25 datasets found
  1. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  2. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • datasets.ai
    • +1more
    application/rdfxml +5
    Updated Oct 8, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2020). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd
    Explore at:
    application/rdfxml, json, csv, tsv, xml, application/rssxmlAvailable download formats
    Dataset updated
    Oct 8, 2020
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020.

    Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  3. d

    COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Tests, Cases, and Deaths (By Town) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-tests-cases-and-deaths-by-town
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases, tests, and associated deaths from COVID-19 that have been reported among Connecticut residents. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. The case rate per 100,000 includes probable and confirmed cases. Probable and confirmed are defined using the CSTE case definition, which is available online: https://cdn.ymaws.com/www.cste.org/resource/resmgr/2020ps/Interim-20-ID-01_COVID-19.pdf The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical examiner) using their best clinical judgment. Additionally, all COVID-19 deaths, including suspected or related, are required to be reported to OCME. On April 4, 2020, CT DPH and OCME released a joint memo to providers and facilities within Connecticut providing guidelines for certifying deaths due to COVID-19 that were consistent with the CDC’s guidelines and a reminder of the required reporting to OCME.25,26 As of July 1, 2021, OCME had reviewed every case reported and performed additional investigation on about one-third of reported deaths to better ascertain if COVID-19 did or did not cause or contribute to the death. Some of these investigations resulted in the OCME performing postmortem swabs for PCR testing on individuals whose deaths were suspected to be due to COVID-19, but antemortem diagnosis was unable to be made.31 The OCME issued or re-issued about 10% of COVID-19 death certificates and, when appropriate, removed COVID-19 from the death certificate. For standardization and tabulation of mortality statistics, written cause of death statements made by the certifiers on death certificates are sent to the National Center for Health Statistics (NCHS) at the CDC which assigns cause of death codes according to the International Causes of Disease 10th Revision (ICD-10) classification system.25,26 CO

  4. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  5. A

    ‘COVID-19 case rate per 100,000 population and percent test positivity in...

    • analyst-2.ai
    Updated Feb 13, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-14-days-by-town-d334/760f38b9/?iid=006-223&v=presentation
    Explore at:
    Dataset updated
    Feb 13, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/d5e87e00-5f12-4c5e-9fb7-9718e5dbef35 on 13 February 2022.

    --- Dataset description provided by original source is as follows ---

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

    --- Original source retains full ownership of the source dataset ---

  6. d

    CT School Learning Model Indicators by County (14-day metrics) - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). CT School Learning Model Indicators by County (14-day metrics) - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/ct-school-learning-model-indicators-by-county-14-day-metrics
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    NOTE: This dataset pertains only to the 2020-2021 school year and is no longer being updated. For additional data on COVID-19, visit data.ct.gov/coronavirus. This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education. Data represent daily averages for two-week periods by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary. These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures. For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County/rpph-4ysy As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

  7. c

    CT School Learning Model Indicators by County (7-day metrics) - ARCHIVE

    • s.cnmilf.com
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). CT School Learning Model Indicators by County (7-day metrics) - ARCHIVE [Dataset]. https://s.cnmilf.com/user74170196/https/catalog.data.gov/dataset/ct-school-learning-model-indicators-by-county-7-day-metrics-archive
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Area covered
    Connecticut
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, the school learning model indicator metrics will be calculated using a 14-day average rather than a 7-day average. The new school learning model indicators dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County-14-d/e4bh-ax24 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education. Data represent daily averages for each week by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital _location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures. For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  8. d

