The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part of a collaborative effort between the U.S. Geological Survey and Stockton University. Multibeam echo sounder bathymetry and backscatter data were collected along 741 kilometers of tracklines (approximately 200 square kilometers) of the coastal sea floor to regionally define its depth and morphology, as well as the type and distribution of sea-floor sediments. Six hundred ninety-two kilometers of seismic-reflection profile data were also collected to define the thickness and structure of sediment deposits in the inlet and offshore. These new data will help inform future management decisions that affect the natural and recreational resources of the area around and offshore of Little Egg Inlet. These mapping surveys provide high-quality data needed to build scientific knowledge of the evolution and behavior of the New Jersey barrier island system.
This data release includes four .csv files and one Esri shapefile which contain data on titanium-vanadium deposits hosted in mafic-ultramafic layered intrusions and massif anorthosite intrusions from around the world. Some of the data was used to create a grade and tonnage model for titanium-vanadium deposits hosted in mafic-ultramafic layered intrusions. Only deposits with reported grade and tonnage information were included in this data compilation. The Titanium_vanadium_deposits.csv and Titanium_vanadium_deposits.shp files list the deposits and associated information such as the host intrusion, location, grade, and tonnage data, along with other miscellaneous descriptive data about the deposits. The Titanium_vanadium_column_headings.csv file correlates the column headings in the Titanium_vanadium_deposits.csv file with the attribute field names in the Titanium_vanadium_deposits.shp file and provides a brief description of each column heading and attribute field name. The Titanium_vanadium_deposits_concentrate_grade.csv file lists the concentrate grade data for the deposits, when available. The Titanium_vanadium_deposits_references.csv file lists the abbreviated and full references that are cited in the Titanium_vanadium_deposits.csv, and Titanium_vanadium_deposits.shp, and Titanium_vanadium_deposits_concentrate_grade.csv files.
Florida COVID-19 Cases by County exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/ . https://doi.org/10.5038/USF-COVID-19-GISLive FDOH DataSource: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_COVID19_Cases/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. Up until 3/25 the FDOH Cases by County layer was updated twice a day, archives are taken from the 11AM update.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results. All PUIs fit into one of three residency types: 1. Florida residents tested in Florida2. Non-Florida residents tested in Florida3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outside of Florida, and were not exposed/infectious in Florida.Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state. Total Cases: The total (sum) number of Persons Under Investigation (PUI) who tested positive for COVID-19 while in Florida, as well as Florida residents who tested positive or were exposed/contagious while outside of Florida, and out-of-state residents who were exposed, contagious and/or tested in Florida.Deaths: The Deaths by Day chart shows the total number of Florida residents with confirmed COVID-19 that died on each calendar day (12:00 AM - 11:59 PM). Caution should be used in interpreting recent trends, as deaths are added as they are reported to the Department. Death data often has significant delays in reporting, so data within the past two weeks will be updated frequently.Prefix guide: "PUI" = PUI: Persons under surveillance (any person for which we have data about)"T_ " = Testing: Testing information for all PUIs and cases."C_" = Cases only: Information about cases, which are those persons who have COVID-19 positive test results on file“W_” = Surveillance and syndromic dataKey Data about Testing:T_negative : Testing: Total negative persons tested for all Florida and non-Florida residents, including Florida residents tested outside of the state, and those tested at private facilities.T_positive : Testing: Total positive persons tested for all Florida and non-Florida resident types, including Florida residents tested outside of the state, and those tested at private facilities.PUILab_Yes : All persons tested with lab results on file, including negative, positive and inconclusive. This total does NOT include those who are waiting to be tested or have submitted tests to labs for which results are still pending.Key Data about Confirmed COVID-19 Positive Cases: CasesAll: Cases only: The sum total of all positive cases, including Florida residents in Florida, Florida residents outside Florida, and non-Florida residents in FloridaFLResDeaths: Deaths of Florida ResidentsC_Hosp_Yes : Cases (confirmed positive) with a hospital admission notedC_AgeRange Cases Only: Age range for all cases, regardless of residency typeC_AgeMedian: Cases Only: Median range for all cases, regardless of residency typeC_AllResTypes : Cases Only: Sum of COVID-19 positive Florida Residents; includes in and out of state Florida residents, but does not include out-of-state residents who were treated/tested/isolated in Florida. All questions regarding this dataset should be directed to the Florida Department of Health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains spatial boundaries for the DevWA Area relating to the City of Perth Planning Scheme No.2.Please see https://perth.wa.gov.au/develop/planning-framework/planning-schemes and https://perth.wa.gov.au/develop/planning-framework/planning-policies-and-precinct-plans for more information regarding the City of Perth Planning Schemes. Show full description
