100+ datasets found
  1. c

    Integrated Cryptocurrency Historical Data for a Predictive Data-Driven...

    • cryptodata.center
    Updated Dec 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm
    Explore at:
    Dataset updated
    Dec 4, 2024
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

  2. d

    Finage Real-Time & Historical Cryptocurrency Market Feed - Global...

    • datarade.ai
    Updated Nov 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Finage (2022). Finage Real-Time & Historical Cryptocurrency Market Feed - Global Cryptocurrency Data [Dataset]. https://datarade.ai/data-products/real-time-historical-cryptocurrency-market-feed-finage
    Explore at:
    Dataset updated
    Nov 1, 2022
    Dataset authored and provided by
    Finage
    Area covered
    Turkey, Sweden, Albania, Switzerland, Paraguay, France, South Africa, Korea (Democratic People's Republic of), Macao, Mayotte
    Description

    Cryptocurrencies

    Finage offers you more than 1700+ cryptocurrency data in real time.

    With Finage, you can react to the cryptocurrency data in Real-Time via WebSocket or unlimited API calls. Also, we offer you a 7-year historical data API.

    You can view the full Cryptocurrency market coverage with the link given below. https://finage.s3.eu-west-2.amazonaws.com/Finage_Crypto_Coverage.pdf

  3. Crypto Data Hourly Price since 2017 to 2023-10

    • kaggle.com
    zip
    Updated Oct 21, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    fgjspaceman (2023). Crypto Data Hourly Price since 2017 to 2023-10 [Dataset]. https://www.kaggle.com/datasets/franoisgeorgesjulien/crypto
    Explore at:
    zip(83694534 bytes)Available download formats
    Dataset updated
    Oct 21, 2023
    Authors
    fgjspaceman
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Find my notebook : Advanced EDA & Data Wrangling - Crypto Market Data where I cover the full EDA and advanced data wrangling to get beautiful dataset ready for analysis.

    Find my Deep Reinforcement Learning v1 notebook: "https://www.kaggle.com/code/franoisgeorgesjulien/deep-reinforcement-learning-for-trading">Deep Reinforcement Learning for Trading

    Find my Quant Analysis notebook:"https://www.kaggle.com/code/franoisgeorgesjulien/quant-analysis-visualization-btc-v1">💎 Quant Analysis & Visualization | BTC V1


    Dataset Presentation:

    This dataset provides a comprehensive collection of hourly price data for 34 major cryptocurrencies, covering a time span from January 2017 to the present day. The dataset includes Open, High, Low, Close, Volume (OHLCV), and the number of trades for each cryptocurrency for each hour (row).

    Making it a valuable resource for cryptocurrency market analysis, research, and trading strategies. Whether you are interested in historical trends or real-time market dynamics, this dataset offers insights into the price movements of a diverse range of cryptocurrencies.

    This is a pure gold mine, for all kind of analysis and predictive models. The granularity of the dataset offers a wide range of possibilities. Have Fun!

    Ready to Use - Cleaned and arranged dataset less than 0.015% of missing data hour: crypto_data.csv

    First Draft - Before External Sources Merge (to cover missing data points): crypto_force.csv

    Original dataset merged from all individual token datasets: cryptotoken_full.csv


    crypto_data.csv & cryptotoken_full.csv highly challenging wrangling situations: - fix 'Date' formats and inconsistencies - find missing hours and isolate them for each token - import external data source containing targeted missing hours and merge dataframes to fill missing rows

    see notebook 'Advanced EDA & Data Wrangling - Crypto Market Data' to follow along and have a look at the EDA, wrangling and cleaning process.


    Date Range: From 2017-08-17 04:00:00 to 2023-10-19 23:00:00

    Date Format: YYYY-MM-DD HH-MM-SS (raw data to be converted to datetime)

    Data Source: Binance API (some missing rows filled using Kraken & Poloniex market data)

    Crypto Token in the dataset (also available as independent dataset): - 1INCH - AAVE - ADA (Cardano) - ALGO (Algorand) - ATOM (Cosmos) - AVAX (Avalanche) - BAL (Balancer) - BCH (Bitcoin Cash) - BNB (Binance Coin) - BTC (Bitcoin) - COMP (Compound) - CRV (Curve DAO Token) - DENT - DOGE (Dogecoin) - DOT (Polkadot) - DYDX - ETC (Ethereum Classic) - ETH (Ethereum) - FIL (Filecoin) - HBAR (Hedera Hashgraph) - ICP (Internet Computer) - LINK (Chainlink) - LTC (Litecoin) - MATIC (Polygon) - MKR (Maker) - RVN (Ravencoin) - SHIB (Shiba Inu) - SOL (Solana) - SUSHI (SushiSwap) - TRX (Tron) - UNI (Uniswap) - VET (VeChain) - XLM (Stellar) - XMR (Monero)