    COVID-19 Cases and Deaths by Age Group - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Age Group - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-age-group
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken out by age group. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the daily COVID-19 update. Data are reported daily, with timestamps indicated in the daily briefings posted at: portal.ct.gov/coronavirus. Data are subject to future revision as reporting changes. Starting in July 2020, this dataset will be updated every weekday. Additional notes: A delay in the data pull schedule occurred on 06/23/2020. Data from 06/22/2020 was processed on 06/23/2020 at 3:30 PM. The normal data cycle resumed with the data for 06/23/2020. A network outage on 05/19/2020 resulted in a change in the data pull schedule. Data from 5/19/2020 was processed on 05/20/2020 at 12:00 PM. Data from 5/20/2020 was processed on 5/20/2020 8:30 PM. The normal data cycle resumed on 05/20/2020 with the 8:30 PM data pull. As a result of the network outage, the timestamp on the datasets on the Open Data Portal differ from the timestamp in DPH's daily PDF reports. Starting 5/10/2021, the date field will represent the date this data was updated on data.ct.gov. Previously the date the data was pulled by DPH was listed, which typically coincided with the date before the data was published on data.ct.gov. This change was made to standardize the COVID-19 data sets on data.ct.gov.

  9. A

    ‘CT School Learning Model Indicators by County (14-day metrics) - ARCHIVE’...

    • analyst-2.ai
    Updated Jan 26, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2022). ‘CT School Learning Model Indicators by County (14-day metrics) - ARCHIVE’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/data-gov-ct-school-learning-model-indicators-by-county-14-day-metrics-archive-1346/88dbc343/?iid=004-752&v=presentation
    Explore at:
    Dataset updated
    Jan 26, 2022
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Connecticut
    Description

    Analysis of ‘CT School Learning Model Indicators by County (14-day metrics) - ARCHIVE’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://catalog.data.gov/dataset/feda0dbb-905d-48c8-81ec-590689a6da8f on 26 January 2022.

    --- Dataset description provided by original source is as follows ---

    NOTE: This dataset pertains only to the 2020-2021 school year and is no longer being updated. For additional data on COVID-19, visit data.ct.gov/coronavirus.

    This dataset includes the leading and secondary metrics identified by the Connecticut Department of Health (DPH) and the Department of Education (CSDE) to support local district decision-making on the level of in-person, hybrid (blended), and remote learning model for Pre K-12 education.

    Data represent daily averages for two-week periods by date of specimen collection (cases and positivity), date of hospital admission, or date of ED visit. Hospitalization data come from the Connecticut Hospital Association and are based on hospital location, not county of patient residence. COVID-19-like illness includes fever and cough or shortness of breath or difficulty breathing or the presence of coronavirus diagnosis code and excludes patients with influenza-like illness. All data are preliminary.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    These metrics were adapted from recommendations by the Harvard Global Institute and supplemented by existing DPH measures.

    For national data on COVID-19, see COVID View, the national weekly surveillance summary of U.S. COVID-19 activity, at https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/CT-School-Learning-Model-Indicators-by-County/rpph-4ysy

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    --- Original source retains full ownership of the source dataset ---

  10. f

    Table_1_Auxiliary screening COVID-19 by computed tomography.DOC

    • frontiersin.figshare.com
    doc
    Updated Jun 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xiongfeng Pan; Yuyao Chen; Atipatsa C. Kaminga; Shi Wu Wen; Hongying Liu; Peng Jia; Aizhong Liu (2023). Table_1_Auxiliary screening COVID-19 by computed tomography.DOC [Dataset]. http://doi.org/10.3389/fpubh.2023.974542.s001
    Explore at:
    docAvailable download formats
    Dataset updated
    Jun 5, 2023
    Dataset provided by
    Frontiers
    Authors
    Xiongfeng Pan; Yuyao Chen; Atipatsa C. Kaminga; Shi Wu Wen; Hongying Liu; Peng Jia; Aizhong Liu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe 2019 novel coronavirus (COVID-19) pandemic remains rampant in many countries/regions. Improving the positive detection rate of COVID-19 infection is an important measure for the control and prevention of this pandemic. This meta-analysis aims to systematically summarize the current characteristics of the computed tomography (CT) auxiliary screening methods for COVID-19 infection in the real world.MethodsWeb of Science, Cochrane Library, Embase, PubMed, CNKI, and Wanfang databases were searched for relevant articles published prior to 1 September 2022. Data on specificity, sensitivity, positive/negative likelihood ratio, area under curve (AUC), and diagnostic odds ratio (dOR) were calculated purposefully.ResultsOne hundred and fifteen studies were included with 51,500 participants in the meta-analysis. Among these studies, the pooled estimates for AUC of CT in confirmed cases, and CT in suspected cases to predict COVID-19 diagnosis were 0.76 and 0.85, respectively. The CT in confirmed cases dOR was 5.51 (95% CI: 3.78–8.02). The CT in suspected cases dOR was 13.12 (95% CI: 11.07–15.55).ConclusionOur findings support that CT detection may be the main auxiliary screening method for COVID-19 infection in the real world.