For a detailed description of the database of which this record is only one part, please see the HarDWR meta-record. In order to hold a water right in the western United States, an entity, (e.g., an individual, corporation, municipality, sovereign government, or non-profit) must register a physical document with the state's water regulatory agency. State water agencies each maintain their own database containing all registered water right documents within the state, along with relevant metadata such as the point of diversion and place of use of the water. All western U.S. states have digitized their individual water rights databases, along with the geospatial data describing the spatial units where water rights are managed. Each state maintains and provides their own water rights data in accordance with individual state regulations and standards. We collected water rights databases from 11 western United States states either by downloading them from publicly accessible web portals, or by contacting state water management representatives; detailed descriptions of where and when the data was collected is provided in the README.txt, as well as Lisk et al.(in review). This collection of data are those raw water rights. Each state formats their data differently, meaning that file types, field availability, and names vary from state to state. Note, the data provided here reflects the state of the water rights databases at the time we collected the data; updates have likely occurred in many states. Some pieces of information are common among all states. These are: priority date, volume or flow of water allowed by the right, stated water use of the right, and some means of identifying the geography and source of the water pertaining to the right - typically the coordinates of the Point of Diversion (PoD) of a waterbody or well. Arizona regulates water in a different way than the other 10 states. Outside of some relatively small critical agricultural areas called Active Management Areas (AMAs), Arizona does not maintain any water rights. However, the state does require registration of surface and groundwater pumping devices, which includes disclosing the mechanical specifics of the devices. We used these records as a proxy for water rights. Each state, and their respective water right authorities, have made their water right records available for non-commercial reference uses. In addition, the states make no guarantees as to the completeness, accuracy, or timeliness of their respective databases, let alone the modifications which we, the authors of this paper, have made to the collected records. None of the states should be held liable for using this data outside of its intended use. In addition, the following states have requested specifically worded disclaimers to be included with their data. Colorado: "The data made available here has been modified for use from its original source, which is the State of Colorado. THE STATE OF COLORADO MAKES NO REPRESENTATIONS OR WARRANTY AS TO THE COMPLETENESS, ACCURACY, TIMELINESS, OR CONTENT OF ANY DATA MADE AVAILABLE THROUGH THIS SITE. THE STATE OF COLORADO EXPRESSLY DISCLAIMS ALL WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. The data is subject to change as modifications and updates are complete. It is understood that the information contained in the Web feed is being used at one's own risk." Montana: "The Montana State Library provides this product/service for informational purposes only. The Library did not produce it for, nor is it suitable for legal, engineering, or surveying purposes. Consumers of this information should review or consult the primary data and information sources to ascertain the viability of the information for their purposes. The Library provides these data in good faith but does not represent or warrant its accuracy, adequacy, or completeness. In no event shall the Library be liable for any incorrect results or analysis; any direct, indirect, special, or consequential damages to any party; or any lost profits arising out of or in connection with the use or the inability to use the data or the services provided. The Library makes these data and services available as a convenience to the public, and for no other purpose. The Library reserves the right to change or revise published data and/or services at any time." Oregon: "This product is for informational purposes and may not have been prepared for, or be suitable for legal, engineering, or surveying purposes. Users of this information should review or consult the primary data and information sources to ascertain the usability of the information." The available data is provided as a series of compressed files, which each containing the full data collected from each state. Some of the files have been renamed, to more easily know which state the data belongs to. The file renaming was also required as some files from different states had the same name. In other cases, the data for a state has been placed in a folder indicating which state it belongs to - as the state organized its data by selected subregions. Below is a brief description of the format of the collected data from each state. ArizonaRights_StatementOfClaimants: A folder containing a database of interconnected CSV files. The soc_erd.pdf file contains a visual flowchart of how the various files are connected, beginning with SOC_MAIN.csv in the center of the page. ArizonaRights_SurfaceWaterRightsData: A folder containing a database of a single Shapefile and 10 associated CSVs. SurfaceWater.pdf contains a visual flowchart of how the various files are connected, beginning with ADWR_SW_APPL_REGRY.csv. ArizonaRights_Well55Registry: A folder containing a database of a single Shapefile and 59 associated CSVs. Wells55.pdf contains a visual flowchart of how the various files are connected, beginning with WellRegistry.shp. CaliforniaRights_eWRIMS_directDatabase: A folder containing a collection of four "series" Microsoft Excel files, as either XLS or XLSX. The four "series": byCounty, byEntity (what type of legal entity holds the right), byUse (stated water use), and byWatershed, are various methods by which the