Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential School Locations Dataset [IRS_Locations.csv] contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this dataset, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The dataset was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this dataset,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School.When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
Imagery acquired with unmanned aerial systems (UAS) and coupled with structure from motion (SfM) photogrammetry can produce high-resolution topographic and visual reflectance datasets that rival or exceed lidar and orthoimagery. These new techniques are particularly useful for data collection of coastal systems, which requires high temporal and spatial resolution datasets. The U.S. Geological Survey worked in collaboration with members of the Marine Biological Laboratory and Woods Hole Analytics at Black Beach, in Falmouth, Massachusetts to explore scientific research demands on UAS technology for topographic and habitat mapping applications. This project explored the application of consumer-grade UAS platforms as a cost-effective alternative to lidar and aerial/satellite imagery to support coastal studies requiring high-resolution elevation or remote sensing data. A small UAS was used to capture low-altitude photographs and GPS devices were used to survey reference points. These data were processed in an SfM workflow to create an elevation point cloud, an orthomosaic image, and a digital elevation model.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains >800K CSV files behind the GitTables 1M corpus.
For more information about the GitTables corpus, visit:
- our website for GitTables, or
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A diverse selection of 1000 empirical time series, along with results of an hctsa feature extraction, using v1.06 of hctsa and Matlab 2019b, computed on a server at The University of Sydney.The results of the computation are in the hctsa file, HCTSA_Empirical1000.mat for use in Matlab using v1.06 of hctsa.The same data is also provided in .csv format for the hctsa_datamatrix.csv (results of feature computation), with information about rows (time series) in hctsa_timeseries-info.csv, information about columns (features) in hctsa_features.csv (and corresponding hctsa code used to compute each feature in hctsa_masterfeatures.csv), and the data of individual time series (each line a time series, for time series described in hctsa_timeseries-info.csv) is in hctsa_timeseries-data.csv. These .csv files were produced by running >>OutputToCSV(HCTSA_Empirical1000.mat,true,true); in hctsa.The input file, INP_Empirical1000.mat, is for use with hctsa, and contains the time-series data and metadata for the 1000 time series. For example, massive feature extraction from these data on the user's machine, using hctsa, can proceed as>> TS_Init('INP_Empirical1000.mat');Some visualizations of the dataset are in CarpetPlot.png (first 1000 samples of all time series as a carpet (color) plot) and 150TS-250samples.png (conventional time-series plots of the first 250 samples of a sample of 150 time series from the dataset). More visualizations can be performed by the user using TS_PlotTimeSeries from the hctsa package.See links in references for more comprehensive documentation for performing methodological comparison using this dataset, and on how to download and use v1.06 of hctsa.
[doc] formats - csv - 1
This dataset contains one csv file at the root:
data.csv
kind,sound dog,woof cat,meow pokemon,pika human,hello
size_categories:
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the metadata of the datasets published in 101 Dataverse installations, information about the metadata blocks of 106 installations, and the lists of pre-defined licenses or dataset terms that depositors can apply to datasets in the 88 installations that were running versions of the Dataverse software that include the "multiple-license" feature. The data is useful for improving understandings about how certain Dataverse features and metadata fields are used and for learning about the quality of dataset and file-level metadata within and across Dataverse installations. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation between August 25 and August 30, 2024 using a "get_dataverse_installations_metadata" function in a collection of Python functions at https://github.com/jggautier/dataverse-scripts/blob/main/dataverse_repository_curation_assistant/dataverse_repository_curation_assistant_functions.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL for which I was able to create an account and another column named "apikey" listing my accounts' API tokens. The Python script expects the CSV file and the listed API tokens to get metadata and other information from installations that require API tokens in order to use certain API endpoints. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author_2024.08.25-2024.08.30.csv │ ├── contributor_2024.08.25-2024.08.30.csv │ ├── data_source_2024.08.25-2024.08.30.csv │ ├── ... │ └── topic_classification_2024.08.25-2024.08.30.csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2024.08.26_15.52.42.zip │ ├── dataset_pids_Abacus_2024.08.26_15.52.42.csv │ ├── Dataverse_JSON_metadata_2024.08.26_15.52.42 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0(latest_version).json │ ├── ... │ ├── metadatablocks_v5.9 │ ├── astrophysics_v5.9.json │ ├── biomedical_v5.9.json │ ├── citation_v5.9.