  11. d

    COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 Cases and Deaths by Race/Ethnicity - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-cases-and-deaths-by-race-ethnicity
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve. The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj. The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 . The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 . The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed. COVID-19 cases and associated deaths that have been reported among Connecticut residents, broken down by race and ethnicity. All data in this report are preliminary; data for previous dates will be updated as new reports are received and data errors are corrected. Deaths reported to the either the Office of the Chief Medical Examiner (OCME) or Department of Public Health (DPH) are included in the COVID-19 update. The following data show the number of COVID-19 cases and associated deaths per 100,000 population by race and ethnicity. Crude rates represent the total cases or deaths per 100,000 people. Age-adjusted rates consider the age of the person at diagnosis or death when estimating the rate and use a standardized population to provide a fair comparison between population groups with different age distributions. Age-adjustment is important in Connecticut as the median age of among the non-Hispanic white population is 47 years, whereas it is 34 years among non-Hispanic blacks, and 29 years among Hispanics. Because most non-Hispanic white residents who died were over 75 years of age, the age-adjusted rates are lower than the unadjusted rates. In contrast, Hispanic residents who died tend to be younger than 75 years of age which results in higher age-adjusted rates. The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used. Rates are standardized to the 2000 US Millions Standard population (data available here: https://seer.cancer.gov/stdpopulations/). Standardization was done using 19 age groups (0, 1-4, 5-9, 10-14, ..., 80-84, 85 years and older). More information about direct standardization for age adjustment is available here: https://www.cdc.gov/nchs/data/statnt/statnt06rv.pdf Categories are mutually exclusive. The category “multiracial” includes people who answered ‘yes’ to more than one race category. Counts may not add up to total case counts as data on race and ethnicity may be missing. Age adjusted rates calculated only for groups with more than 20 deaths. Abbreviation: NH=Non-Hispanic. Data on Connecticut deaths were obtained from the Connecticut Deaths Registry maintained by the DPH Office of Vital Records. Cause of death was determined by a death certifier (e.g., physician, APRN, medical

  12. f

    Table_2_SARS-CoV-2 testing in the Slovak Republic from March 2020 to...

    • frontiersin.figshare.com
    xlsx
    Updated Nov 6, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nikola Janostiakova; Andrej Gnip; Dominik Kodada; Rami Saade; Gabriela Blandova; Emilia Mikova; Elena Tibenska; Vanda Repiska; Gabriel Minarik (2023). Table_2_SARS-CoV-2 testing in the Slovak Republic from March 2020 to September 2022 – summary of the pandemic trends.XLSX [Dataset]. http://doi.org/10.3389/fmed.2023.1225596.s002
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Nov 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Nikola Janostiakova; Andrej Gnip; Dominik Kodada; Rami Saade; Gabriela Blandova; Emilia Mikova; Elena Tibenska; Vanda Repiska; Gabriel Minarik
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Slovakia
    Description