    Date column presents some inconsistencies that need to be cleaned before formatting to datetime: - For column 'Symbol' and 'ETCUSDT' = '23-07-27': it is missing all hours (no data, no hourly rows for this day). I fixed it by using the only one row available for that day and duplicated the values for each hour. Can be fixed using this code:

    start_timestamp = pd.Timestamp('2023-07-27 00:00:00')
    end_timestamp = pd.Timestamp('2023-07-27 23:00:00')
    
    hourly_timestamps = pd.date_range(start=start_timestamp, end=end_timestamp, freq='H')
    
    hourly_data = {
      'Date': hourly_timestamps,
      'Symbol': 'ETCUSDT',
      'Open': 18.29,
      'High': 18.3,
      'Low': 18.17,
      'Close': 18.22,
      'Volume USDT': 127468,
      'tradecount': 623,
      'Token': 'ETC'
    }
    
    hourly_df = pd.DataFrame(hourly_data)
    df = pd.concat([df, hourly_df], ignore_index=True)
    
    df = df.drop(550341)
    
    • Some rows for 'Date' have extra digits '.000' '.874' etc.. instead of the right format YYYY-MM-DD HH-MM-SS. To clean it you can use the following code:
    # Count the occurrences of the pattern '.xxx' in the 'Date' column
    count_occurrences_before = df['Date'].str.count(r'\.\d{3}')
    print("Occurrences before cleaning:", count_occurrences_before.sum()) 
    
    # Remove '.xxx' pattern from the 'Date' column
    df['Date'] = df['Date'].str.replace(r'\.\d{3}', '', regex=True)
    
    # Count the occurrences of the pattern '.xxx' in the 'Date' column after cleaning
    count_occurrences_after = df['Date'].str.count(r'\.\d{3}')
    print("Occurrences after cleaning:", count_occurrences_after.sum()) 
    

    **Disclaimer: Any individual or entity choosing to engage in market analysis, develop predictive models, or utilize data for trading purposes must do so at their own discretion and risk. It is important to understand that trading involves potential financial loss, and decisions made in the financial mar...

  4. T

    Crypto APIs Market Trends - Growth, Demand & Outlook 2025 to 2035

    • futuremarketinsights.com
    html, pdf
    Updated Mar 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sudip Saha (2025). Crypto APIs Market Trends - Growth, Demand & Outlook 2025 to 2035 [Dataset]. https://www.futuremarketinsights.com/reports/crypto-apis-market
    Explore at:
    html, pdfAvailable download formats
    Dataset updated
    Mar 20, 2025
    Authors
    Sudip Saha
    License

    https://www.futuremarketinsights.com/privacy-policyhttps://www.futuremarketinsights.com/privacy-policy

    Time period covered
    2025 - 2035
    Area covered
    Worldwide
    Description

    The market is projected to reach USD 1,074 Million in 2025 and is expected to grow to USD 7,975.7 Million by 2035, registering a CAGR of 22.2% over the forecast period. The expansion of Web3 infrastructure, advancements in multi-chain API solutions, and increasing demand for secure and scalable blockchain integrations are fueling market expansion. Additionally, rising adoption of tokenization, cross-chain interoperability, and API-driven NFT marketplaces is shaping the industry's future.

    MetricValue
    Market Size (2025E)USD 1,074 Million
    Market Value (2035F)USD 7,975.7 Million
    CAGR (2025 to 2035)22.2%

    Country-wise Insights

    CountryCAGR (2025 to 2035)
    USA22.5%
    CountryCAGR (2025 to 2035)
    UK21.8%
    RegionCAGR (2025 to 2035)
    European Union (EU)22.2%
    CountryCAGR (2025 to 2035)
    Japan22.4%
    CountryCAGR (2025 to 2035)
    South Korea22.7%