California water rights are organized within the state's database. However, it was observed that by only collecting a single series, not all water rights were being provided. So, essentially, the majority of records within each "series" are copies of each other, with each "series" containing some unique records. ColoradoRights_NetAmounts: A folder containing 78 CSV files, with one file per Colorado Water District. IdahoRights_PointOfDiversion: A Shapefile containing the Points of Diversion for the entire state of Idaho. IdahoRights_PlaceOfUse: A Shapefile containing the Place of Use polygons for the entire state of Idaho. MontanaRights_WaterRights: A Geodatabase file containing the Points of Diversion and Places of Use for the entire state of Montana. The name of the Points of Diversion Feature Layer within the Geodatabase is "WRDIV", and the name of the Places of Use Feature Layer is "WRPOU". NevadaRights_POD_Sites: A Shapefile containing the Points of Diversion for the entire state of Nevada. NewMexicoRights_Points_of_Diversion: A Shapefile containing the Points of Diversion for the entire state of New Mexico. OregonRights_state_shp: A folder containing 36 Shapefiles and are split between "pod" (Point of Diversion) and "pou" (Place of Use) for each water management basin within Oregon. In other words, each basin has one "pod" file and one "pou" file. The "pod" files are point shapes, and the "pou" files are polygons. UtahRights_Points_of_Diversion: A Shapefile containing the Points of Diversion for the entire state of Utah. WashingtonRights_WaterDiversions_ECY_NHD: A Geodatabase file containing both the Points of Diversion for the entire state of Washington. The name of the Feature Layer within the Geodatabase is "WaterDiversions_ECY_NHD". WyomingRights: A folder containing four subdirectories, one for each Wyoming Water Division. Each Division directory includes a varying number of subdirectories for each Wyoming Water District. Each District folder contains two copies of the Point of Diversion records for that area, with one copying being in CSV and one copy in Microsoft Excel XLS format.
Survey results are available in two seperate formats. The .csv output contains all non-spatial data from the main survey form, and can be loaded in spreadsheet programs such as Microsoft Excel. The spatial content of the survey is available as a zipped collection of one or more shapefiles. These files can be opened in GIS applications such as ArcGISor QGIS. Please note, only completed survey responses are exported. Those still in draft will be excluded.Output columns in both the CSV and shapefile formats are named based on the exportidspecified in the form field configuration. If you are looking to analyze spatial data from the shapefiles based on attributes collected in the main response form, you can join fields from the CSV file with spatial features by joining on the RESPONSE_ID field.
This data release contains the analytical results and evaluated source data files of geospatial analyses for identifying areas in Alaska that may be prospective for different types of lode gold deposits, including orogenic, reduced-intrusion-related, epithermal, and gold-bearing porphyry. The spatial analysis is based on queries of statewide source datasets of aeromagnetic surveys, Alaska Geochemical Database (AGDB3), Alaska Resource Data File (ARDF), and Alaska Geologic Map (SIM3340) within areas defined by 12-digit HUCs (subwatersheds) from the National Watershed Boundary dataset. The packages of files available for download are: 1. LodeGold_Results_gdb.zip - The analytical results in geodatabase polygon feature classes which contain the scores for each source dataset layer query, the accumulative score, and a designation for high, medium, or low potential and high, medium, or low certainty for a deposit type within the HUC. The data is described by FGDC metadata. An mxd file, and cartographic feature classes are provided for display of the results in ArcMap. An included README file describes the complete contents of the zip file. 2. LodeGold_Results_shape.zip - Copies of the results from the geodatabase are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file. 3. LodeGold_SourceData_gdb.zip - The source datasets in geodatabase and geotiff format. Data layers include aeromagnetic surveys, AGDB3, ARDF, lithology from SIM3340, and HUC subwatersheds. The data is described by FGDC metadata. An mxd file and cartographic feature classes are provided for display of the source data in ArcMap. Also included are the python scripts used to perform the analyses. Users may modify the scripts to design their own analyses. The included README files describe the complete contents of the zip file and explain the usage of the scripts. 4. LodeGold_SourceData_shape.zip - Copies of the geodatabase source dataset derivatives from ARDF and lithology from SIM3340 created for this analysis are also provided in shapefile and CSV formats. The included README file describes the complete contents of the zip file.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Download high-quality, up-to-date Hungary shapefile boundaries (SHP, projection system SRID 4326). Our Hungary Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Residential Schools Locations Dataset in shapefile format contains the locations (latitude and longitude) of Residential Schools and student hostels operated by the federal government in Canada. All the residential schools and hostels that are listed in the Indian Residential School Settlement Agreement are included in this data set, as well as several Industrial schools and residential schools that were not part of the IRRSA. This version of the dataset doesn’t include the five schools under the Newfoundland and Labrador Residential Schools Settlement Agreement. The original school location data was created by the Truth and Reconciliation Commission, and was provided to the researcher (Rosa Orlandini) by the National Centre for Truth and Reconciliation