    The COVID-19 pandemic has been part of Slovakia since March 2020. Intensive laboratory testing ended in October 2022, when the number of tests dropped significantly, but the state of the pandemic continues to this day. For the management of COVID-19, it is important to find an indicator that can predict pandemic changes in the community. The average daily/weekly Ct value with a certain time delay can predict changes in the number of cases of SARS-CoV-2 infection, which can be a useful indicator for the healthcare system. The study analyzed the results of 1,420,572 RT-qPCR tests provided by one accredited laboratory during the ongoing pandemic in Slovakia from March 2020 to September 2022. The total positivity of the analyzed tests was 24.64%. The average Ct values found were the highest in the age group of 3–5 years, equal to the number 30.75; the lowest were in the age group >65 years, equal to the number 27. The average weekly Ct values ranged from 22.33 (pandemic wave week) to 30.12 (summer week). We have summarized the results of SARS-CoV-2 diagnostic testing in Slovakia with the scope defined by the rate and positivity of tests carried out at Medirex a.s. laboratories.

  13. CT Scanners Market by Product and Geography - Forecast and Analysis...

    • technavio.com
    Updated Dec 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2021). CT Scanners Market by Product and Geography - Forecast and Analysis 2021-2025 [Dataset]. https://www.technavio.com/report/ct-scanners-market-industry-analysis
    Explore at:
    Dataset updated
    Dec 7, 2021
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global
    Description

    Snapshot img

    The CT scanners market share is expected to increase by USD 2.18 billion from 2020 to 2025, and the market’s growth momentum will accelerate at a CAGR of 6.78%.

    This CT scanners market research report provides valuable insights on the post COVID-19 impact on the market, which will help companies evaluate their business approaches. Furthermore, this report extensively covers CT scanners market segmentation by product (standalone and portable) and geography (North America, Europe, Asia, and ROW). The CT scanners market report also offers information on several market vendors, including Canon Inc., Carestream Health Inc., FUJIFILM Holdings Corp., General Electric Co., HTSI Healthcare Solutions, J. Morita Corp., Koninklijke Philips NV, Samsung Electronics Co. Ltd., Siemens Healthineers AG, and UIH Solutions, LLC among others.

    What will the CT Scanners Market Size be During the Forecast Period?

    Download the Free Report Sample to Unlock the CT Scanners Market Size for the Forecast Period and Other Important Statistics

    CT Scanners Market: Key Drivers and Challenges

    Based on our research output, there has been a positive impact on the market growth during and post COVID-19 era. The increasing prevalence of chronic conditions is notably driving the CT scanners market growth, although factors such as high costs associated with CT imaging may impede the market growth. Our research analysts have studied the historical data and deduced the key market drivers and the COVID-19 pandemic impact on the CT scanners industry. The holistic analysis of the drivers will help in deducing end goals and refining marketing strategies to gain a competitive edge.

    Key CT Scanners Market Driver

    One of the key factors driving growth in the CT scanners market is the increasing prevalence of chronic conditions. The prevalence of chronic conditions, such as cancer, cardiovascular diseases, and neurological diseases, is increasing globally, which is triggering the demand for diagnostic imaging products, including CT scanner systems. Globally, the incidence of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma, and lung cancer, is also increasing. The prevalence of asthma is increasing rapidly in low and middle-income countries, especially those in Asia. The high incidence of cancer will increase the demand for cancer screening and diagnoses and the increasing prevalence of other chronic conditions, such as cardiovascular diseases and neurological disorders, will further augment the demand for CT scanners during the forecast period.

    Key CT Scanners Market Challenge

    The high costs associated with CT imaging will be a major challenge for the CT scanners market during the forecast period. Healthcare is a cost-intensive industry with huge capital allocation toward manufacturing. The fixed costs in terms of plant, machinery, and associated variable costs for raw materials and labor account for a major part of the expenditure for manufacturing medical equipment. Thus, all these factors have the potential to impede the growth of the healthcare equipment market, including the global CT scanners market. The high cost of CT scanners and procedures can increase the cost burden on end-users and patients, respectively. The service maintenance cost includes the cost of preventative maintenance, parts, labor charges, and technicians’ allowance. This will further increase the cost for end-users, such as hospitals, diagnostic centers, and clinics. The high costs associated with CT scan procedures can reduce their adoption, especially in developing countries.

