Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A csv file containing the tidal frequencies used for statistical analyses in the paper "Estimating Freshwater Flows From Tidally-Affected Hydrographic Data" by Dan Pagendam and Don Percival.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Errata: On Dec 2nd, 2018, several yearly statistics files were replaced with new versions to correct an inconsistency related to the computation of the "dma8epax" statistics. As written in Schultz et al. (2017) [https://doi.org/10.1525/elementa.244], Supplement 1, Table 6: "When the aggregation period is “seasonal”, “summer”, or “annual”, the 4th highest daily 8-hour maximum of the aggregation period will be computed.". The data values for these aggregation periods are correct, however, the header information in the original files stated that the respective data column would contain "average daily maximum 8-hour ozone mixing ratio (nmol mol-1)". Therefore, the header of the seasonal, summer, and annual files has been corrected. Furthermore, the "dma8epax" column in the monthly files erroneously contained 4th highest daily maximum 8-hour average values, while it should have listed monthly average values instead. The data of this metric in the monthly files have therefore been replaced. The new column header reads "avgdma8epax". The updated files contain a version label "1.1" and a brief description of the error. If you have made use of previous TOAR data files with the "dma8epax" metric, please exchange your data files.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the metadata of the datasets published in 85 Dataverse installations and information about each installation's metadata blocks. It also includes the lists of pre-defined licenses or terms of use that dataset depositors can apply to the datasets they publish in the 58 installations that were running versions of the Dataverse software that include that feature. The data is useful for reporting on the quality of dataset and file-level metadata within and across Dataverse installations and improving understandings about how certain Dataverse features and metadata fields are used. Curators and other researchers can use this dataset to explore how well Dataverse software and the repositories using the software help depositors describe data. How the metadata was downloaded The dataset metadata and metadata block JSON files were downloaded from each installation between August 22 and August 28, 2023 using a Python script kept in a GitHub repo at https://github.com/jggautier/dataverse-scripts/blob/main/other_scripts/get_dataset_metadata_of_all_installations.py. In order to get the metadata from installations that require an installation account API token to use certain Dataverse software APIs, I created a CSV file with two columns: one column named "hostname" listing each installation URL in which I was able to create an account and another column named "apikey" listing my accounts' API tokens. The Python script expects the CSV file and the listed API tokens to get metadata and other information from installations that require API tokens. How the files are organized ├── csv_files_with_metadata_from_most_known_dataverse_installations │ ├── author(citation)_2023.08.22-2023.08.28.csv │ ├── contributor(citation)_2023.08.22-2023.08.28.csv │ ├── data_source(citation)_2023.08.22-2023.08.28.csv │ ├── ... │ └── topic_classification(citation)_2023.08.22-2023.08.28.csv ├── dataverse_json_metadata_from_each_known_dataverse_installation │ ├── Abacus_2023.08.27_12.59.59.zip │ ├── dataset_pids_Abacus_2023.08.27_12.59.59.csv │ ├── Dataverse_JSON_metadata_2023.08.27_12.59.59 │ ├── hdl_11272.1_AB2_0AQZNT_v1.0(latest_version).json │ ├── ... │ ├── metadatablocks_v5.6 │ ├── astrophysics_v5.6.json │ ├── biomedical_v5.6.json │ ├── citation_v5.6.json │ ├── ... │ ├── socialscience_v5.6.json │ ├── ACSS_Dataverse_2023.08.26_22.14.04.zip │ ├── ADA_Dataverse_2023.08.27_13.16.20.zip │ ├── Arca_Dados_2023.08.27_13.34.09.zip │ ├── ... │ └── World_Agroforestry_-_Research_Data_Repository_2023.08.27_19.24.15.zip └── dataverse_installations_summary_2023.08.28.csv └── dataset_pids_from_most_known_dataverse_installations_2023.08.csv └── license_options_for_each_dataverse_installation_2023.09.05.csv └── metadatablocks_from_most_known_dataverse_installations_2023.09.05.csv This dataset contains two directories and four CSV files not in a directory. One directory, "csv_files_with_metadata_from_most_known_dataverse_installations", contains 20 CSV files that list the values of many of the metadata fields in the citation metadata block