47 datasets found
  1. CTR Prediction Dataset

    • kaggle.com
    zip
    Updated Sep 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sulabh Shrestha (2018). CTR Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/sulabh4/ctr-prediction-dataset
    Explore at:
    zip(31868250 bytes)Available download formats
    Dataset updated
    Sep 5, 2018
    Authors
    Sulabh Shrestha
    Description

    Dataset

    This dataset was created by Sulabh Shrestha

    Contents

  2. Email CTR Prediction

    • kaggle.com
    zip
    Updated Nov 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sk4467 (2022). Email CTR Prediction [Dataset]. https://www.kaggle.com/datasets/sk4467/email-ctr-prediction
    Explore at:
    zip(59241 bytes)Available download formats
    Dataset updated
    Nov 15, 2022
    Authors
    Sk4467
    Description

    Most organizations today rely on email campaigns for effective communication with users. Email communication is one of the popular ways to pitch products to users and build trustworthy relationships with them. Email campaigns contain different types of CTA (Call To Action). The ultimate goal of email campaigns is to maximize the Click Through Rate (CTR). CTR = No. of users who clicked on at least one of the CTA / No. of emails delivered. This Dataset contains details of body length, sub length, mean paragraph , day of week, is weekend, etc.

  3. h

    ctr-prediction-dataset

    • huggingface.co
    Updated Oct 31, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evgenia Kyriazi (2014). ctr-prediction-dataset [Dataset]. https://huggingface.co/datasets/EvgeniaKyriazi/ctr-prediction-dataset
    Explore at:
    Dataset updated
    Oct 31, 2014
    Authors
    Evgenia Kyriazi
    Description

    EvgeniaKyriazi/ctr-prediction-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  4. Advertisement CTR Prediction Data

    • berd-platform.de
    csv
    Updated Feb 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kaggle (2024). Advertisement CTR Prediction Data [Dataset]. https://berd-platform.de/records/xfr11-ewz36
    Explore at:
    csvAvailable download formats
    Dataset updated
    Feb 23, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    License

    https://www.kaggle.com/louischen7/2020-digix-advertisement-ctr-predictionhttps://www.kaggle.com/louischen7/2020-digix-advertisement-ctr-prediction

    Description

    Advertisement CTR (click-through-rate) prediction is the key problem in the area of computational advertising. Increasing the accuracy of advertisement CTR prediction is critical to improve the effectiveness of precision marketing. Based on the following datasets, a Kaggle competition was run for optimal advertisement CTR prediction models. The datasets contain the advertising behavior data collected from seven consecutive days, including a training dataset and a testing dataset.

  5. f

    Data from: An improved advertising CTR prediction approach based on the...

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated May 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jiang, Zilong; Gao, Shu; Li, Mingjiang (2018). An improved advertising CTR prediction approach based on the fuzzy deep neural network [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000683624
    Explore at:
    Dataset updated
    May 4, 2018
    Authors
    Jiang, Zilong; Gao, Shu; Li, Mingjiang
    Description

    Combining a deep neural network with fuzzy theory, this paper proposes an advertising click-through rate (CTR) prediction approach based on a fuzzy deep neural network (FDNN). In this approach, fuzzy Gaussian-Bernoulli restricted Boltzmann machine (FGBRBM) is first applied to input raw data from advertising datasets. Next, fuzzy restricted Boltzmann machine (FRBM) is used to construct the fuzzy deep belief network (FDBN) with the unsupervised method layer by layer. Finally, fuzzy logistic regression (FLR) is utilized for modeling the CTR. The experimental results show that the proposed FDNN model outperforms several baseline models in terms of both data representation capability and robustness in advertising click log datasets with noise.

  6. t

    CTR Prediction Models - Dataset - LDM

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). CTR Prediction Models - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/ctr-prediction-models
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used in this paper is a real-world online sponsor advertising application, containing user click history logs from Baidu’s search engine.

  7. Data from: Click-Through Rate Prediction

    • kaggle.com
    zip
    Updated May 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SwekeRR (2024). Click-Through Rate Prediction [Dataset]. https://www.kaggle.com/datasets/swekerr/click-through-rate-prediction/data
    Explore at:
    zip(237809 bytes)Available download formats
    Dataset updated
    May 30, 2024
    Authors
    SwekeRR
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Click-Through Rate is calculated as the number of clicks an ad receives divided by the number of times the ad is shown (impressions), expressed as a percentage. The CTR prediction task involves modeling the likelihood of a click based on ad characteristics, user profile data, and contextual features.