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2024.08.26_00.02.51.zip │ ├── ... │ └── Yale_Dataverse_2024.08.25_03.52.57.zip └── dataverse_installations_summary_2024.08.30.csv └── dataset_pids_from_most_known_dataverse_installations_2024.08.csv └── license_options_for_each_dataverse_installation_2024.08.28_14.42.54.csv └── metadatablocks_from_most_known_dataverse_installations_2024.08.30.csv This dataset contains two directories and four CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 20 CSV files that list the values of many of the metadata fields in the "Citation" metadata block and "Geospatial" metadata block of datasets in the 101 Dataverse installations. For example, author_2024.08.25-2024.08.30.csv contains the "Author" metadata for the latest versions of all published, non-deaccessioned datasets in 101 installations, with a column for each of the four child fields: author name, affiliation, identifier type, and identifier. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 106 zip files, one zip file for each of the 106 Dataverse installations whose sites were functioning when I attempted to collect their metadata. Each zip file contains a directory with JSON files that have information about the installation's metadata fields, such as the field names and how they're organized. For installations that had published datasets, and I was able to use Dataverse APIs to download the dataset metadata, the zip file also contains: A CSV file listing information about the datasets published in the installation, including a column to indicate if the Python script was able to download the Dataverse JSON metadata for each dataset. A directory of JSON files that contain the metadata of the installation's published, non-deaccessioned dataset versions in the Dataverse JSON metadata schema. The dataverse_installations_summary_2024.08.30.csv file contains information about each installation, including its name, URL, Dataverse software version, and counts of dataset metadata included and not included in this dataset. The dataset_pids_from_most_known_dataverse_installations_2024.08.csv file contains the dataset PIDs of published datasets in 101 Dataverse installations, with a column to indicate if the Python script was able to download the dataset's metadata. It's a union of all "dataset_pids_....csv" files in each of the 101 zip files in the dataverse_json_metadata_from_each_known_dataverse_installation directory. The license_options_for_each_dataverse_installation_2024.08.28_14.42.54.csv file contains information about the licenses and...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains all the citation data (in CSV format) included in COCI, released on 23 January 2023. In particular, each line of the CSV file defines a citation, and includes the following information:
[field "oci"] the Open Citation Identifier (OCI) for the citation; [field "citing"] the DOI of the citing entity; [field "cited"] the DOI of the cited entity; [field "creation"] the creation date of the citation (i.e. the publication date of the citing entity); [field "timespan"] the time span of the citation (i.e. the interval between the publication date of the cited entity and the publication date of the citing entity); [field "journal_sc"] it records whether the citation is a journal self-citations (i.e. the citing and the cited entities are published in the same journal); [field "author_sc"] it records whether the citation is an author self-citation (i.e. the citing and the cited entities have at least one author in common).
This version of the dataset contains:
1,463,920,523 citations; 77,045,952 bibliographic resources.
The size of the zipped archive is 37.5 GB, while the size of the unzipped CSV file is 238.5 GB.
Additional information about COCI can be found at the official webpage.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Complete dataset of “Film Circulation on the International Film Festival Network and the Impact on Global Film Culture”
A peer-reviewed data paper for this dataset is in review to be published in NECSUS_European Journal of Media Studies - an open access journal aiming at enhancing data transparency and reusability, and will be available from https://necsus-ejms.org/ and https://mediarep.org
Please cite this when using the dataset.
Detailed description of the dataset:
1 Film Dataset: Festival Programs
The Film Dataset consists a data scheme image file, a codebook and two dataset tables in csv format.
The codebook (csv file “1_codebook_film-dataset_festival-program”) offers a detailed description of all variables within the Film Dataset. Along with the definition of variables it lists explanations for the units of measurement, data sources, coding and information on missing data.
The csv file “1_film-dataset_festival-program_long” comprises a dataset of all films and the festivals, festival sections, and the year of the festival edition that they were sampled from. The dataset is structured in the long format, i.e. the same film can appear in several rows when it appeared in more than one sample festival. However, films are identifiable via their unique ID.
The csv file “1_film-dataset_festival-program_wide” consists of the dataset listing only unique films (n=9,348). The dataset is in the wide format, i.e. each row corresponds to a unique film, identifiable via its unique ID. For easy analysis, and since the overlap is only six percent, in this dataset the variable sample festival (fest) corresponds to the first sample festival where the film appeared. For instance, if a film was first shown at Berlinale (in February) and then at Frameline (in June of the same year), the sample festival will list “Berlinale”. This file includes information on unique and IMDb IDs, the film title, production year, length, categorization in length, production countries, regional attribution, director names, genre attribution, the festival, festival section and festival edition the film was sampled from, and information whether there is festival run information available through the IMDb data.