and geospatial metadata block of datasets in the 85 Dataverse installations. For example, author(citation)_2023.08.22-2023.08.28.csv contains the "Author" metadata for the latest versions of all published, non-deaccessioned datasets in the 85 installations, where there's a row for author names, affiliations, identifier types and identifiers. The other directory, "dataverse_json_metadata_from_each_known_dataverse_installation", contains 85 zipped files, one for each of the 85 Dataverse installations whose dataset metadata I was able to download. Each zip file contains a CSV file and two sub-directories: The CSV file contains the persistent IDs and URLs of each published dataset in the Dataverse installation as well as a column to indicate if the Python script was able to download the Dataverse JSON metadata for each dataset. It also includes the alias/identifier and category of the Dataverse collection that the dataset is in. One sub-directory contains a JSON file for each of the installation's published, non-deaccessioned dataset versions. The JSON files contain the metadata in the "Dataverse JSON" metadata schema. The Dataverse JSON export of the latest version of each dataset includes "(latest_version)" in the file name. This should help those who are interested in the metadata of only the latest version of each dataset. The other sub-directory contains information about the metadata models (the "metadata blocks" in JSON files) that the installation was using when the dataset metadata was downloaded. I included them so that they can be used when extracting metadata from the dataset's Dataverse JSON exports. The dataverse_installations_summary_2023.08.28.csv file contains information about each installation, including its name, URL, Dataverse software version, and counts of dataset metadata...
The UK House Price Index is a National Statistic.
Download the full UK House Price Index data below, or use our tool to https://landregistry.data.gov.uk/app/ukhpi?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=tool&utm_term=9.30_21_05_25" class="govuk-link">create your own bespoke reports.
Datasets are available as CSV files. Find out about republishing and making use of the data.
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the Office for National Statistics HPI to construct a series back to 1968.
Download the full UK HPI background file:
If you are interested in a specific attribute, we have separated them into these CSV files:
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price&utm_term=9.30_21_05_25" class="govuk-link">Average price (CSV, 7MB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average_price_property_price&utm_term=9.30_21_05_25" class="govuk-link">Average price by property type (CSV, 15.3KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=sales&utm_term=9.30_21_05_25" class="govuk-link">Sales (CSV, 5.2KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=cash_mortgage-sales&utm_term=9.30_21_05_25" class="govuk-link">Cash mortgage sales (CSV, 4.9KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=FTNFOO&utm_term=9.30_21_05_25" class="govuk-link">First time buyer and former owner occupier (CSV, 4.5KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=new_build&utm_term=9.30_21_05_25" class="govuk-link">New build and existing resold property (CSV, 11.0KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index&utm_term=9.30_21_05_25" class="govuk-link">Index (CSV, 5.5KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=index_season_adjusted&utm_term=9.30_21_05_25" class="govuk-link">Index seasonally adjusted (CSV, 195KB)
https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=average-price_season_adjusted&utm_term=9.30_21_05_25" class="govuk-link">Average price seasonally adjusted (CSV, 205KB)
<a rel="external" href="https://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2025-03.csv?utm_medium=GOV.UK&utm_source=datadownload&utm_campaign=repossession&utm_term=9.30_21_05
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
all csv files used for analysis of NCBIall files with "WOAH" in it are the disease and disease agents from WOAH's list (see manuscript for link) all breed files (with breed names in name) are from web scrapingMASTER_DATA_coordinates_FINAL_AUG_5: cleaned mined data from NCBI
Model Card: URL Classifications Dataset
Dataset Summary
The URL Classifications Dataset is a collection of URL classifications for PDF documents, primarily derived from the SafeDocs corpus. It contains multiple CSV files with different subsets of classifications, including both raw and processed data.
