10 datasets found
  1. Crude incidence and prevalence of MS in Hungary between 2010 and 2015.

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna Iljicsov; Dániel Milanovich; András Ajtay; Ferenc Oberfrank; Mónika Bálint; Balázs Dobi; Dániel Bereczki; Magdolna Simó (2023). Crude incidence and prevalence of MS in Hungary between 2010 and 2015. [Dataset]. http://doi.org/10.1371/journal.pone.0236432.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Anna Iljicsov; Dániel Milanovich; András Ajtay; Ferenc Oberfrank; Mónika Bálint; Balázs Dobi; Dániel Bereczki; Magdolna Simó
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Hungary
    Description

    Crude incidence and prevalence of MS in Hungary between 2010 and 2015.

  2. a

    500 Cities: Obesity

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated Aug 1, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JHU_CLF (2018). 500 Cities: Obesity [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/datasets/fe1a6795c36c4b3c988b8f4980171af9
    Explore at:
    Dataset updated
    Aug 1, 2018
    Dataset authored and provided by
    JHU_CLF
    Area covered
    Description

    The crude prevalence rate of obesity is defined as the ratio of respondents that are 18 years or older who have a body mass index (BMI) of 30.0 kg/m2 or greater over the total number of respondents in the study (excluding those who refused to answer or those whose information was unknown”). Respondents were excluded if their height was less than 3 ft or equal to/greater than 8 ft; they weighed less than 50 lbs or more than 650 lbs; they had a BMI of less than 12 kg/m2 or 100 kg/m2 and greater; and/or were pregnant.Prevalence data are derived from the Behavioral Risk Factor Surveillance System (BRFSS) 2012.The 500 Cities Project seeks to provide city- and census tract-level small area estimates for chronic disease risk factors, health outcomes, and clinical preventive service use for the largest 500 cities in the United States.Data source: CDC (Division of Population Health, National Center for Chronic Disease Prevention and Health Promotion)Date: 2015

  3. Self-reported and EHR-documented COVID-19 prevalence by sociodemographic and...

    • plos.figshare.com
    xls
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen (2023). Self-reported and EHR-documented COVID-19 prevalence by sociodemographic and clinical factors, crude and adjusted prevalence ratios. [Dataset]. http://doi.org/10.1371/journal.pone.0256891.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Self-reported and EHR-documented COVID-19 prevalence by sociodemographic and clinical factors, crude and adjusted prevalence ratios.

  4. Frequency of self-reported receipt of COVID-19 test and test-positivity...

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen (2023). Frequency of self-reported receipt of COVID-19 test and test-positivity among women who were currently pregnant at time of survey completion. [Dataset]. http://doi.org/10.1371/journal.pone.0256891.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Frequency of self-reported receipt of COVID-19 test and test-positivity among women who were currently pregnant at time of survey completion.

  5. Characteristics of survey respondents, Kaiser Permanente Northern...

    • figshare.com
    xls
    Updated Jun 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen (2023). Characteristics of survey respondents, Kaiser Permanente Northern California. [Dataset]. http://doi.org/10.1371/journal.pone.0256891.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 9, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Jennifer L. Ames; Assiamira Ferrara; Lyndsay A. Avalos; Sylvia E. Badon; Mara B. Greenberg; Monique M. Hedderson; Michael W. Kuzniewicz; Yinge Qian; Kelly C. Young-Wolff; Ousseny Zerbo; Yeyi Zhu; Lisa A. Croen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    California
    Description

    Characteristics of survey respondents, Kaiser Permanente Northern California.

  6. f

    Crude and adjusted prevalence ratios for hypertension.

    • plos.figshare.com
    xls
    Updated Jun 17, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dustin G. Gibson; Ankita Meghani; Charles Ssemagabo; Adaeze Wosu; Gulam Muhammed Al Kibria; Tryphena Nareeba; Collins Gyezaho; Edward Galiwango; Judith Kaija Nanyonga; George W. Pariyo; Dan Kajungu; Elizeus Rutebemberwa; Adnan Ali Hyder (2024). Crude and adjusted prevalence ratios for hypertension. [Dataset]. http://doi.org/10.1371/journal.pgph.0002998.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 17, 2024
    Dataset provided by
    PLOS Global Public Health
    Authors
    Dustin G. Gibson; Ankita Meghani; Charles Ssemagabo; Adaeze Wosu; Gulam Muhammed Al Kibria; Tryphena Nareeba; Collins Gyezaho; Edward Galiwango; Judith Kaija Nanyonga; George W. Pariyo; Dan Kajungu; Elizeus Rutebemberwa; Adnan Ali Hyder
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crude and adjusted prevalence ratios for hypertension.

  7. f

    Crude and population-weighted prevalence of chronic diseases and means of...

