    Dataset updated
    Jul 11, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  9. e

    Deaths from Suicide

    • data.europa.eu
    csv, html
    Updated Nov 12, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2018). Deaths from Suicide [Dataset]. https://data.europa.eu/data/datasets/deaths-from-suicide?locale=en
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Nov 12, 2018
    Dataset authored and provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages.

    Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health.

    Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data.

    Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  10. COVID-19 death rates in 2020 countries worldwide as of April 26, 2022

    • statista.com
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 death rates in 2020 countries worldwide as of April 26, 2022 [Dataset]. https://www.statista.com/statistics/1105914/coronavirus-death-rates-worldwide/
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    COVID-19 rate of death, or the known deaths divided by confirmed cases, was over ten percent in Yemen, the only country that has 1,000 or more cases. This according to a calculation that combines coronavirus stats on both deaths and registered cases for 221 different countries. Note that death rates are not the same as the chance of dying from an infection or the number of deaths based on an at-risk population. By April 26, 2022, the virus had infected over 510.2 million people worldwide, and led to a loss of 6.2 million. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. Note that Statista aims to also provide domestic source material for a more complete picture, and not to just look at one particular source. Examples are these statistics on the confirmed coronavirus cases in Russia or the COVID-19 cases in Italy, both of which are from domestic sources. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

    A word on the flaws of numbers like this

    People are right to ask whether these numbers are at all representative or not for several reasons. First, countries worldwide decide differently on who gets tested for the virus, meaning that comparing case numbers or death rates could to some extent be misleading. Germany, for example, started testing relatively early once the country’s first case was confirmed in Bavaria in January 2020, whereas Italy tests for the coronavirus postmortem. Second, not all people go to see (or can see, due to testing capacity) a doctor when they have mild symptoms. Countries like Norway and the Netherlands, for example, recommend people with non-severe symptoms to just stay at home. This means not all cases are known all the time, which could significantly alter the death rate as it is presented here. Third and finally, numbers like this change very frequently depending on how the pandemic spreads or the national healthcare capacity. It is therefore recommended to look at other (freely accessible) content that dives more into specifics, such as the coronavirus testing capacity in India or the number of hospital beds in the UK. Only with additional pieces of information can you get the full picture, something that this statistic in its current state simply cannot provide.

  11. Deaths from Respiratory Disease

    • ckan.publishing.service.gov.uk
    Updated Jul 28, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Deaths from Respiratory Disease [Dataset]. https://ckan.publishing.service.gov.uk/dataset/deaths-from-respiratory-disease
    Explore at:
    Dataset updated
    Jul 28, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from Respiratory Disease, numbers and rates by gender, as 3-year range. Smoking is the major cause of chronic obstructive pulmonary disease (COPD), one of the major Respiratory diseases. COPD (which includes chronic bronchitis and emphysema) results in many hospital admissions. Respiratory diseases can also be caused by environmental factors (such as pollution, or housing conditions) and influenza. Respiratory disease mortality rates show a socio-economic gradient. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID) Public Health Outcomes Framework (PHOF) indicator 4.07i. This data is updated annually.

  12. e

    Baseline mortality rates used to calculate racial-ethnic disparities of air...

    • b2find.eudat.eu
    Updated Jul 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Baseline mortality rates used to calculate racial-ethnic disparities of air pollution from major oil and gas lifecycle stages in the United States - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/aa4329fa-7910-5e1e-9200-65d2eeb1d55e
    Explore at:
    Dataset updated
    Jul 28, 2025
    Area covered
    United States
    Description

    Excel workbook of age-standardised baseline mortality rates (BMRs) for each US county by race and ethnicity used for calculating racial-ethnic disparities in health burdens for air pollution from the major oil and gas lifecycle stages in the United States.The workbook includes 3 sheets:BMRs for all-cause mortality in 25+ years population for calculating premature mortality from exposure to fine particular matter (PM2.5).BMRs for all-cause mortality in 65+ years population for calculating premature mortality from exposure to nitrogen dioxide (NO2), andBMRs for all-ages chronic obstructive pulmonary disease (COPD) mortality from exposure to ozone air pollution.Raw BMRs from the US US Centers for Disease Control and Prevention Wide-ranging ONline Data for Epidemiologic Research (CDC WONDER) are processed to gap fill data not reported at the county level. This data gap filling is detailed in Vohra et al. (2025) Science Advances, "The health burden and racial-ethnic disparities of air pollution from the major oil and gas lifecycle stages in the United States", doi:10.1126/sciadv.adu2241.