Supported Tasks
This dataset supports the following tasks:
Text Classification URL-based Document Classification PDF Content Inference
Languages
The… See the full description on the dataset page: https://huggingface.co/datasets/snats/url-classifications.
The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. The classes are completely mutually exclusive. There are 50000 training images and 10000 test images.
The batches.meta file contains the label names of each class.
The dataset was originally divided in 5 training batches with 10000 images per batch. The original dataset can be found here: https://www.cs.toronto.edu/~kriz/cifar.html. This dataset contains all the training data and test data in the same CSV file so it is easier to load.
Here is the list of the 10 classes in the CIFAR-10:
Classes: 1) 0: airplane 2) 1: automobile 3) 2: bird 4) 3: cat 5) 4: deer 6) 5: dog 7) 6: frog 8) 7: horse 9) 8: ship 10) 9: truck
The function used to open the file:
def unpickle(file):
import pickle
with open(file, 'rb') as fo:
dict = pickle.load(fo, encoding='bytes')
return dict
Example of how to read the file:
metadata_path = './cifar-10-python/batches.meta' # change this path
metadata = unpickle(metadata_path)
Alaska DCCED Division of Corporations, Business and Professional Licensing courtesy CSV Download Link Location
Datasets are available as CSV files. Find out about republishing and making use of the data.
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/UK-HPI-full-file-2016-09.csv" class="govuk-link">UK HPI full file (CSV, 42.5MB)
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-2016-09.csv" class="govuk-link">Average price.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-prices-Property-Type-2016-09.csv" class="govuk-link">Average price by property type.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Sales-2016-09.csv" class="govuk-link">Sales.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Cash-mortgage-sales-2016-09.csv" class="govuk-link">Cash mortgage sales.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/First-Time-Buyer-Former-Owner-Occupied-2016-09.csv" class="govuk-link">First time buyer and former owner occupied.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/New-and-Old-2016-09.csv" class="govuk-link">New build and existing resold property.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-2016-09.csv" class="govuk-link">Index.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Indices-seasonally-adjusted-2016-09.csv" class="govuk-link">Index seasonally adjusted.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Average-price-seasonally-adjusted-2016-09.csv" class="govuk-link">Average Price seasonally adjusted.csv
http://publicdata.landregistry.gov.uk/market-trend-data/house-price-index-data/Repossession-2016-09.csv" class="govuk-link">Repossessions.csv
This file includes a derived back series for the new UK HPI. Under the UK HPI, data is available from 1995 for England and Wales, 2004 for Scotland and 2005 for Northern Ireland. A longer back series has been derived by using the historic path of the ONS HPI to construct a series back to 1968:
The release calendar shows when the next month’s data will be published.
Create your own reports based on the UK House Price Index data, http://landregistry.data.gov.uk/app/ukhpi" class="govuk-link">use our tool.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset compares four cities FIXED-line broadband internet speeds: - Melbourne, AU - Bangkok, TH - Shanghai, CN - Los Angeles, US - Alice Springs, AU
ERRATA: 1.Data is for Q3 2020, but some files are labelled incorrectly as 02-20 of June 20. They all should read Sept 20, or 09-20 as Q3 20, rather than Q2. Will rename and reload. Amended in v7.
*lines of data for each geojson file; a line equates to a 600m^2 location, inc total tests, devices used, and average upload and download speed - MEL 16181 locations/lines => 0.85M speedtests (16.7 tests per 100people) - SHG 31745 lines => 0.65M speedtests (2.5/100pp) - BKK 29296 lines => 1.5M speedtests (14.3/100pp) - LAX 15899 lines => 1.3M speedtests (10.4/100pp) - ALC 76 lines => 500 speedtests (2/100pp)
Geojsons of these 2* by 2* extracts for MEL, BKK, SHG now added, and LAX added v6. Alice Springs added v15.
This dataset unpacks, geospatially, data summaries provided in Speedtest Global Index (linked below). See Jupyter Notebook (*.ipynb) to interrogate geo data. See link to install Jupyter.