    Competitive Outlook

    Company NameEstimated Market Share (%)
    Coinbase Cloud18-22%
    Binance API12-16%
    Chainalysis10-14%
    Alchemy8-12%
    CryptoAPIs6-10%
    Other Companies (combined)30-40%
  5. Real-Time Cryptocurrency Prices Dataset

    • kaggle.com
    zip
    Updated Nov 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HimanshuSsharma (2025). Real-Time Cryptocurrency Prices Dataset [Dataset]. https://www.kaggle.com/datasets/himanshussharma/real-time-cryptocurrency-prices-dataset
    Explore at:
    zip(5417 bytes)Available download formats
    Dataset updated
    Nov 18, 2025
    Authors
    HimanshuSsharma
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    Real-Time Cryptocurrency Prices Dataset (Top 200 Coins)

    This dataset contains real-time cryptocurrency market data fetched from the Crypto News Mini API (via RapidAPI). The dataset includes detailed price and market information for the top cryptocurrencies, ranked by market capitalization. Each row represents one cryptocurrency with the following attributes:

    Features

    rank – Global market cap ranking symbol – Trading symbol (e.g., BTC, ETH, SOL) name – Full coin name slug – API-friendly unique identifier id – Internal API ID price – Current price in USD image – Logo image URL market_cap – Total market capitalization in USD change_24h_percent – 24-hour price movement (%)

    How This Dataset Was Collected :-

    Source: Crypto-News51 Mini Crypto Prices API API Provider: RapidAPI Base Currency: USD Page Size: 20 coins per request Pages scraped: multiple (up to 200 coins total)

  6. Top 10 Cryptocurrency Price Data

    • kaggle.com
    zip
    Updated Jun 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Huthayfa Hodeb (2024). Top 10 Cryptocurrency Price Data [Dataset]. https://www.kaggle.com/datasets/huthayfahodeb/top-10-cryptocurrency-price-data
    Explore at:
    zip(900300 bytes)Available download formats
    Dataset updated
    Jun 29, 2024
    Authors
    Huthayfa Hodeb
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    This Dataset contains historical price data for 10 cryptocurrencies spanning from 2021 to 2024, in three different time frames: 1 day, 4 hours, and 1 hour. The data is sourced from the Binance API and stored in CSV (Comma Separated Values) format for easy accessibility and analysis.

    Usage

    You can use this data for various purposes such as backtesting trading strategies, conducting statistical analysis, or building predictive models related to cryptocurrency markets.

    Note

    • All timestamps are in UTC timezone.
    • Prices are quoted in USDT (Tether).
  7. Z

    Data from: Securing Your Crypto-API Usage Through Tool Support - A Usability...

    • data-staging.niaid.nih.gov
    • data.niaid.nih.gov
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KrĂźger, Stefan; Reif, Michael; Wickert, Anna-Katharina; Sarah Nadi; Karim Ali; Eric Bodden; Yasemin Acar; Sascha Fahl (2024). Securing Your Crypto-API Usage Through Tool Support - A Usability Study [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_8325252
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    University of Alberta
    Independent
    University of Paderborn
    Technische Universität Darmstadt
    CISPA Helmholtz-Center for Information Security
    Authors
    KrĂźger, Stefan; Reif, Michael; Wickert, Anna-Katharina; Sarah Nadi; Karim Ali; Eric Bodden; Yasemin Acar; Sascha Fahl
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Developing secure software is essential for protecting passwords and other sensitive data. Despite the abundance of cryptographic libraries available to developers, prior work has shown that developers often unknowingly misuse the provided Application Programming Interfaces (APIs), resulting in serious security vulnerabilities. Eclipse CogniCrypt is an IDE plugin that aims at helping developers use cryptographic APIs more easily and securely by providing three main functionalities: (1) it provides a use-case oriented view of cryptographic APIs and guides the developer through their configuration, (2) it generates the code needed to accomplish the chosen use case based on the selected choices, and (3) it continuously analyzes the developer’s code to ensure that no API misuses are introduced later. However, so far the effectiveness of CogniCrypt was never empirically evaluated. In this work, we fill this gap through a controlled experiment with 24 Java developers. We evaluate the tool’s effectiveness in reducing API misuses and saving developer time. The results show that CogniCrypt significantly improves code security and also speeds up development for cryptograph-related tasks. The feedback received during the study suggests that developers particularly appreciate CogniCrypt’s code generation. Its static-analysis is valued for keeping the code up-to-date. Yet, the further integration of generated code into a developer’s project still presents a major challenge. Nonetheless, our results show that CogniCrypt effectively helps application developers produce more secure code.