  13. Deaths from Cardiovascular Disease

    • ckan.publishing.service.gov.uk
    • lincolnshire.ckan.io
    Updated Jul 28, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    ckan.publishing.service.gov.uk (2017). Deaths from Cardiovascular Disease [Dataset]. https://ckan.publishing.service.gov.uk/dataset/deaths-from-circulatory-disease
    Explore at:
    Dataset updated
    Jul 28, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from Cardiovascular Disease, numbers and rates by gender, as 3-year moving-averages. Cardiovascular Disease include heart diseases and stroke, and others. Socio-economic and lifestyle factors are associated with circulatory disease deaths and inequalities in circulatory disease rates. Modifiable risk factors include smoking, excess weight, diet, and physical inactivity. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: NHS Digital (now part of NHS England) Compendium hub, dataset unique identifier P00395. This data is updated annually. Note: Compendium Mortality Consultation 2022 NHS Digital is currently analysing the results of the consultation that closed on 14 September 2022. In the meantime the next publication is on hold. 6 February 2023 10:55 AM

  14. w

    Deaths from All Cancers

    • data.wu.ac.at
    csv, html
    Updated Nov 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2017). Deaths from All Cancers [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/YTMwMDcwZjktNzYyNy00NjNmLTg2N2EtZTM1MWUxZDE1ZGQ3
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Nov 11, 2017
    Dataset provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages.

    Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas.

    Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.

    Data source: NHS Health and Social Care Information Centre (NHS-HSCIC) (Dataset unique identifier P00399). This data is updated annually.

  15. w

    Deaths from Liver Disease

    • data.wu.ac.at
    csv, html
    Updated Nov 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lincolnshire County Council (2017). Deaths from Liver Disease [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/Y2EzY2U4ODItOGNjZi00YTFiLThiN2EtODkyZGZjOTFjMGM2
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Nov 11, 2017
    Dataset provided by
    Lincolnshire County Council
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from Liver Disease, numbers and rates by gender, as 3-year moving-averages.

    Most liver disease is preventable and much is influenced by alcohol consumption and obesity prevalence, which are both amenable to public health interventions.

    Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates.

    A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death.

    Data source: Public Health England, Public Health Outcomes Framework (PHOF) indicator 4.06i. The data is updated annually.

  16. Deaths from Suicide - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 18, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lincolnshire.ckan.io (2017). Deaths from Suicide - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-suicide
    Explore at:
    Dataset updated
    May 18, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows deaths (of people age 10 and over) from Suicide and Undetermined Injury, numbers and rates by gender, as 3-year moving-averages. Suicide is a significant cause of premature deaths occurring generally at younger ages than other common causes of premature mortality. It may also be seen as an indicator of underlying rates of mental ill-health. Directly Age-Standardised Rates (DASR) are shown in the data, where numbers are sufficient, so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. The figures in this dataset include deaths recorded as suicide (people age 10 and over) and undetermined injury (age 15 and over) as those are mostly likely also to have been caused by self-harm rather than unverifiable accident, neglect or abuse. The population denominators for rates are age 10 and over. Low numbers may result in zero values or missing data. Data source: Office for Health Improvement and Disparities (OHID), Public Health Outcomes Framework (PHOF) indicator 41001 (E10). This data is updated annually.

  17. Deaths from All Cancers - Datasets - Lincolnshire Open Data

    • lincolnshire.ckan.io
    Updated May 9, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    lincolnshire.ckan.io (2017). Deaths from All Cancers - Datasets - Lincolnshire Open Data [Dataset]. https://lincolnshire.ckan.io/dataset/deaths-from-all-cancers
    Explore at:
    Dataset updated
    May 9, 2017
    Dataset provided by
    CKANhttps://ckan.org/
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    This data shows premature deaths (Age under 75) from all Cancers, numbers and rates by gender, as 3-year moving-averages. Cancers are a major cause of premature deaths. Inequalities exist in cancer rates between the most deprived areas and the most affluent areas. Directly Age-Standardised Rates (DASR) are shown in the data (where numbers are sufficient) so that death rates can be directly compared between areas. The DASR calculation applies Age-specific rates to a Standard (European) population to cancel out possible effects on crude rates due to different age structures among populations, thus enabling direct comparisons of rates. A limitation on using mortalities as a proxy for prevalence of health conditions is that mortalities may give an incomplete view of health conditions in an area, as ill-health might not lead to premature death. Data source: Office for Health Improvement and Disparities (OHID), indicator ID 40501, E05a. This data is updated annually.

  18. f

    lillies: An R package for the estimation of excess Life Years Lost among...

    • figshare.com
    • plos.figshare.com
    pdf
    Updated Mar 6, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen (2020). lillies: An R package for the estimation of excess Life Years Lost among patients with a given disease or condition [Dataset]. http://doi.org/10.1371/journal.pone.0228073
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Mar 6, 2020
    Dataset provided by
    PLOS ONE
    Authors
    Oleguer Plana-Ripoll; Vladimir Canudas-Romo; Nanna Weye; Thomas M. Laursen; John J. McGrath; Per Kragh Andersen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Life expectancy at a given age is a summary measure of mortality rates present in a population (estimated as the area under the survival curve), and represents the average number of years an individual at that age is expected to live if current age-specific mortality rates apply now and in the future. A complementary metric is the number of Life Years Lost, which is used to measure the reduction in life expectancy for a specific group of persons, for example those diagnosed with a specific disease or condition (e.g. smoking). However, calculation of life expectancy among those with a specific disease is not straightforward for diseases that are not present at birth, and previous studies have considered a fixed age at onset of the disease, e.g. at age 15 or 20 years. In this paper, we present the R package lillies (freely available through the Comprehensive R Archive Network; CRAN) to guide the reader on how to implement a recently-introduced method to estimate excess Life Years Lost associated with a disease or condition that overcomes these limitations. In addition, we show how to decompose the total number of Life Years Lost into specific causes of death through a competing risks model, and how to calculate confidence intervals for the estimates using non-parametric bootstrap. We provide a description on how to use the method when the researcher has access to individual-level data (e.g. electronic healthcare and mortality records) and when only aggregated-level data are available.