    • plos.figshare.com
    xls
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Monsermin Gualan; Irina Chis Ster; Tatiana Veloz; Emily Granadillo; Luz M. Llangari-Arizo; Alejandro Rodriguez; Julia A. Critchley; Peter Whincup; Miguel Martin; Natalia Romero-Sandoval; Philip J. Cooper (2024). Crude and population-weighted prevalence of chronic diseases and means of blood pressure and glucose measures in study population of 931 adults stratified by sex. [Dataset]. http://doi.org/10.1371/journal.pone.0307403.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Monsermin Gualan; Irina Chis Ster; Tatiana Veloz; Emily Granadillo; Luz M. Llangari-Arizo; Alejandro Rodriguez; Julia A. Critchley; Peter Whincup; Miguel Martin; Natalia Romero-Sandoval; Philip J. Cooper
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crude and population-weighted prevalence of chronic diseases and means of blood pressure and glucose measures in study population of 931 adults stratified by sex.

  8. Additional file 1 of Annual dialysis data report 2019, JSDT Renal Data...

    • springernature.figshare.com
    Updated Aug 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Norio Hanafusa; Masanori Abe; Nobuhiko Joki; Tetsuya Ogawa; Eiichiro Kanda; Kan Kikuchi; Shunsuke Goto; Masatomo Taniguchi; Shigeru Nakai; Toshihide Naganuma; Takeshi Hasegawa; Junichi Hoshino; Kenichiro Miura; Atsushi Wada; Yoshiaki Takemoto (2024). Additional file 1 of Annual dialysis data report 2019, JSDT Renal Data Registry [Dataset]. http://doi.org/10.6084/m9.figshare.24165077.v1
    Explore at:
    Dataset updated
    Aug 16, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Norio Hanafusa; Masanori Abe; Nobuhiko Joki; Tetsuya Ogawa; Eiichiro Kanda; Kan Kikuchi; Shunsuke Goto; Masatomo Taniguchi; Shigeru Nakai; Toshihide Naganuma; Takeshi Hasegawa; Junichi Hoshino; Kenichiro Miura; Atsushi Wada; Yoshiaki Takemoto
    Description

    Additional file 1: The detailed data presented in the text as figures are proved in supplementary tables as Additional File 1.

  9. f

    Prevalence and population attributable fraction (PAF) for modifiable risk...

    • plos.figshare.com
    xls
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kamal Sadeghi; Jalal Poorolajal; Amin Doosti-Irani (2023). Prevalence and population attributable fraction (PAF) for modifiable risk factors of TB. [Dataset]. http://doi.org/10.1371/journal.pone.0271511.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Kamal Sadeghi; Jalal Poorolajal; Amin Doosti-Irani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Prevalence and population attributable fraction (PAF) for modifiable risk factors of TB.

  10. Regressive models to explain mean age of Kawasaki disease patients pooled...

    • plos.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yoshiro Nagao (2023). Regressive models to explain mean age of Kawasaki disease patients pooled between 1979 and 2010. [Dataset]. http://doi.org/10.1371/journal.pone.0067934.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Yoshiro Nagao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    *Only TFR remained as the statistically significant contributor to the conventional multivariate models for both crude and adjusted mean patient age.†In spatial regression, no variable remained as a significant contributor to crude mean age and only TFR remained as the significant contributor to adjusted mean age.

  11. f

    Crude and adjusted mean difference (β) of BMI change from before to 4 years...

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ana Henriques; Elisabete Alves; Henrique Barros; Ana Azevedo (2023). Crude and adjusted mean difference (β) of BMI change from before to 4 years after pregnancy estimated by linear regression, according to body image satisfaction, in normal, overweight and obese women before pregnancy. [Dataset]. http://doi.org/10.1371/journal.pone.0070230.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Ana Henriques; Elisabete Alves; Henrique Barros; Ana Azevedo
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    95%CI, 95% confidence interval; BMI, body mass index.*Adjusted for age (

  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Anna Iljicsov; Dániel Milanovich; András Ajtay; Ferenc Oberfrank; Mónika Bálint; Balázs Dobi; Dániel Bereczki; Magdolna Simó (2023). Crude incidence and prevalence of MS in Hungary between 2010 and 2015. [Dataset]. http://doi.org/10.1371/journal.pone.0236432.t002
Organization logo

Crude incidence and prevalence of MS in Hungary between 2010 and 2015.

Related Article
Explore at:
xlsAvailable download formats
Dataset updated
Jun 4, 2023
Dataset provided by
PLOShttp://plos.org/
Authors
Anna Iljicsov; Dániel Milanovich; András Ajtay; Ferenc Oberfrank; Mónika Bálint; Balázs Dobi; Dániel Bereczki; Magdolna Simó
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
Hungary
Description

Crude incidence and prevalence of MS in Hungary between 2010 and 2015.

Search
Clear search
Close search
Google apps
Main menu