34 datasets found
  1. d

    Bitwise 10 Crypto Index Fund Bitcoin Treasury Dataset

    • droomdroom.com
    json
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DroomDroom (2025). Bitwise 10 Crypto Index Fund Bitcoin Treasury Dataset [Dataset]. https://droomdroom.com/bitcoin-treasury-tracker/bitwise-10-crypto-index-fund
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Jul 18, 2025
    Dataset authored and provided by
    DroomDroom
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Comprehensive Bitcoin holdings, market data, and treasury information for Bitwise 10 Crypto Index Fund (BITW)

  2. Cryptocurrency Market Sentiment & Price Data 2025

    • kaggle.com
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pratyush Puri (2025). Cryptocurrency Market Sentiment & Price Data 2025 [Dataset]. https://www.kaggle.com/datasets/pratyushpuri/crypto-market-sentiment-and-price-dataset-2025
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    Kaggle
    Authors
    Pratyush Puri
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Description

    This dataset, titled "Cryptocurrency Market Sentiment & Prediction," is a synthetic collection of real-time crypto market data designed for advanced analysis and predictive modeling. It captures a comprehensive range of features including price movements, social sentiment, news impact, and trading patterns for 10 major cryptocurrencies. Tailored for data scientists and analysts, this dataset is ideal for exploring market volatility, sentiment analysis, and price prediction, particularly in the context of significant events like the Bitcoin halving in 2024 and increasing institutional adoption.

    Key Features Overview: - Price Movements: Tracks current prices and 24-hour price change percentages to reflect market dynamics. - Social Sentiment: Measures sentiment scores from social media platforms, ranging from -1 (negative) to 1 (positive), to gauge public perception. - News Sentiment and Impact: Evaluates sentiment from news sources and quantifies their potential impact on market behavior. - Trading Patterns: Includes data on 24-hour trading volumes and market capitalization, crucial for understanding market activity. - Technical Indicators: Features metrics like the Relative Strength Index (RSI), volatility index, and fear/greed index for in-depth technical analysis. - Prediction Confidence: Provides a confidence score for predictive models, aiding in assessing forecast reliability.

    Purpose and Applications: - Perfect for machine learning tasks such as price prediction, sentiment-price correlation studies, and volatility classification. - Supports time series analysis for forecasting price movements and identifying volatility clusters. - Valuable for research into the influence of social media and news on cryptocurrency markets, especially during high-impact events.

    Dataset Scope: - Covers a simulated 30-day period, offering a snapshot of market behavior under varying conditions. - Focuses on major cryptocurrencies including Bitcoin, Ethereum, Cardano, Solana, and others, ensuring relevance to current market trends.

    Dataset Structure Table:

    Column NameDescriptionData TypeRange/Value Example
    timestampDate and time of data recorddatetimeLast 30 days (e.g., 2025-06-04 20:36:49)
    cryptocurrencyName of the cryptocurrencystring10 major cryptos (e.g., Bitcoin)
    current_price_usdCurrent trading price in USDfloatMarket-realistic (e.g., 47418.4096)
    price_change_24h_percent24-hour price change percentagefloat-25% to +27% (e.g., 1.05)
    trading_volume_24h24-hour trading volumefloatVariable (e.g., 1800434.38)
    market_cap_usdMarket capitalization in USDfloatCalculated (e.g., 343755257516049.1)
    social_sentiment_scoreSentiment score from social mediafloat-1 to 1 (e.g., -0.728)
    news_sentiment_scoreSentiment score from news sourcesfloat-1 to 1 (e.g., -0.274)
    news_impact_scoreQuantified impact of news on marketfloat0 to 10 (e.g., 2.73)
    social_mentions_countNumber of mentions on social mediaintegerVariable (e.g., 707)
    fear_greed_indexMarket fear and greed indexfloat0 to 100 (e.g., 35.3)
    volatility_indexPrice volatility indexfloat0 to 100 (e.g., 36.0)
    rsi_technical_indicatorRelative Strength Indexfloat0 to 100 (e.g., 58.3)
    prediction_confidenceConfidence level of predictive modelsfloat0 to 100 (e.g., 88.7)

    Dataset Statistics Table:

    StatisticValue
    Total Rows2,063
    Total Columns14
    Cryptocurrencies10 major tokens
    Time RangeLast 30 days
    File FormatCSV
    Data QualityRealistic correlations between features

    This dataset is a powerful resource for machine learning projects, sentiment analysis, and crypto market research, providing a robust foundation for AI/ML model development and testing.