    Predicting the click-through Rate (CTR) is crucial for optimizing online advertising campaigns. By accurately estimating the likelihood of a user clicking on an ad, businesses can make informed decisions about ad placement and design, ultimately maximizing their return on investment (ROI).

  8. f

    Overall CTR prediction for Logloss performance in different datasets.

    • datasetcatalog.nlm.nih.gov
    • plos.figshare.com
    Updated Aug 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Qianqian; Tan, Qiaoqiao; Liu, Fang’ai; Zhao, Xiaohui (2022). Overall CTR prediction for Logloss performance in different datasets. [Dataset]. https://datasetcatalog.nlm.nih.gov/dataset?q=0000396387
    Explore at:
    Dataset updated
    Aug 17, 2022
    Authors
    Wang, Qianqian; Tan, Qiaoqiao; Liu, Fang’ai; Zhao, Xiaohui
    Description

    Overall CTR prediction for Logloss performance in different datasets.

  9. CTR Prediction Dataset

    • kaggle.com
    zip
    Updated May 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anand Panda (2024). CTR Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/anandpanda3/ctr-prediction-dataset/code
    Explore at:
    zip(1846934 bytes)Available download formats
    Dataset updated
    May 31, 2024
    Authors
    Anand Panda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Anand Panda

    Released under Attribution 4.0 International (CC BY 4.0)

    Contents

  10. CTR Datasets

    • zenodo.org
    Updated Nov 14, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous; Anonymous (2021). CTR Datasets [Dataset]. http://doi.org/10.5281/zenodo.2304788
    Explore at:
    Dataset updated
    Nov 14, 2021
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous; Anonymous
    Description

    Datasets for CTR prediction

  11. 100k Validation Records for CTR Prediction

    • kaggle.com
    zip
    Updated Nov 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Dutta (2021). 100k Validation Records for CTR Prediction [Dataset]. https://www.kaggle.com/datasets/gauravduttakiit/100k-validation-records-for-ctr-prediction
    Explore at:
    zip(56529035 bytes)Available download formats
    Dataset updated
    Nov 30, 2021
    Authors
    Gaurav Dutta
    Description

    Dataset

    This dataset was created by Gaurav Dutta

    Contents

  12. ctr-prediction-data

    • kaggle.com
    zip
    Updated Jan 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    sambanjie (2021). ctr-prediction-data [Dataset]. https://www.kaggle.com/sambanjie/ctrpredictiondata
    Explore at:
    zip(3937414 bytes)Available download formats
    Dataset updated
    Jan 22, 2021
    Authors
    sambanjie
    Description

    Dataset

    This dataset was created by sambanjie

    Contents

  13. CTR Prediction Parquet

    • kaggle.com
    zip
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Darrell Cornelius Rivaldo (2024). CTR Prediction Parquet [Dataset]. https://www.kaggle.com/datasets/darrellcr/ctr-prediction-parquet
    Explore at:
    zip(1425563581 bytes)Available download formats
    Dataset updated
    Jun 4, 2024
    Authors
    Darrell Cornelius Rivaldo
    Description

    Dataset

    This dataset was created by Darrell Cornelius Rivaldo

    Contents

  14. f

    Overall CTR prediction for RMSE performance in different datasets.

    • figshare.com
    • plos.figshare.com
    xls
    Updated Jun 14, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Qianqian Wang; Fang’ai Liu; Xiaohui Zhao; Qiaoqiao Tan (2023). Overall CTR prediction for RMSE performance in different datasets. [Dataset]. http://doi.org/10.1371/journal.pone.0273048.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 14, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Qianqian Wang; Fang’ai Liu; Xiaohui Zhao; Qiaoqiao Tan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overall CTR prediction for RMSE performance in different datasets.