in April 2017. The data set was created by Rosa Orlandini, and builds upon and enhances the previous work of the Truth and Reconcilation Commission, Morgan Hite (creator of the Atlas of Indian Residential Schools in Canada that was produced for the Tk'emlups First Nation and Justice for Day Scholar's Initiative, and Stephanie Pyne (project lead for the Residential Schools Interactive Map). Each individual school location in this dataset is attributed either to RSIM, Morgan Hite, NCTR or Rosa Orlandini. Many schools/hostels had several locations throughout the history of the institution. If the school/hostel moved from its’ original location to another property, then the school is considered to have two unique locations in this data set,the original location and the new location. For example, Lejac Indian Residential School had two locations while it was operating, Stuart Lake and Fraser Lake. If a new school building was constructed on the same property as the original school building, it isn't considered to be a new location, as is the case of Girouard Indian Residential School. When the precise location is known, the coordinates of the main building are provided, and when the precise location of the building isn’t known, an approximate location is provided. For each residential school institution location, the following information is provided: official names, alternative name, dates of operation, religious affiliation, latitude and longitude coordinates, community location, Indigenous community name, contributor (of the location coordinates), school/institution photo (when available), location point precision, type of school (hostel or residential school) and list of references used to determine the location of the main buildings or sites. The geographic coordinate system for this dataset is WGS 1984. The data in shapefile format [IRS_locations.zip] can be viewed and mapped in a Geographic Information System software. Detailed metadata in xml format is available as part of the data in shapefile format. In addition, the field name descriptions (IRS_locfields.csv) and the detailed locations descriptions (IRS_locdescription.csv) should be used alongside the data in shapefile format.
We present a flora and fauna dataset for the Mira-Mataje binational basins. This is an area shared between southwestern Colombia and northwestern Ecuador, where both the Chocó and Tropical Andes biodiversity hotspots converge. Information from 120 sources was systematized in the Darwin Core Archive (DwC-A) standard and geospatial vector data format for geographic information systems (GIS) (shapefiles). Sources included natural history museums, published literature, and citizen science repositories across 18 countries. The resulting database has 33,460 records from 5,281 species, of which 1,083 are endemic and 680 threatened. The diversity represented in the dataset is equivalent to 10\% of the total plant species and 26\% of the total terrestrial vertebrate species in the hotspots. It corresponds to 0.07\% of their total area. The dataset can be used to estimate and compare biodiversity patterns with environmental parameters and provide value to ecosystems, ecoregions, and protected areas. The dataset is a baseline for future assessments of biodiversity in the face of environmental degradation, climate change, and accelerated extinction processes. The data has been formally presented in the manuscript entitled "The Tropical Andes Biodiversity Hotspot: A Comprehensive Dataset for the Mira-Mataje Binational Basins" in the journal "Scientific Data". To maintain DOI integrity, this version will not change after publication of the manuscript and therefore we cannot provide further references on volume, issue, and DOI of manuscript publication. - Data format 1: The .rds file extension saves a single object to be read in R and provides better compression, serialization, and integration within the R environment, than simple .csv files. The description of file names is in the original manuscript. -- m_m_flora_2021_voucher_ecuador.rds -- m_m_flora_2021_observation_ecuador.rds -- m_m_flora_2021_total_ecuador.rds -- m_m_fauna_2021_ecuador.rds - Data format 2: The .csv file has been encoded in UTF-8, and is an ASCII file with text separated by commas. The description of file names is in the original manuscript. -- m_m_flora_fauna_2021_all.zip. This file includes all biodiversity datasets. -- m_m_flora_2021_voucher_ecuador.csv -- m_m_flora_2021_observation_ecuador.csv -- m_m_flora_2021_total_ecuador.csv -- m_m_fauna_2021_ecuador.csv - Data format 3: We consolidated a shapefile for the basin containing layers for vegetation ecosystems and the total number of occurrences, species, and endemic and threatened species for each ecosystem. -- biodiversity_measures_mira_mataje.zip. This file includes the .shp file and accessory geomatic files. - A set of 3D shaded-relief map representations of the data in the shapefile can be found at https://doi.org/10.6084/m9.figshare.23499180.v4 Three taxonomic data tables were used in our technical validation of the presented dataset. These three files are: 1) the_catalog_of_life.tsv (Source: Bánki, O. et al. Catalogue of life checklist (version 2024-03-26). https://doi.org/10.48580/dfz8d (2024)) 2) world_checklist_of_vascular_plants_names.csv (we are also including ancillary tables "world_checklist_of_vascular_plants_distribution.csv", and "README_world_checklist_of_vascular_plants_.xlsx") (Source: Govaerts, R., Lughadha, E. N., Black, N., Turner, R. & Paton, A. The World Checklist of Vascular Plants is a continuously updated resource for exploring global plant diversity. Sci. Data 8, 215, 10.1038/s41597-021-00997-6 (2021).) 3) world_flora_online.csv (Source: The World Flora Online Consortium et al. World flora online plant list December 2023, 10.5281/zenodo.10425161 (2023).)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This open-access geospatial dataset (downloadable in csv or shapefile format) contains a total of 11 environmental indicators calculated for 1865 U.S. prisons. This consists of all active state- and federally-operated prisons according to the Homeland Infrastructure Foundation-Level Data (HIFLD), last updated June 2022. This dataset includes both raw values and percentiles for each indicator. Percentiles denote a way to rank prisons among each other, where the number represents the percentage of prisons that are equal to or have a lower ranking than that prison. Higher percentile values indicate higher vulnerability to that specific environmental burden compared to all the other prisons. Full descriptions of how each indicator was calculated and the datasets used can be found here: https://github.com/GeospatialCentroid/NASA-prison-EJ/blob/main/doc/indicator_metadata.md.