  3. Weekly market cap of all cryptocurrencies combined up to July 2025

    • statista.com
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Weekly market cap of all cryptocurrencies combined up to July 2025 [Dataset]. https://www.statista.com/statistics/730876/cryptocurrency-maket-value/
    Explore at:
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2025
    Area covered
    Worldwide
    Description

    It is estimated that the cumulative market cap of cryptocurrencies increased in early 2023 after the downfall in November 2022 due to FTX. That value declined in the summer of 2023, however, as international uncertainty grew over a potential recession. Bitcoin's market cap comprised the majority of the overall market capitalization. What is market cap? Market capitalization is a financial measure typically used for publicly traded firms, computed by multiplying the share price by the number of outstanding shares. However, cryptocurrency analysts calculate it as the price of the virtual currencies times the number of coins in the market. This gives cryptocurrency investors an idea of the overall market size, and watching the evolution of the measure tells how much money is flowing in or out of each cryptocurrency. Cryptocurrency as an investment The price of Bitcoin has been erratic, and most other cryptocurrencies follow its larger price swings. This volatility attracts investors who hope to buy when the price is low and sell at its peak, turning a profit. However, this does little for price stability. As such, few firms accept payment in cryptocurrencies. As of June 25, 2025, the cumulative market cap of cryptocurrencies reached a value of ******.

  4. A

    ‘Crypto Fear and Greed Index’ analyzed by Analyst-2

    • analyst-2.ai
    Updated May 28, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Crypto Fear and Greed Index’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-crypto-fear-and-greed-index-e01d/63c3ed46/?iid=001-519&v=presentation
    Explore at:
    Dataset updated
    May 28, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Crypto Fear and Greed Index’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/adelsondias/crypto-fear-and-greed-index on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    Crypto Fear and Greed Index

    Each day, the website https://alternative.me/crypto/fear-and-greed-index/ publishes this index based on analysis of emotions and sentiments from different sources crunched into one simple number: The Fear & Greed Index for Bitcoin and other large cryptocurrencies.

    Why Measure Fear and Greed?

    The crypto market behaviour is very emotional. People tend to get greedy when the market is rising which results in FOMO (Fear of missing out). Also, people often sell their coins in irrational reaction of seeing red numbers. With our Fear and Greed Index, we try to save you from your own emotional overreactions. There are two simple assumptions:

    • Extreme fear can be a sign that investors are too worried. That could be a buying opportunity.
    • When Investors are getting too greedy, that means the market is due for a correction.

    Therefore, we analyze the current sentiment of the Bitcoin market and crunch the numbers into a simple meter from 0 to 100. Zero means "Extreme Fear", while 100 means "Extreme Greed". See below for further information on our data sources.

    Data Sources

    We are gathering data from the five following sources. Each data point is valued the same as the day before in order to visualize a meaningful progress in sentiment change of the crypto market.

    First of all, the current index is for bitcoin only (we offer separate indices for large alt coins soon), because a big part of it is the volatility of the coin price.

    But let’s list all the different factors we’re including in the current index:

    Volatility (25 %)

    We’re measuring the current volatility and max. drawdowns of bitcoin and compare it with the corresponding average values of the last 30 days and 90 days. We argue that an unusual rise in volatility is a sign of a fearful market.

    Market Momentum/Volume (25%)

    Also, we’re measuring the current volume and market momentum (again in comparison with the last 30/90 day average values) and put those two values together. Generally, when we see high buying volumes in a positive market on a daily basis, we conclude that the market acts overly greedy / too bullish.