2 Survey Dataset
The Survey Dataset consists of a data scheme image file, a codebook and two dataset tables in csv format.
The codebook “2_codebook_survey-dataset” includes coding information for both survey datasets. It lists the definition of the variables or survey questions (corresponding to Samoilova/Loist 2019), units of measurement, data source, variable type, range and coding, and information on missing data.
The csv file “2_survey-dataset_long-festivals_shared-consent” consists of a subset (n=161) of the original survey dataset (n=454), where respondents provided festival run data for films (n=206) and gave consent to share their data for research purposes. This dataset consists of the festival data in a long format, so that each row corresponds to the festival appearance of a film.
The csv file “2_survey-dataset_wide-no-festivals_shared-consent” consists of a subset (n=372) of the original dataset (n=454) of survey responses corresponding to sample films. It includes data only for those films for which respondents provided consent to share their data for research purposes. This dataset is shown in wide format of the survey data, i.e. information for each response corresponding to a film is listed in one row. This includes data on film IDs, film title, survey questions regarding completeness and availability of provided information, information on number of festival screenings, screening fees, budgets, marketing costs, market screenings, and distribution. As the file name suggests, no data on festival screenings is included in the wide format dataset.
3 IMDb & Scripts
The IMDb dataset consists of a data scheme image file, one codebook and eight datasets, all in csv format. It also includes the R scripts that we used for scraping and matching.
The codebook “3_codebook_imdb-dataset” includes information for all IMDb datasets. This includes ID information and their data source, coding and value ranges, and information on missing data.
The csv file “3_imdb-dataset_aka-titles_long” contains film title data in different languages scraped from IMDb in a long format, i.e. each row corresponds to a title in a given language.
The csv file “3_imdb-dataset_awards_long” contains film award data in a long format, i.e. each row corresponds to an award of a given film.
The csv file “3_imdb-dataset_companies_long” contains data on production and distribution companies of films. The dataset is in a long format, so that each row corresponds to a particular company of a particular film.
The csv file “3_imdb-dataset_crew_long” contains data on names and roles of crew members in a long format, i.e. each row corresponds to each crew member. The file also contains binary gender assigned to directors based on their first names using the GenderizeR application.
The csv file “3_imdb-dataset_festival-runs_long” contains festival run data scraped from IMDb in a long format, i.e. each row corresponds to the festival appearance of a given film. The dataset does not include each film screening, but the first screening of a film at a festival within a given year. The data includes festival runs up to 2019.
The csv file “3_imdb-dataset_general-info_wide” contains general information about films such as genre as defined by IMDb, languages in which a film was shown, ratings, and budget. The dataset is in wide format, so that each row corresponds to a unique film.
The csv file “3_imdb-dataset_release-info_long” contains data about non-festival release (e.g., theatrical, digital, tv, dvd/blueray). The dataset is in a long format, so that each row corresponds to a particular release of a particular film.
The csv file “3_imdb-dataset_websites_long” contains data on available websites (official websites, miscellaneous, photos, video clips). The dataset is in a long format, so that each row corresponds to a website of a particular film.
The dataset includes 8 text files containing the script for webscraping. They were written using the R-3.6.3 version for Windows.
The R script “r_1_unite_data” demonstrates the structure of the dataset, that we use in the following steps to identify, scrape, and match the film data.
The R script “r_2_scrape_matches” reads in the dataset with the film characteristics described in the “r_1_unite_data” and uses various R packages to create a search URL for each film from the core dataset on the IMDb website. The script attempts to match each film from the core dataset to IMDb records by first conducting an advanced search based on the movie title and year, and then potentially using an alternative title and a basic search if no matches are found in the advanced search. The script scrapes the title, release year, directors, running time, genre, and IMDb film URL from the first page of the suggested records from the IMDb website. The script then defines a loop that matches (including matching scores) each film in the core dataset with suggested films on the IMDb search page. Matching was done using data on directors, production year (+/- one year), and title, a fuzzy matching approach with two methods: “cosine” and “osa.” where the cosine similarity is used to match titles with a high degree of similarity, and the OSA algorithm is used to match titles that may have typos or minor variations.
The script “r_3_matching” creates a dataset with the matches for a manual check. Each pair of films (original film from the core dataset and the suggested match from the IMDb website was categorized in the following five categories: a) 100% match: perfect match on title, year, and director; b) likely good match; c) maybe match; d) unlikely match; and e) no match). The script also checks for possible doubles in the dataset and identifies them for a manual check.