    This CT scanners market analysis report also provides detailed information on other upcoming trends and challenges that will have a far-reaching effect on the market growth. The actionable insights on the trends and challenges will help companies evaluate and develop growth strategies for 2021-2025.

    Who are the Major CT Scanners Market Vendors?

    The report analyzes the market’s competitive landscape and offers information on several market vendors, including:

    Canon Inc.
    Carestream Health Inc.
    FUJIFILM Holdings Corp.
    General Electric Co.
    HTSI Healthcare Solutions
    J. Morita Corp.
    Koninklijke Philips NV
    Samsung Electronics Co. Ltd.
    Siemens Healthineers AG
    UIH Solutions, LLC
    

    This statistical study of the CT scanners market encompasses successful business strategies deployed by the key vendors. The CT scanners market is fragmented and the vendors are deploying growth strategies such as focusing on developing technologically advanced equipment to compete in the market.

    To make the most of the opportunities and recover from post COVID-19 impact, market vendors should focus more on the growth prospects in the fast-growing segments, while maintaining their positions in the slow-growing segments.

    The CT scanners market forecast report offers in-depth insights into key v

  14. I

    SARS-CoV-2 Nucleocapsid Plasma Antigen for Diagnosis and Monitoring of...

    • data.niaid.nih.gov
    • immport.org
    url
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). SARS-CoV-2 Nucleocapsid Plasma Antigen for Diagnosis and Monitoring of COVID-19 [Dataset]. http://doi.org/10.21430/M3XM1VOWHO
    Explore at:
    urlAvailable download formats
    Dataset updated
    May 23, 2024
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    Detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid antigen in blood has been described, but the diagnostic and prognostic role of antigenemia is not well understood. This study aimed to determine the frequency, duration, and concentration of nucleocapsid antigen in plasma and its association with coronavirus disease 2019 (COVID-19) severity. We utilized an ultrasensitive electrochemiluminescence immunoassay targeting SARS-CoV-2 nucleocapsid antigen to evaluate 777 plasma samples from 104 individuals with COVID-19. We compared plasma antigen to respiratory nucleic acid amplification testing (NAAT) in 74 individuals with COVID-19 from samples collected ±1 day of diagnostic respiratory NAAT and in 52 SARS-CoV-2-negative individuals. We used Kruskal-Wallis tests, multivariable logistic regression, and mixed-effects modeling to evaluate whether plasma antigen concentration was associated with disease severity. Plasma antigen had 91.9% (95% CI 83.2%-97.0%) clinical sensitivity and 94.2% (84.1%-98.8%) clinical specificity. Antigen-negative plasma samples belonged to patients with later respiratory cycle thresholds (Ct) when compared with antigen-positive plasma samples. Median plasma antigen concentration (log10 fg/mL) was 5.4 (interquartile range 3.9-6.0) in outpatients, 6.0 (5.4-6.5) in inpatients, and 6.6 (6.1-7.2) in intensive care unit (ICU) patients. In models adjusted for age, sex, diabetes, and hypertension, plasma antigen concentration at diagnosis was associated with ICU admission [odds ratio 2.8 (95% CI 1.2-6.2), P=.01] but not with non-ICU hospitalization. Rate of antigen decrease was not associated with disease severity. SARS-CoV-2 plasma nucleocapsid antigen exhibited comparable diagnostic performance to upper respiratory NAAT, especially among those with late respiratory Ct. In addition to currently available tools, antigenemia may facilitate patient triage to optimize intensive care utilization.