    Social Media (15%)

    While our reddit sentiment analysis is still not in the live index (we’re still experimenting some market-related key words in the text processing algorithm), our twitter analysis is running. There, we gather and count posts on various hashtags for each coin (publicly, we show only those for Bitcoin) and check how fast and how many interactions they receive in certain time frames). A unusual high interaction rate results in a grown public interest in the coin and in our eyes, corresponds to a greedy market behaviour.

    Surveys (15%) currently paused

    Together with strawpoll.com (disclaimer: we own this site, too), quite a large public polling platform, we’re conducting weekly crypto polls and ask people how they see the market. Usually, we’re seeing 2,000 - 3,000 votes on each poll, so we do get a picture of the sentiment of a group of crypto investors. We don’t give those results too much attention, but it was quite useful in the beginning of our studies. You can see some recent results here.

    Dominance (10%)

    The dominance of a coin resembles the market cap share of the whole crypto market. Especially for Bitcoin, we think that a rise in Bitcoin dominance is caused by a fear of (and thus a reduction of) too speculative alt-coin investments, since Bitcoin is becoming more and more the safe haven of crypto. On the other side, when Bitcoin dominance shrinks, people are getting more greedy by investing in more risky alt-coins, dreaming of their chance in next big bull run. Anyhow, analyzing the dominance for a coin other than Bitcoin, you could argue the other way round, since more interest in an alt-coin may conclude a bullish/greedy behaviour for that specific coin.

    Trends (10%)

    We pull Google Trends data for various Bitcoin related search queries and crunch those numbers, especially the change of search volumes as well as recommended other currently popular searches. For example, if you check Google Trends for "Bitcoin", you can’t get much information from the search volume. But currently, you can see that there is currently a +1,550% rise of the query „bitcoin price manipulation“ in the box of related search queries (as of 05/29/2018). This is clearly a sign of fear in the market, and we use that for our index.

    There's a story behind every dataset and here's your opportunity to share yours.

    Copyright disclaimer

    This dataset is produced and maintained by the administrators of https://alternative.me/crypto/fear-and-greed-index/.

    This published version is an unofficial copy of their data, which can be also collected using their API (e.g., GET https://api.alternative.me/fng/?limit=10&format=csv&date_format=us).

    --- Original source retains full ownership of the source dataset ---

  5. Is the S&P Bitcoin Index the Future of Crypto Investment? (Forecast)

    • kappasignal.com
    Updated Oct 29, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the S&P Bitcoin Index the Future of Crypto Investment? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/is-s-bitcoin-index-future-of-crypto.html
    Explore at:
    Dataset updated
    Oct 29, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the S&P Bitcoin Index the Future of Crypto Investment?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. Bitcoin BTC/USD price history up to Jul 30, 2025

    • statista.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Bitcoin BTC/USD price history up to Jul 30, 2025 [Dataset]. https://www.statista.com/statistics/326707/bitcoin-price-index/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 8, 2020 - Jul 30, 2025
    Area covered
    Worldwide
    Description

    The Bitcoin (BTC) price again reached an all-time high in 2025, as values exceeded over 117,853.31 USD on July 30, 2025. Price hikes in early 2025 were connected to the approval of Bitcoin ETFs in the United States, while previous hikes in 2021 were due to events involving Tesla and Coinbase, respectively. Tesla's announcement in March 2021 that it had acquired 1.5 billion U.S. dollars' worth of the digital coin, for example, as well as the IPO of the U.S.'s biggest crypto exchange, fueled mass interest. The market was noticeably different by the end of 2022, however, after another crypto exchange, FTX, filed for bankruptcy.Is the world running out of Bitcoin?Unlike fiat currency like the U.S. dollar - as the Federal Reserve can simply decide to print more banknotes - Bitcoin's supply is finite: BTC has a maximum supply embedded in its design, of which roughly 89 percent had been reached in April 2021. It is believed that Bitcoin will run out by 2040, despite more powerful mining equipment. This is because mining becomes exponentially more difficult and power-hungry every four years, a part of Bitcoin's original design. Because of this, a Bitcoin mining transaction could equal the energy consumption of a small country in 2021.Bitcoin's price outlook: a potential bubble?Cryptocurrencies have few metrics available that allow for forecasting, if only because it is rumored that only a few cryptocurrency holders own a large portion of the available supply. These large holders - referred to as 'whales'-are' said to make up two percent of anonymous ownership accounts, while owning roughly 92 percent of BTC. On top of this, most people who use cryptocurrency-related services worldwide are retail clients rather than institutional investors. This means outlooks on whether Bitcoin prices will fall or grow are difficult to measure, as movements from one large whale are already having a significant impact on this market.