From these raw indicator values and percentiles, we also developed three individual component scores to summarize similar indicators, and to then create a single vulnerability index (methods based on other EJ screening tools such as Colorado Enviroscreen, CalEnviroScreen and EPA’s EJ Screen). The three component scores include climate vulnerability, environmental exposures and environmental effects. Climate vulnerability factors reflect climate change risks that have been associated with health impacts and includes flood risk, wildfire risk, heat exposure and canopy cover indicators. Environmental exposures reflect variables of different types of pollution people may come into contact with (but not a real-time exposure to pollution) and includes ozone, particulate matter (PM 2.5), traffic proximity and pesticide use. Environmental effects indicators are based on the proximity of toxic chemical facilities and includes proximity to risk management plan (RMP) facilities, National Priority List (NPL)/Superfund facilities, and hazardous waste facilities. Component scores were calculated by taking the geometric mean of the indicator percentiles. Using the geometric mean was most appropriate for our dataset since many values may be related (e.g., canopy cover and temperature are known to be correlated).
To calculate a final, standardized vulnerability score to compare overall environmental burdens at prisons across the U.S., we took the average of each component score and then converted those values to a percentile rank. While this index only compares environmental burdens among prisons and is not comparable to non-prison sites/communities, it will be able to heighten awareness of prisons most vulnerable to negative environmental impacts at county, state and national scales. As an open-access dataset it also provides new opportunities for other researchers, journalists, activists, government officials and others to further analyze the data for their needs and make comparisons between prisons and other communities. This is made even easier as we produced the methodology for this project as an open-source code base so that others can apply the code to calculate individual indicators for any spatial boundaries of interest. The codebase can be found on GitHub (https://github.com/GeospatialCentroid/NASA-prison-EJ) and is also published via Zenodo (https://zenodo.org/record/8306856).
Florida COVID-19 Cases by Zip Code exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/.https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_Cases_Zips_COVID19/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Q. How is the zip code assigned to a person or case? Cases are counted in a zip code based on residential or mailing address, or by healthcare provider or lab address if other addresses are missing.Q. Why is the city data and the zip code data different? The zip code data is supplied to a healthcare worker, case manager, or lab technician by each individual during intake when a test is first recorded. When entering a zip code, the system we use automatically produces a list of cities within that zip code for the individual to further specify where they live. Sometimes the individual uses the postal city, which may be Miami, when in reality that person lives outside the City of Miami boundaries in the jurisdiction of Coral Gables. Many zip codes contain multiple city/town jurisdictions, and about 20% of zip codes overlap more than one county. Q: How is the Zip Code data calculated and/or shown? If a COUNTY has five or more cases (total): • In zip codes with fewer than 5 cases, the total number of cases is shown as “<5”. • Zip codes with 0 cases in these counties are “0" or "No cases.” • All values of 5 or greater are shown by the actual number of cases in that zip code. If a COUNTY has fewer than five total cases across all of its zip codes, then ALL of the zip codes within that county show the total number of cases as "Suppressed." Q: My zip code says "SUPPRESSED" under cases. What does that mean? IF Suppressed: This county currently has fewer than five cases across all zip codes in the county. In an effort to protect the privacy of our COVID-19-Positive residents, zip code data is only available in counties where five or more cases have been reported. Q: What about PO Box zip codes, or zip codes with letters, like 334MH? PO Box zip codes are not shown in the map. “Filler” zip codes with letters, like 334MH, are typically areas where no or very few people live – like the Florida Everglades, and are shown on the map like any other zip code. Key Data about Cases by Zip Code: ZIP = The zip code COUNTYNAME = The county for the zip code (multi-part counties have been split) ZIPX = The unique county-zip identifier used to pair the data during updates POName = The postal address name assigned to the zip code place_labels = A list of the municipalities intersecting the zip code boundary c_places = The list of cities cases self-reported as being residents of Cases_1 = The number of cases in each zip code, with conditions*LabelY = A calculated field for map display only. All questions regarding this dataset should be directed to the Florida Department of Health.