  8. D

    Crypto Data Platform Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Crypto Data Platform Market Research Report 2033 [Dataset]. https://dataintelo.com/report/crypto-data-platform-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Crypto Data Platform Market Outlook




    According to our latest research, the global Crypto Data Platform market size reached USD 1.85 billion in 2024, reflecting robust adoption across institutional and retail segments. The market is expected to expand at a CAGR of 18.2% during the forecast period, with revenues projected to reach USD 9.25 billion by 2033. This growth is primarily fueled by the increasing demand for real-time data analytics, advanced trading solutions, and regulatory compliance tools in the rapidly evolving cryptocurrency industry. The surge in digital asset adoption, coupled with heightened institutional participation and technological advancements, is driving the need for comprehensive, scalable, and secure crypto data platforms worldwide.




    A significant growth factor for the Crypto Data Platform market is the exponential rise in crypto trading volumes and the proliferation of digital assets. As institutional investors, hedge funds, and family offices continue to increase their exposure to cryptocurrencies, the requirement for accurate, timely, and actionable data has become paramount. Crypto data platforms are now pivotal in providing market participants with historical and real-time price feeds, blockchain analytics, on-chain indicators, and sentiment analysis. These platforms also enable seamless integration with trading systems and portfolio management tools, empowering users to make informed investment decisions. The ongoing innovation in decentralized finance (DeFi) and the emergence of new digital asset classes further intensify the demand for robust data solutions, positioning crypto data platforms as a critical infrastructure layer in the digital economy.




    Another key driver is the growing emphasis on regulatory compliance and risk management across the crypto ecosystem. As governments and regulatory bodies worldwide introduce stricter frameworks for anti-money laundering (AML), know-your-customer (KYC), and market surveillance, enterprises and exchanges are increasingly leveraging crypto data platforms to ensure adherence to these mandates. These platforms offer advanced compliance modules, transaction monitoring, and risk analytics, enabling stakeholders to mitigate operational and reputational risks. The integration of artificial intelligence (AI) and machine learning (ML) into these solutions further enhances their capability to detect anomalies, prevent fraud, and deliver predictive insights, thereby fostering trust and transparency in the market.




    The rapid advancement in cloud computing, API-driven architectures, and interoperability standards is also propelling the Crypto Data Platform market forward. As digital asset markets operate around the clock and across geographies, there is a pressing need for scalable, resilient, and highly available data infrastructure. Cloud-based deployment models facilitate seamless access to vast datasets, while API integrations enable real-time connectivity with trading platforms, wallets, and external data sources. This technological evolution is enabling both established financial institutions and emerging fintech startups to harness the power of crypto data without significant upfront investments in hardware or IT resources. As a result, the market is witnessing accelerated product innovation, ecosystem collaboration, and the entry of new players offering specialized data services.




    Regionally, North America continues to dominate the Crypto Data Platform market, accounting for the largest revenue share in 2024. The region’s leadership is underpinned by the presence of major crypto exchanges, institutional investors, and a mature regulatory landscape. Europe and Asia Pacific are also witnessing rapid adoption, driven by progressive regulatory initiatives, growing fintech ecosystems, and increasing retail investor participation. Latin America and the Middle East & Africa are emerging as promising markets, supported by rising digital asset adoption and government-led blockchain initiatives. However, regional disparities in regulatory clarity, technological infrastructure, and capital market maturity present both opportunities and challenges for market participants.



    Component Analysis




    The Crypto Data Platform market by component is segmented into Solutions and Services, each playing a vital role in the industry’s value chain. Solutions encompass the core software platforms that aggregate, normali

  9. l

    Forex, Crypto and Commodities

    • leeway.tech
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Forex, Crypto and Commodities [Dataset]. https://www.leeway.tech/data-api/en
    Explore at:
    Dataset updated
    Nov 19, 2025
    Description

    REST API access to thousands of currency pairs, cryptocurrencies and commodities. 100,000 requests/day - €50/month. Real-time quotes and max. available history for all cryptos, currencies and commodities!

