Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA
This dataset provides comprehensive access to financial market data from Google Finance in real-time. Get detailed information on stocks, market quotes, trends, ETFs, international exchanges, forex, crypto, and related news. Perfect for financial applications, trading platforms, and market analysis tools. The dataset is delivered in a JSON format via REST API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset was collected for the period spanning between 01/07/2019 and 31/12/2022.The historical Twitter volume were retrieved using ‘‘Bitcoin’’ (case insensitive) as the keyword from bitinfocharts.com. Google search volume was retrieved using library Gtrends. 2000 tweets per day using 4 times interval were crawled by employing Twitter API with the keyword “Bitcoin. The daily closing prices of Bitcoin, oil price, gold price, and U.S stock market indexes (S&P 500, NASDAQ, and Dow Jones Industrial Average) were collected using R libraries either Quantmod or Quandl.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Cryptocurrencies have become more than just a computational challenge with the recent Bitcoin Future listing on NASDAQ, hence it becomes an interesting spot for analysts to get their hands dirty. This data even though is minimal, help analysts get started in the world of cryptocurrenices analysis.
Column Information:
This data is an extract from the R-package coinmarketcapr which is an R binding of the coinmarketcap api. Courtesy: coinmarketcap.com
Two of the most common questions that are often asked about cryptoassets are 'what is the intrinsic value (IV) of a cryptoasset?', and 'what makes one crypto asset more valuable that another asset?'.
In a complex market with literally thousands of instruments, RDA Ranking clarifies the intrinsic value of cryptoassets.
The index uses a proprietary algorithm to analyse asset attributes and compute their intrinsic value on 0 to N point scale - where 0 indicates no intrinsic value and N is the highest intrinsic value for a given asset.
The Market IV Level is defined as the maximum RDA points of all assets at any given point. The Market IV Level serves as a reference for the evolution of fundamental drivers of the cryptoasset industry. By definition, it is the higher frontier of intrinsic value of cryptoassets.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
3MEth Dataset OverviewSection 1: Token TransactionsThis section provides 303 million transaction records from 3,880 tokens and 35 million users on the Ethereum blockchain. The data is stored in 3,880 CSV files, each representing a specific token. Each transaction includes the following information:Sender and receiver wallet addresses: Enables network analysis and user behavior studies.Token address: Links transactions to specific tokens for token-specific analysis.Transaction value: Reflects the number of tokens transferred, essential for liquidity studies.Blockchain timestamp: Captures transaction timing for temporal analysis.Apart from the large dataset, we also provide a smaller CSV file containing 267,242 transaction records from 29,164 wallet addresses. This smaller dataset involves a total of 1,194 tokens, covering the time period September 2016 to November 2023. This detailed transaction data is critical for studying user behavior, liquidity patterns, and tasks such as link prediction and fraud detection.Section 2: Token InformationThis section offers metadata for 3,880 tokens, stored in corresponding CSV files. Each file contains:Timestamp: Marks the time of data update.Token price: Useful for price prediction and volatility studies.Market capitalization: Reflects the token's market size and dominance.24-hour trading volume: Indicates liquidity and trading activity.Section 3: Global Market IndicesThis section provides macro-level data to contextualize token transactions, stored in separate CSV files. Key indicators include:Bitcoin dominance: Tracks Bitcoin's share of the cryptocurrency market.Total market capitalization: Measures the overall market's value, with breakdowns by token type.Stablecoin market capitalization: Highlights stablecoin liquidity and stability.24-hour trading volume: A key measure of market activity.These indices are essential for integrating global market trends into predictive models for volatility and risk-adjusted returns.Section 4: Textual IndicesThis section contains sentiment data from Reddit's Ethereum community, covering 7,800 top posts from 2014 to 2024. Each post includes:Post score (net upvotes): Reflects engagement and sentiment strength.Timestamp: Aligns sentiment with price movements.Number of comments: Gauges sentiment intensity.Sentiment indices: Sentiment scores computed using methods detailed in the data preprocessing section.The full Reddit textual dataset is available upon request; please contact us for access. Alternatively our open-source repository includes a tool to guide users in collecting Reddit data. Researchers are encouraged to apply for a Reddit API Key and adhere to Reddit's policies. This data is valuable for understanding social dynamics in the market and enhancing sentiment analysis models that can explain market movements and improve behavioral predictions.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
I am a new developer and I would greatly appreciate your support. If you find this dataset helpful, please consider giving it an upvote!
Complete 1d Data: Raw 1d historical data from multiple exchanges, covering the entire trading history of ETHUSD available through their API endpoints. This dataset is updated daily to ensure up-to-date coverage.
Combined Index Dataset: A unique feature of this dataset is the combined index, which is derived by averaging all other datasets into one, please see attached notebook. This creates the longest continuous, unbroken ETHUSD dataset available on Kaggle, with no gaps and no erroneous values. It gives a much more comprehensive view of the market i.e. total volume across multiple exchanges.
Superior Performance: The combined index dataset has demonstrated superior 'mean average error' (MAE) metric performance when training machine learning models, compared to single-source datasets by a whole order of MAE magnitude.
Unbroken History: The combined dataset's continuous history is a valuable asset for researchers and traders who require accurate and uninterrupted time series data for modeling or back-testing.
https://i.imgur.com/l1JzL0Z.png" alt="ETHUSD Dataset Summary">
https://i.imgur.com/GgREheF.png" alt="Combined Dataset Close Plot"> This plot illustrates the continuity of the dataset over time, with no gaps in data, making it ideal for time series analysis.