Check out this interactive visualization of the data and the Philadelphia Police Department's Outlook towards 21st Century Policing. View metadata for key information about this dataset.Please note that this is a large dataset and therefore CSV and SHP files might give an error when you try to download them. If possible, use the API link below, instead of CSV/SHP formats, to access the data. If you can’t use the API and you have trouble downloading the full CSV or SHP files, we’ve split up the dataset by year. Please be sure to download data for all of the years to see the full dataset. You can learn more about how to use the API at Carto’s SQL API site and in the Carto guide in the section on making calls to the API.For questions about this dataset, contact publicsafetygis@phila.gov. For technical assistance, email maps@phila.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Following the procedure of Jupyter notebook, users can create SUMMA input using *.csv files. If users want to create new SUMMA input, they can prepare input by csv format. After that, users are able to simulate SUMMA with PySUMMA and Plotting with SUMMA output by the various way.
Following the step of this notebooks 1. Creating SUMMA input from *.csv files 2. Run SUMMA Model using PySUMMA 3. Plotting with SUMMA output - Time series Plotting - 2D Plotting (heatmap, hovmoller) - Calculating water balance variables and Plotting - Spatial Plotting with shapefile
Florida COVID-19 Cases by Zip Code exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2020. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/.https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://services1.arcgis.com/CY1LXxl9zlJeBuRZ/arcgis/rest/services/Florida_Cases_Zips_COVID19/FeatureServerFor data 5/10/2020 or after: Archived data was exported directly from the live FDOH layer into the archive. For data prior to 5/10/2020: Data was exported by the University of South Florida - Digital Heritage and Humanities Collection using ArcGIS Pro Software. Data was then converted to shapefile and csv and uploaded into ArcGIS Online archive. For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from FDOH.Q. How is the zip code assigned to a person or case? Cases are counted in a zip code based on residential or mailing address, or by healthcare provider or lab address if other addresses are missing.Q. Why is the city data and the zip code data different? The zip code data is supplied to a healthcare worker, case manager, or lab technician by each individual during intake when a test is first recorded. When entering a zip code, the system we use automatically produces a list of cities within that zip code for the individual to further specify where they live. Sometimes the individual uses the postal city, which may be Miami, when in reality that person lives outside the City of Miami boundaries in the jurisdiction of Coral Gables. Many zip codes contain multiple city/town jurisdictions, and about 20% of zip codes overlap more than one county. Q: How is the Zip Code data calculated and/or shown? If a COUNTY has five or more cases (total): • In zip codes with fewer than 5 cases, the total number of cases is shown as “<5”. • Zip codes with 0 cases in these counties are “0" or "No cases.” • All values of 5 or greater are shown by the actual number of cases in that zip code. If a COUNTY has fewer than five total cases across all of its zip codes, then ALL of the zip codes within that county show the total number of cases as "Suppressed." Q: My zip code says "SUPPRESSED" under cases. What does that mean? IF Suppressed: This county currently has fewer than five cases across all zip codes in the county. In an effort to protect the privacy of our COVID-19-Positive residents, zip code data is only available in counties where five or more cases have been reported. Q: What about PO Box zip codes, or zip codes with letters, like 334MH? PO Box zip codes are not shown in the map. “Filler” zip codes with letters, like 334MH, are typically areas where no or very few people live – like the Florida Everglades, and are shown on the map like any other zip code. Key Data about Cases by Zip Code: ZIP = The zip code COUNTYNAME = The county for the zip code (multi-part counties have been split) ZIPX = The unique county-zip identifier used to pair the data during updates POName = The postal address name assigned to the zip code place_labels = A list of the municipalities intersecting the zip code boundary c_places = The list of cities cases self-reported as being residents of Cases_1 = The number of cases in each zip code, with conditions*LabelY = A calculated field for map display only. All questions regarding this dataset should be directed to the Florida Department of Health.