** To Do Will add Google Map versions so everyone can see without installing Jupyter. - Link to Google Map (BKK) added below. Key:Green > 100Mbps(Superfast). Black > 500Mbps (Ultrafast). CSV provided. Code in Speedtestv1.1.ipynb Jupyter Notebook. - Community (Whirlpool) surprised [Link: https://whrl.pl/RgAPTl] that Melb has 20% at or above 100Mbps. Suggest plot Top 20% on map for community. Google Map link - now added (and tweet).
** Python melb = au_tiles.cx[144:146 , -39:-37] #Lat/Lon extract shg = tiles.cx[120:122 , 30:32] #Lat/Lon extract bkk = tiles.cx[100:102 , 13:15] #Lat/Lon extract lax = tiles.cx[-118:-120, 33:35] #lat/Lon extract ALC=tiles.cx[132:134, -22:-24] #Lat/Lon extract
Histograms (v9), and data visualisations (v3,5,9,11) will be provided. Data Sourced from - This is an extract of Speedtest Open data available at Amazon WS (link below - opendata.aws).
**VERSIONS v.24 Add tweet and google map of Top 20% (over 100Mbps locations) in Mel Q322. Add v.1.5 MEL-Superfast notebook, and CSV of results (now on Google Map; link below). v23. Add graph of 2022 Broadband distribution, and compare 2020 - 2022. Updated v1.4 Jupyter notebook. v22. Add Import ipynb; workflow-import-4cities. v21. Add Q3 2022 data; five cities inc ALC. Geojson files. (2020; 4.3M tests 2022; 2.9M tests)
v20. Speedtest - Five Cities inc ALC. v19. Add ALC2.ipynb. v18. Add ALC line graph. v17. Added ipynb for ALC. Added ALC to title.v16. Load Alice Springs Data Q221 - csv. Added Google Map link of ALC. v15. Load Melb Q1 2021 data - csv. V14. Added Melb Q1 2021 data - geojson. v13. Added Twitter link to pics. v12 Add Line-Compare pic (fastest 1000 locations) inc Jupyter (nbn-intl-v1.2.ipynb). v11 Add Line-Compare pic, plotting Four Cities on a graph. v10 Add Four Histograms in one pic. v9 Add Histogram for Four Cities. Add NBN-Intl.v1.1.ipynb (Jupyter Notebook). v8 Renamed LAX file to Q3, rather than 03. v7 Amended file names of BKK files to correctly label as Q3, not Q2 or 06. v6 Added LAX file. v5 Add screenshot of BKK Google Map. v4 Add BKK Google map(link below), and BKK csv mapping files. v3 replaced MEL map with big key version. Prev key was very tiny in top right corner. v2 Uploaded MEL, SHG, BKK data and Jupyter Notebook v1 Metadata record
** LICENCE AWS data licence on Speedtest data is "CC BY-NC-SA 4.0", so use of this data must be: - non-commercial (NC) - reuse must be share-alike (SA)(add same licence). This restricts the standard CC-BY Figshare licence.