  15. Test Data for CTR Prediction

    • kaggle.com
    zip
    Updated Nov 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gaurav Dutta (2021). Test Data for CTR Prediction [Dataset]. https://www.kaggle.com/datasets/gauravduttakiit/test-data-for-ctr-prediction
    Explore at:
    zip(135735961 bytes)Available download formats
    Dataset updated
    Nov 30, 2021
    Authors
    Gaurav Dutta
    Description

    Dataset

    This dataset was created by Gaurav Dutta

    Contents

  16. CriteoClickLogs

    • huggingface.co
    Updated May 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CRITEO (2025). CriteoClickLogs [Dataset]. https://huggingface.co/datasets/criteo/CriteoClickLogs
    Explore at:
    Dataset updated
    May 11, 2025
    Dataset provided by
    Criteohttps://criteo.com/
    Authors
    CRITEO
    License

    Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
    License information was derived automatically

    Description

    📊 Criteo 1TB Click Logs Dataset

    This dataset contains feature values and click feedback for millions of display ads. Its primary purpose is to benchmark algorithms for clickthrough rate (CTR) prediction. It is similar, but larger than the dataset released for the Display Advertising Challenge hosted by Kaggle:🔗 Kaggle Criteo Display Advertising Challenge

      📁 Full Description
    

    This dataset contains 24 files, each corresponding to one day of data.

      🏗️… See the full description on the dataset page: https://huggingface.co/datasets/criteo/CriteoClickLogs.
    
  17. CTR Prediction - 2022 DIGIX Global AI Challenge

    • kaggle.com
    zip
    Updated Jul 28, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DeepInvolution (2022). CTR Prediction - 2022 DIGIX Global AI Challenge [Dataset]. https://www.kaggle.com/datasets/xiaojiu1414/digix-global-ai-challenge/code
    Explore at:
    zip(921992346 bytes)Available download formats
    Dataset updated
    Jul 28, 2022
    Authors
    DeepInvolution
    Description

    Ad recommendation models are usually built based on historical ad impressions, clicks, and other user behavior data. If only data from the ads domain is used, user behavior data will be sparse, and the user behavior types that can be identified will be limited. However, if a user's behavior data in other domains from the same app is explored, the user's interests and behavior characteristics can be better identified. Of course, introducing user behavior data from other apps can also help enrich the data of user behavior characteristics and ad performance.You are expected to enhance ads click-through rate (CTR) prediction accuracy by leveraging ad logs, user profiles, and cross-domain data. With ads as the target domain and news feeds as the source domain, you should build user interest models through impressions, clicks, and other user behavior data obtained from the news feeds domain, thus improving the CTR prediction performance of the ads domain.

    Data Description

    The provided data includes data from the target domain (such as user behavior logs, user profiles, and ad material information) and that from the source domain (such as user behavior data and basic information about news items).

    Data from the Target Domain

    Field | Field Description | Can be empty | Field Type | Value Example | --- | --- | label | User ID | No | int | 0,1 user_id|User ID|No|String|1,2… age|Age|Yes|String|1,2,3… gender|Gender|Yes|String|1,2… residence|Permanent residence (province).|Yes|String|1,2… city|Permanent residence (city ID).|Yes|String|1,2… city_rank|Permanent residence (city level).|Yes|String|1,2… series_dev |设备系列| 是| String| 1,2… series_group |设备系列分组| 是| String |1,2… emui_dev| emui 版本号| 是 |String| 1,2… device_name| 用户使用的手机机型| 是 |String |1,2… device_size |用户使用手机的尺寸| 是 |String| 1,2… net_type |行为发生的网络状态| 是| String| 1,2… task_id| 广告任务唯一标识 |是| String| 1,2… adv_id |广告任务对应的素材 id |是| String |1,2… creat_type_cd|素材的创意类型 id |是 |String |1,2… adv_prim_id|广告任务对应的广告主 id| 是 |String| 1,2… inter_type_cd|广告任务对应的素材的交 互类型| 是 |String |1,2… slot_id| 广告位 id| 是| String |1,2… site_id|媒体 id |是 |String |1,2… spread_app_id| 投放广告任务对应的应用 id |是 |String |1,2… hispace_app_tags|广告任务对应的应用的标 签| 是 |String |1,2… app_second_class|广告任务对应的应用的二 级分类 |是| String| 1,2… app_score| app 得分| 是| Int| 4 ad_click_list_001|用户点击广告任务 id 列表| 是| [string,] |[1^2…] ad_click_list_002|用户点击广告对应广告主 id 列表| 是| [string,]| [1^2…] ad_click_list_003| 用户点击广告推荐应用列 表| 是 |[string,]| [1^2…] ad_close_list_001|用户关闭广告任务列表| 是 |[string,] |[1^2…] ad_close_list_002| 用户关闭广告对应广告主 列表 |是 |[string,] |[1^2…] ad_close_list_003| 用户关闭广告推荐应用列 表| 是| [string,]| [1^2…] pt_d| 时间戳| 否| String| 202205221430 log_id| 样本 id |否 |Int| 12345678