  15. Ablation experiments in dataset 2.

    • plos.figshare.com
    xls
    Updated Jan 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Honghua Liu; Mingwei Zhao; Chang She; Han Peng; Mailan Liu; Bo Li (2025). Ablation experiments in dataset 2. [Dataset]. http://doi.org/10.1371/journal.pone.0317450.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jan 27, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Honghua Liu; Mingwei Zhao; Chang She; Han Peng; Mailan Liu; Bo Li
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In 2019, the novel coronavirus swept the world, exposing the monitoring and early warning problems of the medical system. Computer-aided diagnosis models based on deep learning have good universality and can well alleviate these problems. However, traditional image processing methods may lead to high false positive rates, which is unacceptable in disease monitoring and early warning. This paper proposes a low false positive rate disease detection method based on COVID-19 lung images and establishes a two-stage optimization model. In the first stage, the model is trained using classical gradient descent, and relevant features are extracted; in the second stage, an objective function that minimizes the false positive rate is constructed to obtain a network model with high accuracy and low false positive rate. Therefore, the proposed method has the potential to effectively classify medical images. The proposed model was verified using a public COVID-19 radiology dataset and a public COVID-19 lung CT scan dataset. The results show that the model has made significant progress, with the false positive rate reduced to 11.3% and 7.5%, and the area under the ROC curve increased to 92.8% and 97.01%.

  16. f

    Data on epidemiological and clinical characteristics of coronavirus-infected...

    • springernature.figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mahmood Karimy; Marzieh Araban; Mehdi Mesri; Bahram Armoon; Hamid Reza Koohestani; Hadi Azani (2023). Data on epidemiological and clinical characteristics of coronavirus-infected (COVID-19) individuals in Iran [Dataset]. http://doi.org/10.6084/m9.figshare.12446120.v1
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    figshare
    Authors
    Mahmood Karimy; Marzieh Araban; Mehdi Mesri; Bahram Armoon; Hamid Reza Koohestani; Hadi Azani
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Iran
    Description

    NOTE: there is no peer-reviewed publication associated with this data record.This data record contains a single dataset, Statistics200.xls, in .xls file format.The dataset contains information on 1142 patients suspected of having coronavirus. Data collection was performed using interviews, inserting information into the researcher-made questionnaires, and using the information in patients' medical records.The dataset consists of 52 individual variables. Empty cells correspond to data that are not available for that patient. The variables are: age, gender, citizenship, taken to the hospital (1; no, 2; yes), section of hospital, contact coronadisease (0; no history of contact with COVID-19 patients, 1; history of contact with COVID-19 patients), sample for test (0; patient did not provide a sample for the PCR COVID test, 1; patient provided a sample for the PCR test), result PCR (0; negative for COVID-19, 1; positive for COVID-19, 3; test result is pending), The following symptoms were reported, for which 0 stands for absence of symptom, and 1 stands for presence of the symptom: fever, cough, myalgia or fatigue, shortness of breath, loss of consciousness, smell, taste, convulsions, headache, dizziness, limb paresis, limb plexus, chest pain, skin lesions, other signs, gastrointestinal, nausea, vomiting, diarrhea, anorexia), CT scan manifestation (0; CT scan results for COVID-19 are negative, 1; CT scan results for COVID-19 are positive), smoking, use of opium, patient has undergone intubation, rate of partial pressure of oxygen, Po2 (0; PO2 levels are greater than 93, 2; PO2 levels are less than 93), presence of underlying diseases (cancer, liver disease, hematologic disease, diabetes, HIV/AIDS, immune deficiency (acquired or congenital), pregnancy, heart disease, renal disease, dialysis status, asthma, Chronic obstructive pulmonary disease (COPD)), other chronic diseases, hypertension, condition when entering the hospital, death, duration of hospitalisation in days.Study aims and methodology: The new Coronavirus disease (COVID-19) primarily targets the human respiratory system, and represents a public health emergency and global concern. The present study aimed to investigate the epidemiological and clinical characteristics of COVID-19, in Saveh city, of Iran, in 2020.The present study was descriptive-analytical research in which all 1142 patients suspected of having coronavirus, who visited Saveh Medical Centers from February 9 to April 1 7, 2020, were included in the study. Data collection was performed using interviews, inserting information into the researcher-made questionnaires, and using the information in patients' medical records. Data were analyzed by SPSS 21 using Chi-square, independent sample t tests, Fisher's Exact Test, and regression analysis.For more details on the methodology, please read the related article.