  19. e

    Annual Deaths by Cause, Age and Sex in England and Wales, 1848-1900 -...

    • b2find.eudat.eu
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2023). Annual Deaths by Cause, Age and Sex in England and Wales, 1848-1900 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/22f2ec01-46aa-5589-a601-e723d62ac012
    Explore at:
    Dataset updated
    Oct 21, 2023
    Area covered
    Wales, England
    Description

    Abstract copyright UK Data Service and data collection copyright owner. The dataset was originally created to allow the construction of age-specific mortality series and cohort mortality series for particular diseases, from the mid-nineteenth century to the present (in conjunction with the comparable mortality database created by the Office of National Statistics which covers 1901 – present). The dataset is fairly comprehensive and therefore allows both fine analysis of trends in single causes and also the construction of consistent aggregated categories of causes over time. Additionally, comparison of trends in individual causes can be used to infer transfers of deaths between categories over time, that may cause artifactual changes in mortality rates of particular causes. The data are presented by sex, allowing calculation of sex ratios. The age-specific and annual nature of the dataset allows the analysis of cause-specific mortality by birth cohort (assuming low migration at the national level). The database can be used in conjunction with the ONS database “Historic Mortality and Population Data, 1901-1992”, already in the UK Data Archive collection as SN 2902, to create continuous cause-of-death series for the period 1848-1992 (or later, if using more recent versions of the ONS database).

  20. Crude birth rate per 1,000 inhabitants in the Philippines 1960-2023

    • statista.com
    Updated Jul 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Crude birth rate per 1,000 inhabitants in the Philippines 1960-2023 [Dataset]. https://www.statista.com/statistics/977157/crude-birth-rate-in-philippines/
    Explore at:
    Dataset updated
    Jul 30, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Philippines
    Description

    In 2023, the crude birth rate in live births per 1,000 inhabitants in the Philippines stood at 16.02. Between 1960 and 2023, the figure dropped by 31.14, though the decline followed an uneven course rather than a steady trajectory.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rodina, Olga (2023). Russian Short-Term Mortality Fluctuations database [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10280663

Russian Short-Term Mortality Fluctuations database

Explore at:
Dataset updated
Dec 7, 2023
Dataset provided by
Rodina, Olga
Sergeev, Egor
Churilova, Elena
Jdanov, Dmitri
Timonin, Sergei
Shchur, Aleksey
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description
  1. Database contents The Russian Short-Term Mortality Fluctuations database (RusSTMF) contains a series of standardized and crude death rates for men, women and both sexes for Russia as a whole and its regions for the period from 2000 to 2021. All the output indicators presented in the database are calculated based on data of deaths registered by the Vital Registry Office. The weekly death counts are calculated based on depersonalized individual data provided by the Russian Federal State Statistics Service (Rosstat) at the request of the HSE. Time coverage: 03.01.2000 (Week 1) – 31.12.2021 (Week 1148)
  2. A brief description of the input data on deaths Date of death: date of occurrence Unit of time: week First and last days of the week: Monday – Sunday First and last week of the year: The weeks are organized according to ISO 8601:2004 guidelines. Each week of the year, including the first and last, contains 7 days. In order to get 7-day weeks, the days of previous years are included in this first week (if January 1 fell on Tuesday, Wednesday or Thursday) or in the last calendar week (if December 31 fell on Thursday, Friday or Saturday). Age groups: the entire population Sex: men, women, both sexes (men and women combined) Restrictions and data changes: data on deaths in the Pskov region were excluded for weeks 9-13 of 2012 Note: Deaths with an unknown date of occurrence (unknown year, month, or day) account for about 0.3% of all deaths and are excluded from the calculation of week-age-specific and standardized death rates.
  3. Description of the week-specific mortality rates data file Week-specific standardized death rates for Russia as a whole and its regions are contained in a single data file presented in .csv format. The format of data allows its uploading into any system for statistical analysis. Each record (row) in the data file contains data for one calendar year, one week, one territory, one sex. The decimal point is dot (.) The first element of the row is the territory code ("PopCode" column), the second element is the year ("Year" column), the third element ("Week" column) is the week of the year, the fourth element ("Sex" column) is sex (F – female, M – male, B – both sexes combined). This is followed by a column "CDR" with the value of the crude death rate and "SDR" with the value of the standardized death rate. If the indicator cannot be calculated for some combination of year, sex, and territory, then the corresponding meaningful data elements in the data file are replaced with ".".
Search
Clear search
Close search
Google apps
Main menu