  10. Bitcoin Price Dataset (2017-2023)

    • kaggle.com
    zip
    Updated Aug 24, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan Kraayenbrink (2023). Bitcoin Price Dataset (2017-2023) [Dataset]. https://www.kaggle.com/datasets/jkraak/bitcoin-price-dataset
    Explore at:
    zip(133085095 bytes)Available download formats
    Dataset updated
    Aug 24, 2023
    Authors
    Jonathan Kraayenbrink
    Description

    Bitcoin Historical Dataset 3M records from 2017-2023

    Context:

    Bitcoin, the pioneering cryptocurrency, has captured the world's attention as a decentralized digital asset with a fluctuating market value. This dataset offers a comprehensive record of Bitcoin's price evolution, spanning from August 2017 to July 2023. The data has been meticulously collected from the Binance API, with price data captured at one-minute intervals. Each record includes essential information such as the open, high, low, and close prices, alongside associated trading volume. This dataset provides an invaluable resource for those interested in studying Bitcoin's price trends and market dynamics.

    Dataset Details:

    Total Number of Entries: 3.126.000

    Attributes: Timestamp, Open Price, High Price, Low Price, Close Price, Volume , Quote asset volume, Number of trades, Taker buy base asset volume, Taker buy quote asset volume.

    Data Type: csv

    Size: 133 MB

    Date ranges: 2023/08/17 till 2023/07/31

    Content:

    This dataset provides granular insights into the price history of Bitcoin, allowing users to explore minute-by-minute changes in its market value. The dataset includes attributes such as the open price, high price, low price, close price, trading volume, and the timestamp of each recorded interval. The data is presented in CSV format, making it easily accessible for analysis and visualization.

    Inspiration:

    The Bitcoin Price Dataset opens up numerous avenues for exploration and analysis, driven by the availability of high-frequency data. Potential research directions include:

    Intraday Price Patterns: How do Bitcoin prices vary within a single day? Are there recurring patterns or trends during specific hours? Volatility Analysis: What are the periods of heightened volatility in Bitcoin's price history, and how do they correlate with external events or market developments? Correlation with Events: Can you identify instances where significant price movements coincide with notable events in the cryptocurrency space or broader financial markets? Long-Term Trends: How has the average price of Bitcoin evolved over different years? Are there multi-year trends that stand out? Trading Volume Impact: Is there a relationship between trading volume and price movement? How does trading activity affect short-term price fluctuations?

    Acknowledgements:

    The dataset has been sourced directly from the Binance API, a prominent cryptocurrency exchange platform. The collaboration with Binance ensures the dataset's accuracy and reliability, offering users a trustworthy foundation for conducting analyses and research related to Bitcoin's price movements.

    Licensing:

    Users are welcome to utilize this dataset for personal, educational, and research purposes, with attribution to the Binance API as the source of the data.

    Hope you enjoy this dataset as much as I enjoyed putting it together. Can't wait to see what you can come up with :)

  11. l

    Forex, Crypto und Rohstoffe

    • leeway.tech
    Updated Dec 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2020). Forex, Crypto und Rohstoffe [Dataset]. https://www.leeway.tech/data-api/de
    Explore at:
    Dataset updated
    Dec 17, 2020
    Description

    REST-API Zugang zu tausenden Währungspaaren, Cryptocurrencies und Rohstoffen. 100.000 Anfragen/Tag. Realtime Kurse und max. available Historie fßr alle Cryptos, Währungen und Rohstoffe!

  12. Bitcoin Historical Prices Binance API

    • kaggle.com
    zip
    Updated Jun 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    mustafa er (2023). Bitcoin Historical Prices Binance API [Dataset]. https://www.kaggle.com/datasets/aski1140/btc-usdt-1h-binance-api
    Explore at:
    zip(1974518 bytes)Available download formats
    Dataset updated
    Jun 14, 2023
    Authors
    mustafa er
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This dataset contains information about bitcoin prices at hourly intervals. It cover between 2019-09 to 2023-05. I get this data with using Binance API. Here are the features of dataset:

    • open_time: Kline Open time in unix time format
    • open: Open Price
    • high: High Price
    • low: Low Price
    • close: Close Price
    • volume: Volume
    • close_time: Kline Close time in unix time format
    • quote_volume: Quote Asset Volume
    • count: Number of Trades
    • taker_buy_volume: Taker buy quote asset volume during this period
    • taker_buy_quote_volume: Taker buy base asset volume during this period
    • ignore : Ignore(you can drop this feature)
  13. d

    Social Pulse - real-time crypto data stream for quantitative trading

    • datarade.ai
    .json, .csv
    Updated Jul 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Contora Inc. (2023). Social Pulse - real-time crypto data stream for quantitative trading [Dataset]. https://datarade.ai/data-products/contora-s-dataset-on-cryptocurrencies-social-media-activity-contora-inc
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 12, 2023
    Dataset authored and provided by
    Contora Inc.
    Area covered
    Liechtenstein, Canada, Andorra, Finland, France, Greece, Spain, Holy See, Jersey, Bulgaria
    Description

    We monitor a number of mentions and their sentiment on Reddit, Twitter, and Telegram for the top 100 major crypto coins by liquidity.