  17. f

    Chest CT and PFTs among COVID-19 survivors at the follow-up.

    • plos.figshare.com
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlos Roberto Ribeiro Carvalho; Celina Almeida Lamas; Rodrigo Caruso Chate; João Marcos Salge; Marcio Valente Yamada Sawamura; André L. P. de Albuquerque; Carlos Toufen Junior; Daniel Mario Lima; Michelle Louvaes Garcia; Paula Gobi Scudeller; Cesar Higa Nomura; Marco Antonio Gutierrez; Bruno Guedes Baldi (2023). Chest CT and PFTs among COVID-19 survivors at the follow-up. [Dataset]. http://doi.org/10.1371/journal.pone.0280567.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Carlos Roberto Ribeiro Carvalho; Celina Almeida Lamas; Rodrigo Caruso Chate; João Marcos Salge; Marcio Valente Yamada Sawamura; André L. P. de Albuquerque; Carlos Toufen Junior; Daniel Mario Lima; Michelle Louvaes Garcia; Paula Gobi Scudeller; Cesar Higa Nomura; Marco Antonio Gutierrez; Bruno Guedes Baldi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Chest CT and PFTs among COVID-19 survivors at the follow-up.

  18. f

    Nucleic Acid (NA) pooling design: Known positive individually extracted RNA...

    • figshare.com
    xls
    Updated Jun 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andargachew Mulu; Dawit Hailu Alemayehu; Fekadu Alemu; Dessalegn Abeje Tefera; Sinknesh Wolde; Gebeyehu Aseffa; Tamrayehu Seyoum; Meseret Habtamu; Alemseged Abdissa; Abebe Genetu Bayih; Getachew Tesfaye Beyene (2023). Nucleic Acid (NA) pooling design: Known positive individually extracted RNA and known negative samples separately extracted NA were pooled and a final volume of 5μl was taken from each pool to the master mix for amplification and detection. [Dataset]. http://doi.org/10.1371/journal.pone.0247767.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 11, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Andargachew Mulu; Dawit Hailu Alemayehu; Fekadu Alemu; Dessalegn Abeje Tefera; Sinknesh Wolde; Gebeyehu Aseffa; Tamrayehu Seyoum; Meseret Habtamu; Alemseged Abdissa; Abebe Genetu Bayih; Getachew Tesfaye Beyene
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Nucleic Acid (NA) pooling design: Known positive individually extracted RNA and known negative samples separately extracted NA were pooled and a final volume of 5μl was taken from each pool to the master mix for amplification and detection.

  19. f

    Data_Sheet_1_Deep Learning-Based Automatic Assessment of Lung Impairment in...