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The datasets include interpolated input values and script can be used to reproduce the study described in the Manuscript published in Geophysical Research Letters entitled:"Machine learning-based analysis of geological susceptibility to induced seismicity in the Montney Formation, Canada."Included files:1. Interpolated grid files: - pressure gradients [pressure_gradients.csv]- Montney thickness [montney_thickess.csv]- Montney Formation tops [montney_tops.csv]- Debolt Formation tops [debolt_tops.csv]- Phanerozoic thickness [phanerozoic_thickness.csv]- local SHmax variance [local_shmax_variance.csv]2. Raw data files:- SHmax azimuths from the Western Canada (wsm_montney_abc_quality.csv)- phanerozoic shapefiles (isolines every 1000m) [digitized_phanerozoic_isolines_1000m.zip]- Cordilleran thrust and fold belt shapefile [shape_files_dist_belt.zip]- faults shapefiles (digitized from Furlong et al., 2020) [faults.zip]3. Raw AER, NRCan and CASC earthquake catalogues. [EQ_catalogues_to_compile.zip]4. Compiled input dataset (WELLS_INPUT.csv)5. Python script with logistic regression algorithm (logistic_regression.py)
This data release supports interpretations of field-observed root distributions within a shallow landslide headscarp (CB1) located below Mettman Ridge within the Oregon Coast Range, approximately 15 km northeast of Coos Bay, Oregon, USA. (Schmidt_2021_CB1_topo_far.png and Schmidt_2021_CB1_topo_close.png). Root species, diameter (greater than or equal to 1 mm), general orientation relative to the slide scarp, and depth below ground surface were characterized immediately following landsliding in response to large-magnitude precipitation in November 1996 which triggered thousands of landslides within the area (Montgomery and others, 2009). The enclosed data includes: (1) tests of root-thread failure as a function of root diameter and tensile load for different plant species applicable to the broader Oregon Coast Range and (2) tape and compass survey of the planform geometry of the CB1 landslide and the roots observed in the slide scarp. Root diameter and load measurements were principally collected in the general area of the CB1 slide for 12 species listed in: Schmidt_2021_OR_root_species_list.csv. Methodology of the failure tests included identifying roots of a given plant species, trimming root threads into 15-20 cm long segments, measuring diameters including bark (up to 6.5 mm) with a micrometer at multiple points along the segment to arrive at an average, clamping a segment end to a calibrated spring and loading roots until failure recording the maximum load. Files containing the tensile failure tests described in Schmidt and others (2001) include root diameter (mm), critical tensile load at failure (kg), root cross-sectional area (m^2), and tensile strength (MPa). Tensile strengths were calculated as: (critical tensile load at failure * gravitational acceleration)/root cross-sectional area. The files are labeled: Schmidt_2021_OR_root_AceCir.csv, Schmidt_2021_OR_root_AceMac.csv, Schmidt_2021_OR_root_AlnRub.csv, Schmidt_2021_OR_root_AnaMar.csv, Schmidt_2021_OR_root_DigPur.csv, Schmidt_2021_OR_root_MahNer.csv, Schmidt_2021_OR_root_PolMun.csv, Schmidt_2021_OR_root_PseMen_damaged.csv, Schmidt_2021_OR_root_PseMen_healthy.csv, Schmidt_2021_OR_root_RubDis.csv, Schmidt_2021_OR_root_RubPar.csv, Schmidt_2021_OR_root_SamCae.csv, and Schmidt_2021_OR_root_TsuHet.csv. File naming follows the convention of adopting the first three letters of the binomial system defining genus and species of their Latin names. Live and damaged roots were identified based on their color, texture, plasticity, adherence of bark to woody material, and compressibility. For example, healthy live Douglas-fir (Pseudotsuga menziesii) roots (Schmidt_2021_OR_root_PseMen_healthy.csv) have a crimson-colored inner bark, darkening to a brownish red in dead Douglas-fir roots. Both are distinctive colors. Live roots exhibited plastic responses to bending and strong adherence of bark, whereas dead roots displayed brittle behavior with bending and poor adherence of bark to the underlying woody material. Measured tensile strengths of damaged root threads with fungal infections following selective tree harvest using yarding operations that damaged bark of standing trees expressed significantly lower tensile strengths than their ultimate living tensile strengths (Schmidt_2021_OR_root_PseMen_damaged.csv). The CB1 site was clear cut logged in 1987 and replanted with Douglas fir saplings in 1989. Vegetation in the vicinity of the failure scarp is dominated by young Douglas fir saplings planted two years after the clear cut, blue elderberry (Sambucus caerulea), thimbleberry (Rubus parviflorus), foxglove (Digitalis purpurea), and Himalayan blackberry (Rubus discolor). The remaining seven species are provided for context of more regional studies. The CB1 site is a hillslope hollow that failed as a shallow landslide and mobilized as a debris flow during heavy rainfall in November 1996. Prior to debris flow mobilization, the ~5-m wide slide with a source area of roughly 860 m^2 and an average slope of 43° displaced and broke numerous roots. Following landsliding, field observations noted a preponderance of exposed, blunt broken root stubs within the scarp. Roots were not straight and smooth, but rather exhibited