    Designed for quants and algorithmic traders, our real-time data stream provides you with an in-depth look at the social movements around cryptocurrencies and tokens.

    Stay informed on the quantity and content of discussions, social buzz, and sentiment around any crypto/web3 project with our razor-sharp data. Social Pulse won't let you miss a beat in the fast-paced world of crypto trading.

  14. h

    CryptoCoin

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lin Xueyuan, CryptoCoin [Dataset]. https://huggingface.co/datasets/linxy/CryptoCoin
    Explore at:
    Authors
    Lin Xueyuan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Crypto Coin Historical Data (2018-2025)

    A dataset containing cryptocurrency historical price data across multiple timeframes. Designed to provide a standardized, easily accessible dataset for cryptocurrency research and algorithmic trading development. This dataset is automatically updated daily using the Binance API, ensuring that it remains current and relevant for users. Last updated on 2025-12-03 00:21:19.

      Usage
    

    from datasets import load_dataset dataset =… See the full description on the dataset page: https://huggingface.co/datasets/linxy/CryptoCoin.

  15. Data Set: Python Crypto Misuses in the Wild

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anna-Katharina Wickert; Lars Baumgärtner; Florian Breitfelder; Mira Mezini (2023). Data Set: Python Crypto Misuses in the Wild [Dataset]. http://doi.org/10.6084/m9.figshare.16499085.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Anna-Katharina Wickert; Lars Baumgärtner; Florian Breitfelder; Mira Mezini
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Study results and scripts to obtain the results for our paper "Python Crypto Misuses in the Wild" [@akwick @gh0st42 @Breitfelder @miramezini]The archives in this folder contains the following:- evaluations.tar.gz contains the evaluation folder from the GitHub project linked in References. - tools.tar.gz contains the tools folder from the GitHub project linked in References.- repos-py-with-dep-only-src-files.zip contains the source files and their dependencies of the Python projects analyzed.- repos-micropy-with-dep-only-src-files.zip contains the sources files and their depedencies of the MicroPython projects analyzed.

  16. a

    Addressable Wallet Intelligence Dataset

    • addressable.io
    json
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Addressable (2025). Addressable Wallet Intelligence Dataset [Dataset]. https://www.addressable.io/platform/api
    Explore at:
    jsonAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset authored and provided by
    Addressable
    Time period covered
    2022 - Present
    Area covered
    Global
    Variables measured
    Web Behavior, NFT Ownership, Token Holdings, Mobile Activity, Wallet Activity, DeFi Interactions, On-Chain Behavior, Social Media Activity
    Description

    Comprehensive Web3 dataset covering 927M+ active users, 1.8B+ wallets, 23M+ web2-wallet links, 82M+ dapp events, 8M+ smart contracts across 300+ blockchains

  17. m

    Comments on Telegram channels related to cryptocurrencies along with...

    • data.mendeley.com
    Updated Mar 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    kia jahanbin (2024). Comments on Telegram channels related to cryptocurrencies along with sentiments [Dataset]. http://doi.org/10.17632/3733zt5bs6.1
    Explore at:
    Dataset updated
    Mar 8, 2024
    Authors
    kia jahanbin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Through Telegram API, the authors collected this database over four months ago. These data are Telegram's comments of over eight professional Telegram channels about cryptocurrencies from December 2023 to March 2024. The theory of Behavioral economics shows that the opinions of people, especially experts, can impact the stock market trend (here, cryptocurrencies). Existing databases often cover tweets or Telegram's comments on one or more cryptocurrencies. Also, in these databases, no attention is paid to the user's expertise, and most of the data is extracted using hashtags. Failure to pay attention to the user's expertise causes the irrelevant volume to increase and the neutral polarity considerably. This database has a main table with eight columns. The columns of the main table are explained in the attached document. Researchers can use this dataset in various machine learning tasks, such as sentiment analysis and deep transfer learning with sentiment analysis. Also, this data can be used to check the impact of influencers' opinions on the cryptocurrency market trend. The use of this database is allowed by mentioning the source. Furthermore, we have added Python code to extract Telegram's comments. We used the RoBERTa pre-trained deep neural network and BiGRU deep neural network with an attention layer-based HDRB model(https://ieeexplore.ieee.org/document/10292644) for sentiment analysis.