** Other uses of Speedtest Open Data; - see link at Speedtest below.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Semicolon delimited text file equivalent of the Rdata file. See the Rdata file for a description of the data in each column.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset contains the provenance information (in CSV format) of all the citation data included in the OpenCitations Index, released on March 24, 2025. In particular, each line of the CSV file defines a citation, and includes the following information:[field "oci"] the Open Citation Identifier (OCI) for the citation;[field "snapshot"] the identifier of the snapshot;[field "agent"] the name of the agent that have created the citation data;[field "source"] the URL of the source dataset from where the citation data have been extracted;[field "created"] the creation time of the citation data.[field "invalidated"] the start of the destruction, cessation, or expiry of an existing entity by an activity;[field "description"] a textual description of the activity made;[field "update"] the UPDATE SPARQL query that keeps track of which metadata have been modified.The size of the zipped archive is 18 GB, while the size of the unzipped CSV files is 410 GB.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
This dataset is about: The China Plant Trait Database, link to database in CSV format (zipped). Please consult parent dataset @ https://doi.org/10.1594/PANGAEA.871819 for more information. Version: 2017-09-05, Character encoding: UTF-8
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of CĂłrdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Errata: On Dec 2nd, 2018, several yearly statistics files were replaced with new versions to correct an inconsistency related to the computation of the "dma8epax" statistics. As written in Schultz et al. (2017) [https://doi.org/10.1525/elementa.244], Supplement 1, Table 6: "When the aggregation period is “seasonal”, “summer”, or “annual”, the 4th highest daily 8-hour maximum of the aggregation period will be computed.". The data values for these aggregation periods are correct, however, the header information in the original files stated that the respective data column would contain "average daily maximum 8-hour ozone mixing ratio (nmol mol-1)". Therefore, the header of the seasonal, summer, and annual files has been corrected. Furthermore, the "dma8epax" column in the monthly files erroneously contained 4th highest daily maximum 8-hour average values, while it should have listed monthly average values instead. The data of this metric in the monthly files have therefore been replaced. The new column header reads "avgdma8epax". The updated files contain a version label "1.1" and a brief description of the error. If you have made use of previous TOAR data files with the "dma8epax" metric, please exchange your data files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This database collates 3552 development indicators from different studies with data by country and year, including single year and multiple year time series. The data is presented as charts, the data can be downloaded from linked project pages/references for each set, and the data for each presented graph is available as a CSV file as well as a visual download of the graph (both available via the download link under each chart).
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
Errata: Due to a coding error, monthly files with "dma8epax" statistics were wrongly aggregated. This concerns all gridded files of this metric as well as the monthly aggregated csv files. All erroneous files were replaced with corrected versions on Jan, 16th, 2018. Each updated file contains a version label "1.1" and a brief description of the error. If you have made use of previous TOAR data files with the "dma8epax" metric, please exchange your data files.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: none of the data sets published here contain actual data, they are for testing purposes only.
This data repository contains graph datasets, where each graph is represented by two CSV files: one for node information and another for edge details. To link the files to the same graph, their names include a common identifier based on the number of nodes. For example:
dataset_30_nodes_interactions.csv
:contains 30 rows (nodes).dataset_30_edges_interactions.csv
: contains 47 rows (edges).dataset_30
refers to the same graph.Each dataset contains the following columns:
Name of the Column | Type | Description |
UniProt ID | string | protein identification |
label | string | protein label (type of node) |
properties | string | a dictionary containing properties related to the protein. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
Relationship ID | string | relationship identification |
Source ID | string | identification of the source protein in the relationship |
Target ID | string | identification of the target protein in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_30* |
30 | 47 |
Y |
dataset_60* |
60 |
181 |
Y |
dataset_120* |
120 |
689 |
Y |
dataset_240* |
240 |
2819 |
Y |
dataset_300* |
300 |
4658 |
Y |
dataset_600* |
600 |
18004 |
Y |
dataset_1200* |
1200 |
71785 |
Y |
dataset_2400* |
2400 |
288600 |
Y |
dataset_3000* |
3000 |
449727 |
Y |
dataset_6000* |
6000 |
1799413 |
Y |
dataset_12000* |
12000 |
7199863 |
Y |
dataset_24000* |
24000 |
28792361 |
Y |
This repository include two (2) additional tiny graph datasets to experiment before dealing with larger datasets.
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | node identification |
label | string | node label (type of node) |
properties | string | a dictionary containing properties related to the node. |
Each dataset contains the following columns:
Name of the Column | Type | Description |
ID | string | relationship identification |
source | string | identification of the source node in the relationship |
target | string | identification of the target node in the relationship |
label | string | relationship label (type of relationship) |
properties | string | a dictionary containing properties related to the relationship. |
Graph | Number of Nodes | Number of Edges | Sparse graph |
dataset_dummy* | 3 | 6 | N |
dataset_dummy2* | 3 | 6 | N |