  7. Will the S&P Bitcoin Index Revolutionize Cryptocurrency? (Forecast)

    • kappasignal.com
    Updated Oct 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin Index Revolutionize Cryptocurrency? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-s-bitcoin-index-revolutionize.html
    Explore at:
    Dataset updated
    Oct 10, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin Index Revolutionize Cryptocurrency?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving...

    • moneymetals.com
    csv, json, xls, xml
    Updated Sep 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Money Metals Exchange (2024). Bitcoin Price History - Dataset, Chart, 5 Years, 10 Years, by Month, Halving [Dataset]. https://www.moneymetals.com/bitcoin-price
    Explore at:
    json, xml, csv, xlsAvailable download formats
    Dataset updated
    Sep 12, 2024
    Dataset provided by
    Money Metals
    Authors
    Money Metals Exchange
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 2009 - Sep 12, 2023
    Area covered
    World
    Measurement technique
    Tracking market benchmarks and trends
    Description

    In March 2024 Bitcoin BTC reached a new all-time high with prices exceeding 73000 USD marking a milestone for the cryptocurrency market This surge was due to the approval of Bitcoin exchange-traded funds ETFs in the United States allowing investors to access Bitcoin without directly holding it This development increased Bitcoin’s credibility and brought fresh demand from institutional investors echoing previous price surges in 2021 when Tesla announced its 15 billion investment in Bitcoin and Coinbase was listed on the Nasdaq By the end of 2022 Bitcoin prices dropped sharply to 15000 USD following the collapse of cryptocurrency exchange FTX and its bankruptcy which caused a loss of confidence in the market By August 2024 Bitcoin rebounded to approximately 64178 USD but remained volatile due to inflation and interest rate hikes Unlike fiat currency like the US dollar Bitcoin’s supply is finite with 21 million coins as its maximum supply By September 2024 over 92 percent of Bitcoin had been mined Bitcoin’s value is tied to its scarcity and its mining process is regulated through halving events which cut the reward for mining every four years making it harder and more energy-intensive to mine The next halving event in 2024 will reduce the reward to 3125 BTC from its current 625 BTC The final Bitcoin is expected to be mined around 2140 The energy required to mine Bitcoin has led to criticisms about its environmental impact with estimates in 2021 suggesting that one Bitcoin transaction used as much energy as Argentina Bitcoin’s future price is difficult to predict due to the influence of large holders known as whales who own about 92 percent of all Bitcoin These whales can cause dramatic market swings by making large trades and many retail investors still dominate the market While institutional interest has grown it remains a small fraction compared to retail Bitcoin is vulnerable to external factors like regulatory changes and economic crises leading some to believe it is in a speculative bubble However others argue that Bitcoin is still in its early stages of adoption and will grow further as more institutions and governments recognize its potential as a hedge against inflation and a store of value 2024 has also seen the rise of Bitcoin Layer 2 technologies like the Lightning Network which improve scalability by enabling faster and cheaper transactions These innovations are crucial for Bitcoin’s wider adoption especially for day-to-day use and cross-border remittances At the same time central bank digital currencies CBDCs are gaining traction as several governments including China and the European Union have accelerated the development of their own state-controlled digital currencies while Bitcoin remains decentralized offering financial sovereignty for those who prefer independence from government control The rise of CBDCs is expected to increase interest in Bitcoin as a hedge against these centralized currencies Bitcoin’s journey in 2024 highlights its growing institutional acceptance alongside its inherent market volatility While the approval of Bitcoin ETFs has significantly boosted interest the market remains sensitive to events like exchange collapses and regulatory decisions With the limited supply of Bitcoin and improvements in its transaction efficiency it is expected to remain a key player in the financial world for years to come Whether Bitcoin is currently in a speculative bubble or on a sustainable path to greater adoption will ultimately be revealed over time.