    • frontiersin.figshare.com
    pdf
    Updated Jun 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yauhen Statsenko; Tetiana Habuza; Tatsiana Talako; Mikalai Pazniak; Elena Likhorad; Aleh Pazniak; Pavel Beliakouski; Juri G. Gelovani; Klaus Neidl-Van Gorkom; Taleb M. Almansoori; Fatmah Al Zahmi; Dana Sharif Qandil; Nazar Zaki; Sanaa Elyassami; Anna Ponomareva; Tom Loney; Nerissa Naidoo; Guido Hein Huib Mannaerts; Jamal Al Koteesh; Milos R. Ljubisavljevic; Karuna M. Das (2023). Data_Sheet_1_Deep Learning-Based Automatic Assessment of Lung Impairment in COVID-19 Pneumonia: Predicting Markers of Hypoxia With Computer Vision.PDF [Dataset]. http://doi.org/10.3389/fmed.2022.882190.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Frontiers
    Authors
    Yauhen Statsenko; Tetiana Habuza; Tatsiana Talako; Mikalai Pazniak; Elena Likhorad; Aleh Pazniak; Pavel Beliakouski; Juri G. Gelovani; Klaus Neidl-Van Gorkom; Taleb M. Almansoori; Fatmah Al Zahmi; Dana Sharif Qandil; Nazar Zaki; Sanaa Elyassami; Anna Ponomareva; Tom Loney; Nerissa Naidoo; Guido Hein Huib Mannaerts; Jamal Al Koteesh; Milos R. Ljubisavljevic; Karuna M. Das
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundHypoxia is a potentially life-threatening condition that can be seen in pneumonia patients.ObjectiveWe aimed to develop and test an automatic assessment of lung impairment in COVID-19 associated pneumonia with machine learning regression models that predict markers of respiratory and cardiovascular functioning from radiograms and lung CT.Materials and MethodsWe enrolled a total of 605 COVID-19 cases admitted to Al Ain Hospital from 24 February to 1 July 2020 into the study. The inclusion criteria were as follows: age ≥ 18 years; inpatient admission; PCR positive for SARS-CoV-2; lung CT available at PACS. We designed a CNN-based regression model to predict systemic oxygenation markers from lung CT and 2D diagnostic images of the chest. The 2D images generated by averaging CT scans were analogous to the frontal and lateral view radiograms. The functional (heart and breath rate, blood pressure) and biochemical findings (SpO2, HCO3-, K+, Na+, anion gap, C-reactive protein) served as ground truth.ResultsRadiologic findings in the lungs of COVID-19 patients provide reliable assessments of functional status with clinical utility. If fed to ML models, the sagittal view radiograms reflect dyspnea more accurately than the coronal view radiograms due to the smaller size and the lower model complexity. Mean absolute error of the models trained on single-projection radiograms was approximately 11÷12% and it dropped by 0.5÷1% if both projections were used (11.97 ± 9.23 vs. 11.43 ± 7.51%; p = 0.70). Thus, the ML regression models based on 2D images acquired in multiple planes had slightly better performance. The data blending approach was as efficient as the voting regression technique: 10.90 ± 6.72 vs. 11.96 ± 8.30%, p = 0.94. The models trained on 3D images were more accurate than those on 2D: 8.27 ± 4.13 and 11.75 ± 8.26%, p = 0.14 before lung extraction; 10.66 ± 5.83 and 7.94 ± 4.13%, p = 0.18 after the extraction. The lung extraction boosts 3D model performance unsubstantially (from 8.27 ± 4.13 to 7.94 ± 4.13%; p = 0.82). However, none of the differences between 3D and 2D were statistically significant.ConclusionThe constructed ML algorithms can serve as models of structure-function association and pathophysiologic changes in COVID-19. The algorithms can improve risk evaluation and disease management especially after oxygen therapy that changes functional findings. Thus, the structural assessment of acute lung injury speaks of disease severity.

  20. Performance metrics (on testset) of deep learning models on Dataset 2 (CT...

    • plos.figshare.com
    xls
    Updated Oct 9, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Izegbua E. Ihongbe; Shereen Fouad; Taha F. Mahmoud; Arvind Rajasekaran; Bahadar Bhatia (2024). Performance metrics (on testset) of deep learning models on Dataset 2 (CT Scans for COVID-19 detection). [Dataset]. http://doi.org/10.1371/journal.pone.0308758.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Oct 9, 2024
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Izegbua E. Ihongbe; Shereen Fouad; Taha F. Mahmoud; Arvind Rajasekaran; Bahadar Bhatia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Performance metrics (on testset) of deep learning models on Dataset 2 (CT Scans for COVID-19 detection).

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2

COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE

Explore at:
application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
Dataset updated
Jun 23, 2022
Dataset authored and provided by
Department of Public Health
License

U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically

Description

Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

Search
Clear search
Close search
Google apps
Main menu