tortuous growth paths with firmly anchored, interlocking structures. The planform geometry represented by a tape and compass field survey is presented as starting and ending points of slide margin segments of roughly equal colluvial soil depths above saprolite or bedrock (Schmidt_2021_CB1_scarp_geometry.csv and Schmidt_2021_CB1_scarp_pts.shp). The graphic Schmidt_2021_CB1_scarp_pts_poly.png shows the horse-shoe shaped profile and its numbered scarp segments. Segment numbers enclosed within parentheses indicate segments where roots were not counted owing to occlusion by prior ground disturbance. The shapefile Schmidt_2021_CB1_scarp_poly.shp also represents the scarp line segments. The file Schmidt_2021_CB1_segment_info.csv presents the segment information as left and right cumulative lengths, averaged colluvium soils depths for each segment, and inclinations of the ground surface slope relative to horizontal along the perimeter (P) and the slide scarp face (F). Lastly, Schmidt_2021_CB1_rootdata_scarp.csv represents root diameter of individual threads measured by a micrometer, species, depth below ground surface, live vs. dead roots, general root orientation (parallel or perpendicular) relative to scarp perimeter, and cumulative perimeter distance within the scarp segments. At CB1 specifically and more generally across the Oregon Coast Range, root reinforcement occurs primarily by lateral reinforcement with typically much smaller basal reinforcements.
Download high-quality, up-to-date Egypt shapefile boundaries (SHP, projection system SRID 4326). Our Egypt Shapefile Database offers comprehensive boundary data for spatial analysis, including administrative areas and geographic boundaries. This dataset contains accurate and up-to-date information on all administrative divisions, zip codes, cities, and geographic boundaries, making it an invaluable resource for various applications such as geographic analysis, map and visualization, reporting and business intelligence (BI), master data management, logistics and supply chain management, and sales and marketing. Our location data packages are available in various formats, including Shapefile, GeoJSON, KML, ASC, DAT, CSV, and GML, optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more. Companies choose our location databases for their enterprise-grade service, reduction in integration time and cost by 30%, and weekly updates to ensure the highest quality.
The 119th Congressional Districts dataset reflects boundaries from January 03, 2025 from the United States Census Bureau (USCB), and the attributes are updated every Sunday from the United States House of Representatives and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Information for each member of Congress is appended to the Census Congressional District shapefile using information from the Office of the Clerk, U.S. House of Representatives' website https://clerk.house.gov/xml/lists/MemberData.xml and its corresponding XML file. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. This dataset also includes 9 geographies for non-voting at large delegate districts, resident commissioner districts, and congressional districts that are not defined. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 119th Congress is seated from January 3, 2025 through January 3, 2027. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by May 31, 2024. A data dictionary, or other source of attribute information, is accessible at https://doi.org/10.21949/1529006
The natural resiliency of the New Jersey barrier island system, and the efficacy of management efforts to reduce vulnerability, depends on the ability of the system to recover and maintain equilibrium in response to storms and persistent coastal change. This resiliency is largely dependent on the availability of sand in the beach system. In an effort to better understand the system's sand budget and processes in which this system evolves, high-resolution geophysical mapping of the sea floor in Little Egg Inlet and along the southern end of Long Beach Island near Beach Haven, New Jersey was conducted from May 31 to June 10, 2018, followed by a sea floor sampling survey conducted from October 22 to 23, 2018, as part of a collaborative effort between the U.S. Geological Survey and Stockton University. Multibeam echo sounder bathymetry and backscatter data were collected along 741 kilometers of tracklines (approximately 200 square kilometers) of the coastal sea floor to regionally define its depth and morphology, as well as the type and distribution of sea-floor sediments. Six hundred ninety-two kilometers of seismic-reflection profile data were also collected to define the thickness and structure of sediment deposits in the inlet and offshore. These new data will help inform future management decisions that affect the natural and recreational resources of the area around and offshore of Little Egg Inlet. These mapping surveys provide high-quality data needed to build scientific knowledge of the evolution and behavior of the New Jersey barrier island system.