    Data from the Source Domain

    Field | Field Description | Can be empty | Field Type | Value Example | --- | --- | u_userId|User ID|No|String|0001 u_phonePrice|Price of a user's device.|Yes|String|13 u_browserLifeCycle|User engagement on Browser.|Yes|String|10 u_browserMode|Browser service type.|Yes|String|11 u_feedLifeCycle|User engagement on news feeds.|Yes|String|12 u_refreshTimes|Average number of valid news feeds updates per day.|Yes|String|16 u_newsCatInterests|Liked news feeds categories based on the click behavior of a user.|Yes|[String,]|[1^2…] u_newsCatDislike|信息流图文 负反馈 分类 偏好 |是 |[string,]| [1^2…] u_newsCatInterestsST|用户短时 兴趣 分类偏好| 是 |[string,] |[1^2…] u_click_ca2_news|用户图文 类别 点击序列 |是| [string,] |[1^2…] i_docId|文章 docid |是 |String| 0001 i_s_sourceId|文章来源的 sourceid |是| String |0001 i_regionEntity|文章地域词 id |是 |String |0001 i_cat|文章类别 id |是 |String |0001 i_entities|文章实体词 id |是| [string,]| [1^2…] i_dislikeTimes|文章负反馈量 |是 |String| 60 i_upTimes|文章点赞量 |是 |String| 22 I_dtype| 文章展现形式 |是 |String |20 e_ch|频道 |是 |String |1,2… e_m |事件来源设备机型 |是 |String| 1,2… e_po|第几位 |是 |String |9 e_pl|拜访地 |是 |String| 1,2… e_rn| 第几刷 |是 |String |1 e_section|信息流场景类型| 是 |String |13 e_et|时间戳| 否 |String| 202205221430 label|是否点击, -1:否, 1:是 |否| String| 1 cilLabel|是否点赞,-1:否, 1:是 |否| String| 1 pro| 文章浏览进度 |否 |String| 1,2…

    Source: DIGIX

  18. t

    Alimama - Dataset - LDM

    • service.tib.eu
    Updated Jan 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Alimama - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/alimama
    Explore at:
    Dataset updated
    Jan 2, 2025
    Description

    The dataset used in the paper is Alipay, Tmall, and Alimama. These datasets are used for click-through rate (CTR) prediction. The datasets contain user and item features, as well as user behavior sequences.

  19. f

    The results of the AUC and accuracy in CTR prediction.

    • figshare.com
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    YueQun Wang; LiYan Dong; YongLi Li; Hao Zhang (2023). The results of the AUC and accuracy in CTR prediction. [Dataset]. http://doi.org/10.1371/journal.pone.0251162.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    YueQun Wang; LiYan Dong; YongLi Li; Hao Zhang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The results of the AUC and accuracy in CTR prediction.

  20. Criteo (Display Advertising Challenge)

    • opendatalab.com
    zip
    Updated May 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Criteo Research (2023). Criteo (Display Advertising Challenge) [Dataset]. https://opendatalab.com/OpenDataLab/Criteo
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 1, 2023
    Dataset provided by
    Criteohttps://criteo.com/
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Criteo contains 7 days of click-through data, which is widely used for CTR prediction benchmarking. There are 26 anonymous categorical fields and 13 continuous fields in Criteo dataset.Display advertising is a billion dollar effort and one of the central uses of machine learning on the Internet. However, its data and methods are usually kept under lock and key. In this research competition, CriteoLabs is sharing a week’s worth of data for you to develop models predicting ad click-through rate (CTR). Given a user and the page he is visiting, what is the probability that he will click on a given ad?The goal of this challenge is to benchmark the most accurate ML algorithms for CTR estimation.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Sulabh Shrestha (2018). CTR Prediction Dataset [Dataset]. https://www.kaggle.com/datasets/sulabh4/ctr-prediction-dataset
Organization logo

CTR Prediction Dataset

Explore at:
zip(31868250 bytes)Available download formats
Dataset updated
Sep 5, 2018
Authors
Sulabh Shrestha
Description

Dataset

This dataset was created by Sulabh Shrestha

Contents

Search
Clear search
Close search
Google apps
Main menu