  18. Crypto Fear and Greed Index

    • kaggle.com
    zip
    Updated Sep 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Adelson de Araujo (2022). Crypto Fear and Greed Index [Dataset]. https://www.kaggle.com/datasets/adelsondias/crypto-fear-and-greed-index
    Explore at:
    zip(6461 bytes)Available download formats
    Dataset updated
    Sep 7, 2022
    Authors
    Adelson de Araujo
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Crypto Fear and Greed Index

    Each day, the website https://alternative.me/crypto/fear-and-greed-index/ publishes this index based on analysis of emotions and sentiments from different sources crunched into one simple number: The Fear & Greed Index for Bitcoin and other large cryptocurrencies.

    Why Measure Fear and Greed?

    The crypto market behaviour is very emotional. People tend to get greedy when the market is rising which results in FOMO (Fear of missing out). Also, people often sell their coins in irrational reaction of seeing red numbers. With our Fear and Greed Index, we try to save you from your own emotional overreactions. There are two simple assumptions:

    • Extreme fear can be a sign that investors are too worried. That could be a buying opportunity.
    • When Investors are getting too greedy, that means the market is due for a correction.

    Therefore, we analyze the current sentiment of the Bitcoin market and crunch the numbers into a simple meter from 0 to 100. Zero means "Extreme Fear", while 100 means "Extreme Greed". See below for further information on our data sources.

    Data Sources

    We are gathering data from the five following sources. Each data point is valued the same as the day before in order to visualize a meaningful progress in sentiment change of the crypto market.

    First of all, the current index is for bitcoin only (we offer separate indices for large alt coins soon), because a big part of it is the volatility of the coin price.

    But let’s list all the different factors we’re including in the current index:

    Volatility (25 %)

    We’re measuring the current volatility and max. drawdowns of bitcoin and compare it with the corresponding average values of the last 30 days and 90 days. We argue that an unusual rise in volatility is a sign of a fearful market.

    Market Momentum/Volume (25%)

    Also, we’re measuring the current volume and market momentum (again in comparison with the last 30/90 day average values) and put those two values together. Generally, when we see high buying volumes in a positive market on a daily basis, we conclude that the market acts overly greedy / too bullish.

    Social Media (15%)

    While our reddit sentiment analysis is still not in the live index (we’re still experimenting some market-related key words in the text processing algorithm), our twitter analysis is running. There, we gather and count posts on various hashtags for each coin (publicly, we show only those for Bitcoin) and check how fast and how many interactions they receive in certain time frames). A unusual high interaction rate results in a grown public interest in the coin and in our eyes, corresponds to a greedy market behaviour.

    Surveys (15%) currently paused

    Together with strawpoll.com (disclaimer: we own this site, too), quite a large public polling platform, we’re conducting weekly crypto polls and ask people how they see the market. Usually, we’re seeing 2,000 - 3,000 votes on each poll, so we do get a picture of the sentiment of a group of crypto investors. We don’t give those results too much attention, but it was quite useful in the beginning of our studies. You can see some recent results here.

    Dominance (10%)

    The dominance of a coin resembles the market cap share of the whole crypto market. Especially for Bitcoin, we think that a rise in Bitcoin dominance is caused by a fear of (and thus a reduction of) too speculative alt-coin investments, since Bitcoin is becoming more and more the safe haven of crypto. On the other side, when Bitcoin dominance shrinks, people are getting more greedy by investing in more risky alt-coins, dreaming of their chance in next big bull run. Anyhow, analyzing the dominance for a coin other than Bitcoin, you could argue the other way round, since more interest in an alt-coin may conclude a bullish/greedy behaviour for that specific coin.

    Trends (10%)

    We pull Google Trends data for various Bitcoin related search queries and crunch those numbers, especially the change of search volumes as well as recommended other currently popular searches. For example, if you check Google Trends for "Bitcoin", you can’t get much information from the search volume. But currently, you can see that there is currently a +1,550% rise of the query „bitcoin price manipulation“ in the box of related search queries (as of 05/29/2018). This is clearly a sign of fear in the market, and we use that for our index.