The script “r_4_scraping_functions” creates a function for scraping the data from the identified matches (based on the scripts described above and manually checked). These functions are used for scraping the data in the next script.
The script “r_5a_extracting_info_sample” uses the function defined in the “r_4_scraping_functions”, in order to scrape the IMDb data for the identified matches. This script does that for the first 100 films, to check, if everything works. Scraping for the entire dataset took a few hours. Therefore, a test with a subsample of 100 films is advisable.
The script “r_5b_extracting_info_all” extracts the data for the entire dataset of the identified matches.
The script “r_5c_extracting_info_skipped” checks the films with missing data (where data was not scraped) and tried to extract data one more time to make sure that the errors were not caused by disruptions in the internet connection or other technical issues.
The script “r_check_logs” is used for troubleshooting and tracking the progress of all of the R scripts used. It gives information on the amount of missing values and errors.
4 Festival Library Dataset
The Festival Library Dataset consists of a data scheme image file, one codebook and one dataset, all in csv format.
The codebook (csv file “4_codebook_festival-library_dataset”) offers a detailed description of all variables within the Library Dataset. It lists the definition of variables, such as location and festival name, and festival categories, units of measurement, data sources and coding and missing data.
The csv file “4_festival-library_dataset_imdb-and-survey” contains data on all unique festivals collected from both IMDb and survey sources. This dataset appears in wide format, all information for each festival is listed in one row. This
About the MNAD Dataset The MNAD corpus is a collection of over 1 million Moroccan news articles written in modern Arabic language. These news articles have been gathered from 11 prominent electronic news sources. The dataset is made available to the academic community for research purposes, such as data mining (clustering, classification, etc.), information retrieval (ranking, search, etc.), and other non-commercial activities.
Dataset Fields
Title: The title of the article Body: The body of the article Category: The category of the article Source: The Electronic News paper source of the article
About Version 1 of the Dataset (MNAD.v1) Version 1 of the dataset comprises 418,563 articles classified into 19 categories. The data was collected from well-known electronic news sources, namely Akhbarona.ma, Hespress.ma, Hibapress.com, and Le360.com. The articles were stored in four separate CSV files, each corresponding to the news website source. Each CSV file contains three fields: Title, Body, and Category of the news article.
The dataset is rich in Arabic vocabulary, with approximately 906,125 unique words. It has been utilized as a benchmark in the research paper: "A Moroccan News Articles Dataset (MNAD) For Arabic Text Categorization". In 2021 International Conference on Decision Aid Sciences and Application (DASA).
This dataset is available for download from the following sources: - Kaggle Datasets : MNADv1 - Huggingface Datasets: MNADv1
About Version 2 of the Dataset (MNAD.v2) Version 2 of the MNAD dataset includes an additional 653,901 articles, bringing the total number of articles to over 1 million (1,069,489), classified into the same 19 categories as in version 1. The new documents were collected from seven additional prominent Moroccan news websites, namely al3omk.com, medi1news.com, alayam24.com, anfaspress.com, alyaoum24.com, barlamane.com, and SnrtNews.com.
The newly collected articles have been merged with the articles from the previous version into a single CSV file named MNADv2.csv. This file includes an additional column called "Source" to indicate the source of each news article.
Furthermore, MNAD.v2 incorporates improved pre-processing techniques and data cleaning methods. These enhancements involve removing duplicates, eliminating multiple spaces, discarding rows with NaN values, replacing new lines with " ", excluding very long and very short articles, and removing non-Arabic articles. These additions and improvements aim to enhance the usability and value of the MNAD dataset for researchers and practitioners in the field of Arabic text analysis.
This dataset is available for download from the following sources: - Kaggle Datasets : MNADv2 - Huggingface Datasets: MNADv2
Citation If you use our data, please cite the following paper:
bibtex @inproceedings{MNAD2021, author = {Mourad Jbene and Smail Tigani and Rachid Saadane and Abdellah Chehri}, title = {A Moroccan News Articles Dataset ({MNAD}) For Arabic Text Categorization}, year = {2021}, publisher = {{IEEE}}, booktitle = {2021 International Conference on Decision Aid Sciences and Application ({DASA})} doi = {10.1109/dasa53625.2021.9682402}, url = {https://doi.org/10.1109/dasa53625.2021.9682402}, }
This dataset was created by Abhishek Bagwan☑️
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These four labeled data sets are targeted at ordinal quantification. The goal of quantification is not to predict the label of each individual instance, but the distribution of labels in unlabeled sets of data.