  9. Estimate of monthly number of crypto users worldwide 2016-2024, with 2025...

    • statista.com
    • ai-chatbox.pro
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Estimate of monthly number of crypto users worldwide 2016-2024, with 2025 forecast [Dataset]. https://www.statista.com/statistics/1202503/global-cryptocurrency-user-base/
    Explore at:
    Dataset updated
    Jan 13, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Dec 2024
    Area covered
    Worldwide
    Description

    The global user base of cryptocurrencies increased by nearly *** percent between 2018 and 2020, only to accelerate further in 2022. This is according to calculations from various sources, based on information from trading platforms and on-chain wallets. Increasing demographics might initially be attributed to a rise in the number of accounts and improvements in identification. In 2021, however, crypto adoption continued as companies like Tesla and Mastercard announced their interest in cryptocurrency. Consumers in Africa, Asia, and South America were most likely to be owners of cryptocurrencies, such as Bitcoin, in 2022. How many of these users have Bitcoin? User figures for individual cryptocurrencies are unavailable. Bitcoin, for instance, was created not to be tracked by banks and governments. What comes closest is the trading volume of Bitcoin against domestic fiat currencies. The source assumed, however, that UK residents were the most likely to make Bitcoin transactions with British pounds. This assumption might not be accurate for popular fiat currencies worldwide. Moreover, coins such as Tether or Binance Coin - referred to as "stablecoins"—are" often used to buy and sell Bitcoin. Those coins were not included in that particular statistic. Wallet usage declined Total crypto wallet downloads were significantly lower in 2022 than in 2021. The number of downloads of Coinbase, Blockchain.com, and MetaMask, among others, declined as the market hit a "crypto winter" over the year. The crypto market also suffered bad press when FTX, one of the largest crypto exchanges based on market share, collapsed in November 2022. Binance, on the other hand, regained some of the market share it had lost between September and October 2022, growing by *** percentage points in November. As of 2025, the highest forecast for the global user base of cryptocurrencies is projected to reach *** million.

  10. Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    cryptodata.center (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    Dataset provided by
    CryptoDATA
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  11. Dogecoin DOGE/USD price history up to Jul 30, 2025

    • statista.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Dogecoin DOGE/USD price history up to Jul 30, 2025 [Dataset]. https://www.statista.com/statistics/1200235/dogecoin-price-index/
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Feb 8, 2020 - Jul 30, 2025
    Area covered
    Worldwide
    Description

    The price of the cryptocurrency based on the famous internet meme broke its price decline in early November 2022, as people started buying the coin after FTX's collapse. This rally only lasted for a few days, however, as a Dogecoin was worth roughly 0.22 U.S. dollars on July 30, 2025. This is a different development than in 2021, when the crypto became very popular in a short amount of time. Between January 28 and January 29, 2021, Dogecoin's value grew by around 216 percent to 0.023535 U.S. dollars after comments from Tesla CEO Elon Musk. The digital coin quickly grew to become the most talked-about cryptocurrency available, not necessarily for its price - the prices of Bitcoin (BTC), Ethereum (ETH), Ripple (XRP), and several other virtual currencies were much higher than those of DOGE - but for its growth.

  12. Annual crypto adoption development in Colombia 2020-2024, by metric

    • statista.com
    Updated Jul 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Annual crypto adoption development in Colombia 2020-2024, by metric [Dataset]. https://www.statista.com/statistics/1362841/cryptocurrency-adoption-index-colombia/
    Explore at:
    Dataset updated
    Jul 3, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jul 2020 - Jun 2024
    Area covered
    Colombia
    Description

    Colombia's ranking in the world in terms of crypto adoption based on transaction volume declined, as the country **********************. This is according to estimates based on web traffic toward individual websites that are used to perform cryptocurrency transactions. The main area of use for crypto in Colombia is P2P exchanges. The South American country receives millions worth of remittances each year, much like Argentina.