    There's a story behind every dataset and here's your opportunity to share yours.

    Copyright disclaimer

    This dataset is produced and maintained by the administrators of https://alternative.me/crypto/fear-and-greed-index/.

    This published version is an unofficial copy of their data, which can be also collected using their API (e.g., GET https://api.alternative.me/fng/?limit=10&format=csv&date_format=us).

  19. d

    Live Briefs Crypto News and Insights

    • datarade.ai
    .xml
    Updated Sep 22, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MT Newswires (2022). Live Briefs Crypto News and Insights [Dataset]. https://datarade.ai/data-products/live-briefs-crypto-news-and-insights-mt-newswires
    Explore at:
    .xmlAvailable download formats
    Dataset updated
    Sep 22, 2022
    Dataset authored and provided by
    MT Newswires
    Area covered
    Turkey, Slovakia, Albania, Thailand, Macedonia (the former Yugoslav Republic of), Bulgaria, Honduras, State of, Luxembourg, Panama
    Description

    MT Newswires’ team of highly experienced financial reporters produces timely and actionable commentary throughout the day to keep readers abreast of all the latest happenings in the digital marketplace: price spikes and price plunges in popular virtual coins, DeFi and NFT price action, regulatory updates, corporate adoption announcements, overarching industry trends, and more. Live Briefs Crypto News & Insights additionally incorporates educational “explainer” guides and longer form technical analysis to ensure that the content and crypto discovery is accessible to everyone – whether individual investors and traders entirely new to the concept or professional wealth managers looking for in-depth industry coverage to guide informed decision making on behalf of their clients. 

    Every story includes relevant symbols and is category-coded to allow for seamless platform integration.

    ·       Top News – The most significant drivers of digital assets every day;  ·       Breaking News – real-time coverage of the events most likely to affect prices and adoption of cryptocurrencies and actively traded NFTs at any given moment; ·       Crypto Market Summaries – daily summaries covering major price action and regulatory developments globally; ·       Influencers & Social Buzz – objective coverage of the most talked about cryptocurrencies on social media and related sentiment indications; ·       Top Movers - intra-day updates on major price moves among the most popular cryptocurrencies; ·       Policy & Regulation - timely news on the rapidly evolving Digital Central Bank Currency policies with country specific regulatory developments; ·       Crypto Explainer - educational pieces to help investors understand the complex world of digital assets; ·       Get Digital - The Weekend Crypto Report, wrapping up the biggest digital currency news from the prior week and looking ahead to what may drive pricing in the week to come

  20. d

    Global Stock, ETF, and Index data

    • datarade.ai
    .json, .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Twelve Data, Global Stock, ETF, and Index data [Dataset]. https://datarade.ai/data-products/twelve-data-world-stock-forex-crypto-data-via-api-and-webs-twelve-data
    Explore at:
    .json, .csvAvailable download formats
    Dataset authored and provided by
    Twelve Data
    Area covered
    Afghanistan, Egypt, United States Minor Outlying Islands, Micronesia (Federated States of), Costa Rica, Belarus, Iran (Islamic Republic of), Mozambique, Christmas Island, Burundi
    Description

    Twelve Data is a technology-driven company that provides financial market data, financial tools, and dedicated solutions. Large audiences - from individuals to financial institutions - use our products to stay ahead of the competition and success.

    At Twelve Data we feel responsible for where the markets are going and how people are able to explore them. Coming from different technological backgrounds, we see how the world is lacking the unique and simple place where financial data can be accessed by anyone, at any time. This is what distinguishes us from others, we do not only supply the financial data but instead, we want you to benefit from it, by using the convenient format, tools, and special solutions.

    We believe that the human factor is still a very important aspect of our work and therefore our ethics guides us on how to treat people, with convenient and understandable resources. This includes world-class documentation, human support, and dedicated solutions.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2024). Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub [Dataset]. https://cryptodata.center/dataset/integrated-cryptocurrency-historical-data-for-a-predictive-data-driven-decision-making-algorithm

Integrated Cryptocurrency Historical Data for a Predictive Data-Driven Decision-Making Algorithm - Dataset - CryptoData Hub

Explore at:
Dataset updated
Dec 4, 2024
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA

Search
Clear search
Close search
Google apps
Main menu