Dataset Usage and Diagnostics: This notebook demonstrates how to use the dataset and includes a powerful data diagnostics function, which is useful for all time series analyses.
Aggregating Multiple Data Sources: This notebook walks you through the process of combining multiple exchange datasets into a single, clean dataset. (Currently unavailable, will be added shortly)
Despite their libertarian use cases to enable peer-to-peer, trustless, decentralised peer-to-peer transactions, behaviour consistent with speculative trading accounts for the majority of cryptoasset uses.
The FCA cryptoasset consumer research 2020 concluded that 47% of people considered buying cryptoassets as a gamble that could make or lose money, 25% sees it as part of their wider investment portfolio, 22% don't want to miss out on a money making opportunity, 17% classifies it as part of their long term savings plan (e.g. pension), and 7% invest in it because they don't trust the current financial system. Majority of people buy them on the expectation that the asset will appreciate in value over time simply because more people are buying it which subsequently creates risks for investors at all levels of the pyramid.
The RDA Price data stands in contrast with the market price to reveal the impact of speculative trading on each asset. The fundamental-market price ratio (FMr) is a key data point in this product. The FMr enables crypto users and investors to determine over-pricing and and manage risks upside and downside.
https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
BASE YEAR | 2024 |
HISTORICAL DATA | 2019 - 2024 |
REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
MARKET SIZE 2023 | 6.78(USD Billion) |
MARKET SIZE 2024 | 7.27(USD Billion) |
MARKET SIZE 2032 | 12.64(USD Billion) |
SEGMENTS COVERED | Trader Type ,Asset Class ,Trading Platform ,Regulations ,Business Model ,Regional |
COUNTRIES COVERED | North America, Europe, APAC, South America, MEA |
KEY MARKET DYNAMICS | Key Market Dynamics Increasing regulation Growing popularity of mobile trading Rise of social media platforms Technological advancements Emerging markets |
MARKET FORECAST UNITS | USD Billion |
KEY COMPANIES PROFILED | Deriv ,Nadex ,Pocket Option ,Binarium ,HighLow ,24Option ,Quotex.io ,Grand Capital ,IQ Option ,Olymp Trade ,Just2Trade ,Binomo ,Expert Option ,Binary.com |
MARKET FORECAST PERIOD | 2024 - 2032 |
KEY MARKET OPPORTUNITIES | 1 Expanding Mobile Trading Platforms 2 Growing Emerging Markets 3 Surge in Online Trading Education 4 Rise of Cryptocurrencybased Trading 5 Increased Regulatory Compliance Measures |
COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.17% (2024 - 2032) |
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cryptocurrency historical datasets from January 2012 (if available) to October 2021 were obtained and integrated from various sources and Application Programming Interfaces (APIs) including Yahoo Finance, Cryptodownload, CoinMarketCap, various Kaggle datasets, and multiple APIs. While these datasets used various formats of time (e.g., minutes, hours, days), in order to integrate the datasets days format was used for in this research study. The integrated cryptocurrency historical datasets for 80 cryptocurrencies including but not limited to Bitcoin (BTC), Ethereum (ETH), Binance Coin (BNB), Cardano (ADA), Tether (USDT), Ripple (XRP), Solana (SOL), Polkadot (DOT), USD Coin (USDC), Dogecoin (DOGE), Tron (TRX), Bitcoin Cash (BCH), Litecoin (LTC), EOS (EOS), Cosmos (ATOM), Stellar (XLM), Wrapped Bitcoin (WBTC), Uniswap (UNI), Terra (LUNA), SHIBA INU (SHIB), and 60 more cryptocurrencies were uploaded in this online Mendeley data repository. Although the primary attribute of including the mentioned cryptocurrencies was the Market Capitalization, a subject matter expert i.e., a professional trader has also guided the initial selection of the cryptocurrencies by analyzing various indicators such as Relative Strength Index (RSI), Moving Average Convergence/Divergence (MACD), MYC Signals, Bollinger Bands, Fibonacci Retracement, Stochastic Oscillator and Ichimoku Cloud. The primary features of this dataset that were used as the decision-making criteria of the CLUS-MCDA II approach are Timestamps, Open, High, Low, Closed, Volume (Currency), % Change (7 days and 24 hours), Market Cap and Weighted Price values. The available excel and CSV files in this data set are just part of the integrated data and other databases, datasets and API References that was used in this study are as follows: [1] https://finance.yahoo.com/ [2] https://coinmarketcap.com/historical/ [3] https://cryptodatadownload.com/ [4] https://kaggle.com/philmohun/cryptocurrency-financial-data [5] https://kaggle.com/deepshah16/meme-cryptocurrency-historical-data [6] https://kaggle.com/sudalairajkumar/cryptocurrencypricehistory [7] https://min-api.cryptocompare.com/data/price?fsym=BTC&tsyms=USD [8] https://min-api.cryptocompare.com/ [9] https://p.nomics.com/cryptocurrency-bitcoin-api [10] https://www.coinapi.io/ [11] https://www.coingecko.com/en/api [12] https://cryptowat.ch/ [13] https://www.alphavantage.co/ This dataset is part of the CLUS-MCDA (Cluster analysis for improving Multiple Criteria Decision Analysis) and CLUS-MCDAII Project: https://aimaghsoodi.github.io/CLUSMCDA-R-Package/ https://github.com/Aimaghsoodi/CLUS-MCDA-II https://github.com/azadkavian/CLUS-MCDA