  13. Colony Avalanche Index Price Prediction for 2025-08-10

    • coinunited.io
    Updated Jul 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinUnited.io (2025). Colony Avalanche Index Price Prediction for 2025-08-10 [Dataset]. https://coinunited.io/en/data/prices/crypto/colony-avalanche-index-cai/price-prediction
    Explore at:
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    CoinUnited.io
    Description

    Based on professional technical analysis and AI models, deliver precise price‑prediction data for Colony Avalanche Index on 2025-08-10. Includes multi‑scenario analysis (bullish, baseline, bearish), risk assessment, technical‑indicator insights and market‑trend forecasts to help investors make informed trading decisions and craft sound investment strategies.

  14. Annual crypto adoption development in the U.S. 2020-2024, by metric

    • ai-chatbox.pro
    • statista.com
    Updated Jul 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Raynor de Best (2024). Annual crypto adoption development in the U.S. 2020-2024, by metric [Dataset]. https://www.ai-chatbox.pro/?_=%2Ftopics%2F12515%2Ffintech-in-the-us%2F%23XgboD02vawLYpGJjSPEePEUG%2FVFd%2Bik%3D
    Explore at:
    Dataset updated
    Jul 2, 2024
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Raynor de Best
    Area covered
    United States
    Description

    Between 2020 and 2023, a country ranking that estimates crypto adoption based on transaction volume consistently placed the U.S. in the top 10 of the world. The figure for 2022, especially, stands out as it broke a declining trend in 2021 and was likely caused by the change of the methodology to now include Decentralized Finance (DeFi) in the index. For example, the United States ranked second in the world when it comes to on-chain retail value received from DeFi protocols - or consumers who were buying certain DeFi protocols. This may refer to the growing use of OpenSea and other Web3 wallets within the U.S. particularly in the first months of 2022.

  15. Is the S&P Bitcoin Index the Future of Digital Asset Valuation? (Forecast)

    • kappasignal.com
    Updated Oct 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Is the S&P Bitcoin Index the Future of Digital Asset Valuation? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/is-s-bitcoin-index-future-of-digital_23.html
    Explore at:
    Dataset updated
    Oct 23, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Is the S&P Bitcoin Index the Future of Digital Asset Valuation?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. f

    BitcoinTemporalGraph

    • figshare.com
    bin
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hugo Schnoering; Michalis Vazirgiannis (2025). BitcoinTemporalGraph [Dataset]. http://doi.org/10.6084/m9.figshare.26305093.v3
    Explore at:
    binAvailable download formats
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    figshare
    Authors
    Hugo Schnoering; Michalis Vazirgiannis
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains several files:dataset.tar.gz: A compressed PostgreSQL database representing a graph.addresses.csv: A list of approximately 100,000 labeled Bitcoin addresses.BitcoinTemporalGraph (dataset.tar.gz)This dataset represents a graph of value transfers between Bitcoin users. The nodes represent entities/users, and the edges represent value transfers or transactions between these entities. The graph is temporal and directed.Usage:Decompress the archive: "pigz -p 10 -dc dataset.tar.gz | tar -xvf -"Restore the tables into an existing PostgreSQL database using the pg_restore utility: "pg_restore -j number_jobs -Fd -O -U database_username -d database_name dataset"Ensure substantial storage for the database: 40GB for node_features and 80GB for transaction_edges (including indexes)Dataset DescriptionThe database contains two tables: node_features (approximately 252 million rows) and transaction_edges (approximately 785 million rows).Columns for node_features table:alias: Identifier of the nodedegree: Degree of the nodedegree_in: Number of incoming edges to the nodedegree_out: Number of outgoing edges from the nodetotal_transaction_in: Total count of value transfers received by the nodetotal_transaction_out: Total count of value transfers initiated by the nodeAmounts are expressed in satoshis (1 satoshi = 10^-8 Bitcoin):min_sent: Minimum amount sent by the node during a transactionmax_sent: Maximum amount sent by the node during a transactiontotal_sent: Total amount sent by the node during all transactionsmin_received: Minimum amount received by the node during a transactionmax_received: Maximum amount received by the node during a transactiontotal_received: Total amount received by the node during all transactionslabel: Label describing the type of entity represented by the nodeTransactions on the Bitcoin network are stored in the public ledger named the "Bitcoin Blockchain". Each transaction is recorded in a block, with the block index indicating the transaction's position in the blockchain.first_transaction_in: Block index of the first transaction received by the nodelast_transaction_in: Block index of the last transaction received by the nodefirst_transaction_out: Block index of the first transaction sent by the nodelast_transaction_out: Block index of the last transaction sent by the nodeNodes can represent one or more Bitcoin addresses (pseudonyms used by Bitcoin users). A real entity often uses multiple addresses. The dataset contains only transactions between nodes (outer transactions), but provides information about inner transactions (transactions between addresses controlled by the same node).cluster_size: Number of addresses represented by the nodecluster_num_edges: Number of transactions between the addresses represented by the nodecluster_num_cc: Number of connected components in the transaction graph of the addresses represented by the nodecluster_num_nodes_in_cc: Number of non-isolated addresses in the clusterColumns in the transaction_edges table:a: Node alias of the senderb: Node alias of the recipientreveal: Block index of the first transaction from a to blast_seen: Block index of the last transaction from a to btotal: Total number of transactions from a to bmin_sent: Minimum amount sent (in satoshis) in a transaction from a to bmax_sent: Maximum amount sent (in satoshis) in a transaction from a to btotal_sent: Total amount sent (in satoshis) in all transactions from a to bDataset of Bitcoin Labeled Addresses (addresses.csv)This file contains 103,812 labeled Bitcoin addresses with the following columns:address: Bitcoin addressentity: Name of the entitycategory: Type of the entity (e.g., individual, bet, ransomware, gambling, exchange, mining, ponzi, marketplace, faucet, bridge, mixer)source: Source used to label the address

  17. Will the S&P Bitcoin Index Ignite the Next Bull Run? (Forecast)

    • kappasignal.com
    Updated Oct 14, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Bitcoin Index Ignite the Next Bull Run? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-s-bitcoin-index-ignite-next-bull.html
    Explore at:
    Dataset updated
    Oct 14, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Bitcoin Index Ignite the Next Bull Run?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. Will the S&P Ethereum Index Spark Wider Adoption? (Forecast)

    • kappasignal.com
    Updated Oct 27, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Ethereum Index Spark Wider Adoption? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-s-ethereum-index-spark-wider.html
    Explore at:
    Dataset updated
    Oct 27, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Ethereum Index Spark Wider Adoption?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. Will the S&P Ethereum Index Usher in a New Era? (Forecast)

    • kappasignal.com
    Updated Oct 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). Will the S&P Ethereum Index Usher in a New Era? (Forecast) [Dataset]. https://www.kappasignal.com/2024/10/will-s-ethereum-index-usher-in-new-era.html
    Explore at:
    Dataset updated
    Oct 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Will the S&P Ethereum Index Usher in a New Era?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  20. c

    2025-08-10 DeFi Pulse Index 价格预测

    • coinunited.io
    Updated Aug 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CoinUnited.io (2025). 2025-08-10 DeFi Pulse Index 价格预测 [Dataset]. https://coinunited.io/cn/data/prices/crypto/defipulse-index-dpi/price-prediction
    Explore at:
    Dataset updated
    Aug 2, 2025
    Dataset provided by
    CoinUnited.io
    Description

    基于专业技术分析与 AI 模型,精准预测 DeFi Pulse Index 在 2025-08-10 的价格走势。涵盖多种情境分析(看涨、基准、看跌)、风险评估、技术指标洞察及市场趋势预测,助力投资者制定明智交易决策与稳健投资策略。

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
DroomDroom (2025). Bitwise 10 Crypto Index Fund Bitcoin Treasury Dataset [Dataset]. https://droomdroom.com/bitcoin-treasury-tracker/bitwise-10-crypto-index-fund

Bitwise 10 Crypto Index Fund Bitcoin Treasury Dataset

Explore at:
jsonAvailable download formats
Dataset updated
Jul 18, 2025
Dataset authored and provided by
DroomDroom
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Comprehensive Bitcoin holdings, market data, and treasury information for Bitwise 10 Crypto Index Fund (BITW)

Search
Clear search
Close search
Google apps
Main menu