With the scripts provided, you can extract CSV files from the UCI machine learning repository and from OpenML. The ordinal class labels stem from a binning of a continuous regression label.
We complement this data set with the indices of data items that appear in each sample of our evaluation. Hence, you can precisely replicate our samples by drawing the specified data items. The indices stem from two evaluation protocols that are well suited for ordinal quantification. To this end, each row in the files app_val_indices.csv, app_tst_indices.csv, app-oq_val_indices.csv, and app-oq_tst_indices.csv represents one sample.
Our first protocol is the artificial prevalence protocol (APP), where all possible distributions of labels are drawn with an equal probability. The second protocol, APP-OQ, is a variant thereof, where only the smoothest 20% of all APP samples are considered. This variant is targeted at ordinal quantification tasks, where classes are ordered and a similarity of neighboring classes can be assumed.
Usage
You can extract four CSV files through the provided script extract-oq.jl, which is conveniently wrapped in a Makefile. The Project.toml and Manifest.toml specify the Julia package dependencies, similar to a requirements file in Python.
Preliminaries: You have to have a working Julia installation. We have used Julia v1.6.5 in our experiments.
Data Extraction: In your terminal, you can call either
make
(recommended), or
julia --project="." --eval "using Pkg; Pkg.instantiate()"
julia --project="." extract-oq.jl
Outcome: The first row in each CSV file is the header. The first column, named "class_label", is the ordinal class.
Further Reading
Implementation of our experiments: https://github.com/mirkobunse/regularized-oq
The Sea Surface Temperature (SST) data of the Arctic show temperature ranges in degrees C using points whose locations correspond to the centroids of AVHRR Pathfinder version 5 monthly, global, 4 km data set (PFSST V50). The pathfinder rasters are available from the NOAA National Oceanographic Data Center (NODC) and from the Physical Oceanography Distributed Active Archive Center (PO.DAAC), hosted by NASA JPL. Furthermore, each point in the SST dataset is categorized by the ecoregion in which it is located. This classification is based on the Marine Ecosystems Of the World (MEOW) developed and distributed by The Nature Conservancy. These data have been QA'd in that we have selected only data values with associated quality flags of 4-7. No data points are not included here.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Errata: On Dec 2nd, 2018, several yearly statistics files were replaced with new versions to correct an inconsistency related to the computation of the "dma8epax" statistics. As written in Schultz et al. (2017) [https://doi.org/10.1525/elementa.244], Supplement 1, Table 6: "When the aggregation period is “seasonal”, “summer”, or “annual”, the 4th highest daily 8-hour maximum of the aggregation period will be computed.". The data values for these aggregation periods are correct, however, the header information in the original files stated that the respective data column would contain "average daily maximum 8-hour ozone mixing ratio (nmol mol-1)". Therefore, the header of the seasonal, summer, and annual files has been corrected. Furthermore, the "dma8epax" column in the monthly files erroneously contained 4th highest daily maximum 8-hour average values, while it should have listed monthly average values instead. The data of this metric in the monthly files have therefore been replaced. The new column header reads "avgdma8epax". The updated files contain a version label "1.1" and a brief description of the error. If you have made use of previous TOAR data files with the "dma8epax" metric, please exchange your data files.
This data set includes gravity measurements for the Island of Hawai`i collected as the source data for "Deep magmatic structures of Hawaiian volcanoes, imaged by three-dimensional gravity models" (Kauahikaua, Hildenbrand, and Webring, 2000). Data for 3,611 observations are stored as a single table and disseminated in .CSV format. Each observation record includes values for field station ID, latitude and longitude (in both Old Hawaiian and WGS84 projections), elevation, and Observed Gravity value. See associated publication for reduction and interpretation of these data.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Meta Kaggle Code is an extension to our popular Meta Kaggle dataset. This extension contains all the raw source code from hundreds of thousands of public, Apache 2.0 licensed Python and R notebooks versions on Kaggle used to analyze Datasets, make submissions to Competitions, and more. This represents nearly a decade of data spanning a period of tremendous evolution in the ways ML work is done.
By collecting all of this code created by Kaggle’s community in one dataset, we hope to make it easier for the world to research and share insights about trends in our industry. With the growing significance of AI-assisted development, we expect this data can also be used to fine-tune models for ML-specific code generation tasks.
Meta Kaggle for Code is also a continuation of our commitment to open data and research. This new dataset is a companion to Meta Kaggle which we originally released in 2016. On top of Meta Kaggle, our community has shared nearly 1,000 public code examples. Research papers written using Meta Kaggle have examined how data scientists collaboratively solve problems, analyzed overfitting in machine learning competitions, compared discussions between Kaggle and Stack Overflow communities, and more.
The best part is Meta Kaggle enriches Meta Kaggle for Code. By joining the datasets together, you can easily understand which competitions code was run against, the progression tier of the code’s author, how many votes a notebook had, what kinds of comments it received, and much, much more. We hope the new potential for uncovering deep insights into how ML code is written feels just as limitless to you as it does to us!
While we have made an attempt to filter out notebooks containing potentially sensitive information published by Kaggle users, the dataset may still contain such information. Research, publications, applications, etc. relying on this data should only use or report on publicly available, non-sensitive information.
The files contained here are a subset of the KernelVersions
in Meta Kaggle. The file names match the ids in the KernelVersions
csv file. Whereas Meta Kaggle contains data for all interactive and commit sessions, Meta Kaggle Code contains only data for commit sessions.
The files are organized into a two-level directory structure. Each top level folder contains up to 1 million files, e.g. - folder 123 contains all versions from 123,000,000 to 123,999,999. Each sub folder contains up to 1 thousand files, e.g. - 123/456 contains all versions from 123,456,000 to 123,456,999. In practice, each folder will have many fewer than 1 thousand files due to private and interactive sessions.
The ipynb files in this dataset hosted on Kaggle do not contain the output cells. If the outputs are required, the full set of ipynbs with the outputs embedded can be obtained from this public GCS bucket: kaggle-meta-kaggle-code-downloads
. Note that this is a "requester pays" bucket. This means you will need a GCP account with billing enabled to download. Learn more here: https://cloud.google.com/storage/docs/requester-pays
We love feedback! Let us know in the Discussion tab.
Happy Kaggling!
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cleaned_Dataset.csv – The combined CSV files of all scraped documents from DABI, e-LiS, o-bib and Springer.
Data_Cleaning.ipynb – The Jupyter Notebook with python code for the analysis and cleaning of the original dataset.
ger_train.csv – The German training set as CSV file.
ger_validation.csv – The German validation set as CSV file.
en_test.csv – The English test set as CSV file.
en_train.csv – The English training set as CSV file.
en_validation.csv – The English validation set as CSV file.
splitting.py – The python code for splitting a dataset into train, test and validation set.
DataSetTrans_de.csv – The final German dataset as a CSV file.
DataSetTrans_en.csv – The final English dataset as a CSV file.
translation.py – The python code for translating the cleaned dataset.
Company Datasets for valuable business insights!
Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.
These datasets are sourced from top industry providers, ensuring you have access to high-quality information:
We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:
You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.
Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.
With Oxylabs Datasets, you can count on:
Pricing Options:
Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.
Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.
Experience a seamless journey with Oxylabs:
Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!
Three datasets are available, each consisting of 15 csv files. Each file containing the voxelised shower information obtained from single particles produced at the front of the calorimeter in the |η| range (0.2-0.25) simulated in the ATLAS detector. Two datasets contain photons events with different statistics; the larger sample has about 10 times the number of events as the other. The other dataset contains pions. The pion dataset and the photon dataset with the lower statistics were used to train the corresponding two GANs presented in the AtlFast3 paper SIMU-2018-04.
The information in each file is a table; the rows correspond to the events and the columns to the voxels. The voxelisation procedure is described in the AtlFast3 paper linked above and in the dedicated PUB note ATL-SOFT-PUB-2020-006. In summary, the detailed energy deposits produced by ATLAS were converted from x,y,z coordinates to local cylindrical coordinates defined around the particle 3-momentum at the entrance of the calorimeter. The energy deposits in each layer were then grouped in voxels and for each voxel the energy was stored in the csv file. For each particle, there are 15 files corresponding to the 15 energy points used to train the GAN. The name of the csv file defines both the particle and the energy of the sample used to create the file.
The size of the voxels is described in the binning.xml file. Software tools to read the XML file and manipulate the spatial information of voxels are provided in the FastCaloGAN repository.
Updated on February 10th 2022. A new dataset photons_samples_highStat.tgz was added to this record and the binning.xml file was updated accordingly.
Updated on April 18th 2023. A new dataset pions_samples_highStat.tgz was added to this record.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
dataset_30000* |
30000 |
44991744 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |