41 datasets found
  1. N

    United States Age Group Population Dataset: A complete breakdown of United...

    • neilsberg.com
    csv, json
    Updated Sep 16, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Sep 16, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Variables measured
    Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

    Key observations

    The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Variables / Data Columns

    • Age Group: This column displays the age group in consideration
    • Population: The population for the specific age group in the United States is shown in this column.
    • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

  2. d

    Age & Sex - ACS 2018-2022 - Tempe Tracts

    • catalog.data.gov
    • open.tempe.gov
    • +10more
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Tempe (2024). Age & Sex - ACS 2018-2022 - Tempe Tracts [Dataset]. https://catalog.data.gov/dataset/age-sex-acs-2018-2022-tempe-tracts
    Explore at:
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    City of Tempe
    Area covered
    Tempe
    Description

    This layer shows age and sex demographics. Data is from US Census American Community Survey (ACS) 5-year estimates.This layer is symbolized to the percent of the population ages 18 to 24 years old. To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right (in ArcGIS Online). To view only the census tracts that are predominantly in Tempe, add the expression City is Tempe in the filter settings. Layer includes:Key demographicsTotal populationMale total populationFemale total populationPercent male total population (calculated)Percent female total population (calculated)Age and other indicatorsTotal population by AGE (various ranges)Total population by SELECTED AGE CATEGORIES (various ranges)Total population by SUMMARY INDICATORS (including median age, sex ratio, age dependency ratio, old age dependency ratio, child dependency ratio)Percent total population by AGE (various ranges)Percent total population by SELECTED AGE CATEGORIES (various ranges)Male by ageMale total population by AGE (various ranges)Male total population by SELECTED AGE CATEGORIES (various ranges)Male total population Median age (years)Percent male total population by AGE (various ranges)Percent male total population by SELECTED AGE CATEGORIES (various ranges)Female by ageFemale total population by AGE (various ranges)Female total population by SELECTED AGE CATEGORIES (various ranges)Female total population Median age (years)Percent female total population by AGE (various ranges)Percent female total population by SELECTED AGE CATEGORIES (various ranges)A ‘Null’ entry in the estimate indicates that data for this geographic area cannot be displayed because the number of sample cases is too small (per the U.S. Census).Current Vintage: 2018-2022ACS Table(s): S0101 (Not all lines of this ACS table are available in this feature layer.)Data downloaded from: Census Bureau's API for American Community SurveyDate of Census update: Dec 15, 2023Data Preparation: Data table downloaded and joined with Census Tract boundaries that are within or adjacent to the City of Tempe boundaryNational Figures: data.census.gov

  3. N

    South Range, MI Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). South Range, MI Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e200fba9-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.

    Key observations

    Largest age group (population): Male # 20-24 years (49) | Female # 20-24 years (50). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range is shown in the following column.
    • Population (Female): The female population in the South Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in South Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  4. American Community Survey: 1-Year Estimates: Comparison Profiles 1-Year

    • res1catalogd-o-tdatad-o-tgov.vcapture.xyz
    • datasets.ai
    • +1more
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). American Community Survey: 1-Year Estimates: Comparison Profiles 1-Year [Dataset]. https://res1catalogd-o-tdatad-o-tgov.vcapture.xyz/dataset/american-community-survey-1-year-estimates-comparison-profiles-1-year-292ac
    Explore at:
    Dataset updated
    Sep 14, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    The American Community Survey (ACS) is an ongoing survey that provides data every year -- giving communities the current information they need to plan investments and services. The ACS covers a broad range of topics about social, economic, demographic, and housing characteristics of the U.S. population. Much of the ACS data provided on the Census Bureau's Web site are available separately by age group, race, Hispanic origin, and sex. Summary files, Subject tables, Data profiles, and Comparison profiles are available for the nation, all 50 states, the District of Columbia, Puerto Rico, every congressional district, every metropolitan area, and all counties and places with populations of 65,000 or more. Comparison profiles are similar to Data profiles but also include comparisons with past-year data. The current year data are compared with each of the last four years of data and include statistical significance testing. There are over 1,000 variables in this dataset.

  5. N

    South Range, MI Population Breakdown by Gender and Age

    • neilsberg.com
    csv, json
    Updated Sep 14, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2023). South Range, MI Population Breakdown by Gender and Age [Dataset]. https://www.neilsberg.com/research/datasets/679bf16a-3d85-11ee-9abe-0aa64bf2eeb2/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Sep 14, 2023
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Michigan, South Range
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of South Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for South Range. The dataset can be utilized to understand the population distribution of South Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in South Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for South Range.

    Key observations

    Largest age group (population): Male # 20-24 years (44) | Female # 20-24 years (65). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the South Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the South Range is shown in the following column.
    • Population (Female): The female population in the South Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in South Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for South Range Population by Gender. You can refer the same here

  6. F

    Native American Children Facial Image Dataset for Facial Recognition

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Native American Children Facial Image Dataset for Facial Recognition [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-minor-native-american
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    The Native American Children Facial Image Dataset is a thoughtfully curated collection designed to support the development of advanced facial recognition systems, biometric identity verification, age estimation tools, and child-specific AI models. This dataset enables researchers and developers to build highly accurate, inclusive, and ethically sourced AI solutions for real-world applications.

    Facial Image Data

    The dataset includes over 1000 high-resolution image sets of children under the age of 18. Each participant contributes approximately 15 unique facial images, captured to reflect natural variations in appearance and context.

    Diversity and Representation

    Geographic Coverage: Children from USA, Canada, Mexico and more
    Age Group: All participants are minors, with a wide age spread across childhood and adolescence.
    Gender Balance: Includes both boys and girls, representing a balanced gender distribution.
    File Formats: Images are available in JPEG and HEIC formats.

    Quality and Image Conditions

    To ensure robust model training and generalizability, images are captured under varied natural conditions:

    Lighting: A mix of lighting setups, including indoor, outdoor, bright, and low-light scenarios.
    Backgrounds: Diverse backgrounds—plain, natural, and everyday environments—are included to promote realism.
    Capture Devices: All photos are taken using modern mobile devices, ensuring high resolution and sharp detail.

    Metadata

    Each child’s image set is paired with detailed, structured metadata, enabling granular control and filtering during model training:

    Unique Participant ID
    File Name
    Age
    Gender
    Country
    Demographic Attributes
    File Format

    This metadata is essential for applications that require demographic awareness, such as region-specific facial recognition or bias mitigation in AI models.

    Applications

    This dataset is ideal for a wide range of computer vision use cases, including:

    Facial Recognition: Improving identification accuracy across diverse child demographics.
    KYC and Identity Verification: Enabling more inclusive onboarding processes for child-specific platforms.
    Biometric Systems: Supporting child-focused identity verification in education, healthcare, or travel.
    Age Estimation: Training AI models to estimate age ranges of children from facial features.
    Child Safety Models: Assisting in missing child identification or online content moderation.
    Generative AI Training: Creating more representative synthetic data using real-world diverse inputs.

    Ethical Collection and Data Security

    We maintain the highest ethical and security standards throughout the data lifecycle:

    Guardian Consent: Every participant’s guardian provided informed, written consent, clearly outlining the dataset’s use cases.
    Privacy-First Approach: Personally identifiable information is not shared. Only anonymized metadata is included.
    Secure Storage: All data is

  7. f

    Population-based age adjustment tables for use in occupational hearing...

    • tandf.figshare.com
    docx
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gregory A. Flamme; Kristy K. Deiters; Mark R. Stephenson; Christa L. Themann; William J. Murphy; David C. Byrne; David G. Goldfarb; Rachel Zeig-Owens; Charles Hall; David J. Prezant; James E. Cone (2023). Population-based age adjustment tables for use in occupational hearing conservation programs [Dataset]. http://doi.org/10.6084/m9.figshare.11387736.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francis
    Authors
    Gregory A. Flamme; Kristy K. Deiters; Mark R. Stephenson; Christa L. Themann; William J. Murphy; David C. Byrne; David G. Goldfarb; Rachel Zeig-Owens; Charles Hall; David J. Prezant; James E. Cone
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    Objective: In occupational hearing conservation programmes, age adjustments may be used to subtract expected age effects. Adjustments used in the U.S. came from a small dataset and overlooked important demographic factors, ages, and stimulus frequencies. The present study derived a set of population-based age adjustment tables and validated them using a database of exposed workers. Design: Cross-sectional population-based study and retrospective longitudinal cohort study for validation. Study sample: Data from the U.S. National Health and Nutrition Examination Survey (unweighted n = 9937) were used to produce these tables. Male firefighters and emergency medical service workers (76,195 audiograms) were used for validation. Results: Cross-sectional trends implied less change with age than assumed in current U.S. regulations. Different trends were observed among people identifying with non-Hispanic Black race/ethnicity. Four age adjustment tables (age range: 18–85) were developed (women or men; non-Hispanic Black or other race/ethnicity). Validation outcomes showed that the population-based tables matched median longitudinal changes in hearing sensitivity well. Conclusions: These population-based tables provide a suitable replacement for those implemented in current U.S. regulations. These tables address a broader range of worker ages, account for differences in hearing sensitivity across race/ethnicity categories, and have been validated for men using longitudinal data.

  8. o

    US Cities: Demographics

    • public.opendatasoft.com
    • data.smartidf.services
    • +3more
    csv, excel, json
    Updated Jul 27, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2017). US Cities: Demographics [Dataset]. https://public.opendatasoft.com/explore/dataset/us-cities-demographics/
    Explore at:
    excel, csv, jsonAvailable download formats
    Dataset updated
    Jul 27, 2017
    License

    https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain

    Area covered
    United States
    Description

    This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.

  9. d

    Mass Killings in America, 2006 - present

    • data.world
    csv, zip
    Updated Aug 31, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Mass Killings in America, 2006 - present [Dataset]. https://data.world/associatedpress/mass-killings-public
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Aug 31, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 1, 2006 - Aug 1, 2025
    Area covered
    Description

    THIS DATASET WAS LAST UPDATED AT 8:11 PM EASTERN ON AUG. 30

    OVERVIEW

    2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.

    In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.

    A total of 229 people died in mass killings in 2019.

    The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.

    One-third of the offenders died at the scene of the killing or soon after, half from suicides.

    About this Dataset

    The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.

    The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.

    This data will be updated periodically and can be used as an ongoing resource to help cover these events.

    Using this Dataset

    To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:

    Mass killings by year

    Mass shootings by year

    To get these counts just for your state:

    Filter killings by state

    Definition of "mass murder"

    Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.

    This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”

    Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.

    Methodology

    Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.

    Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.

    In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.

    Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.

    Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.

    This project started at USA TODAY in 2012.

    Contacts

    Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.

  10. F

    Native American Multi-Year Facial Image Dataset

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). Native American Multi-Year Facial Image Dataset [Dataset]. https://www.futurebeeai.com/dataset/image-dataset/facial-images-historical-native-american
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Area covered
    United States
    Dataset funded by
    FutureBeeAI
    Description

    Introduction

    Welcome to the Native American Multi-Year Facial Image Dataset, thoughtfully curated to support the development of advanced facial recognition systems, biometric identification models, KYC verification tools, and other computer vision applications. This dataset is ideal for training AI models to recognize individuals over time, track facial changes, and enhance age progression capabilities.

    Facial Image Data

    This dataset includes over 5,000+ high-quality facial images, organized into individual participant sets, each containing:

    Historical Images: 22 facial images per participant captured across a span of 10 years
    Enrollment Image: One recent high-resolution facial image for reference or ground truth

    Diversity & Representation

    Geographic Coverage: Participants from USA, Canada, Mexico and more and other Native American regions
    Demographics: Individuals aged 18 to 70 years, with a gender distribution of 60% male and 40% female
    File Formats: All images are available in JPEG and HEIC formats

    Image Quality & Capture Conditions

    To ensure model generalization and practical usability, images in this dataset reflect real-world diversity:

    Lighting Conditions: Images captured under various natural and artificial lighting setups
    Backgrounds: A wide range of indoor and outdoor backgrounds
    Device Quality: Captured using modern, high-resolution mobile devices for consistency and clarity

    Metadata

    Each participant’s dataset is accompanied by rich metadata to support advanced model training and analysis, including:

    Unique participant ID
    File name
    Age at the time of image capture
    Gender
    Country of origin
    Demographic profile
    File format

    Use Cases & Applications

    This dataset is highly valuable for a wide range of AI and computer vision applications:

    Facial Recognition Systems: Train models for high-accuracy face matching across time
    KYC & Identity Verification: Improve time-spanning verification for banks, insurance, and government services
    Biometric Security Solutions: Build reliable identity authentication models
    Age Progression & Estimation Models: Train AI to predict aging patterns or estimate age from facial features
    Generative AI: Support creation and validation of synthetic age progression or longitudinal face generation

    Secure & Ethical Collection

    Platform: All data was securely collected and processed through FutureBeeAI’s proprietary systems
    Ethical Compliance: Full participant consent obtained with transparent communication of use cases
    Privacy-Protected: No personally identifiable information is included; all data is anonymized and handled with care

    Dataset Updates & Customization

    To keep pace with evolving AI needs, this dataset is regularly updated and customizable. Custom data collection options include:

    <div style="margin-top:10px; margin-bottom: 10px; padding-left: 30px; display: flex; gap:

  11. e

    Working Memory Across the Adult Lifespan: An Adversarial Collaboration,...

    • b2find.eudat.eu
    Updated Apr 7, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). Working Memory Across the Adult Lifespan: An Adversarial Collaboration, 2016-2020 - Dataset - B2FIND [Dataset]. https://b2find.eudat.eu/dataset/bb034e19-8f68-5066-b002-1cbf07f27adb
    Explore at:
    Dataset updated
    Apr 7, 2016
    Description

    The research involves 17 experiments to examine how healthy adult volunteers aged 18-75 perform when they are asked to remember words or visual patterns at the limits of their working memory capacity, and are asked to make simple rapid decisions (such as whether a string of letters is a word or not, or taps into their general knowledge of the world). The experiments will look at how people cope with focusing on the memory task or on the decision task, or are asked to do both at the same time. Two of the experiments will involve large numbers of people performing a range of tests to see if, e.g. people who are good at memory tests are also quick and accurate on decisions, or good at memory and making decisions at the same time. Each theory makes different predictions for the results of our planned experiments. The planned research has significant potential for new theoretical developments, and for major advances in the understanding of this key human ability across the adult lifespan. Crucially, it will reveal whether all of working memory declines with age or whether some aspects remain largely intact, with important implications for design of technology for older users, and for lifelong education and training. Behavioural/cognitive data from experiments with healthy human adults on working memory.The human ability to keep track of ongoing thoughts, plans, actions, current tasks, and changes around us is essential for everyday living. This ability is known as working memory, a system of the brain that allows us to focus on what we are doing, avoid distractions, switch from one task to another, solve problems, navigate around a shopping centre or city, drive on a busy motorway, prepare a meal, or do several things at once such as walking and talking. However, there are vigorous debates among scientists about what limits our working memory ability, and how those limits change as people move through middle age and into their older years. Sometimes such debates can lead to major new insights, but often researchers work with like minded people rather than with people who have opposing views. This can lead to an endless cycle of debate that hampers the genuine advance of understanding, and can result in ineffective use of limited research resources, effort and time. The investigators are international leaders of three different scientific theories and approaches to understanding the important human cognitive ability of working memory. The proposal involves the rare occurrence of co-investigators who hold different views, agreeing to work together on a project that will directly investigate why their independent research programmes have previously generated different results with different implications for understanding the effects of age on cognition. Although holding differing scientific views we have successfully cooperated in editing a journal issue and organising scientific meetings, as well as agreeing to work together to help advance understanding of what changes in the cognitive ability of us all as we age, thereby allowing a solid basis for the collaboration. From previous research results: Theory 1 assumes (a) if working memory is full to capacity with e.g. words, then it will be impossible to make decisions or to remember visual patterns as well (b) there is one general working memory ability that declines across adult age. Theory 2 assumes (a) working memory performance depends on how long attention is focused on memory or on decision making (b) mental rehearsal of words does not require attention (c) mental rehearsal and attention might each decline at different rates across adult age. Theory 3 assumes (a) even healthy older people can cope with holding words and visual patterns in working memory while making quick and accurate decisions (b) people can have good memories without being quick decision makers and vice versa (c) there are several different working memory abilities and these decline at different rates across adulthood with some abilities relatively intact in old age

  12. Data from: Population Assessment of Tobacco and Health (PATH) Study [United...

    • icpsr.umich.edu
    Updated Jun 27, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Inter-university Consortium for Political and Social Research [distributor] (2025). Population Assessment of Tobacco and Health (PATH) Study [United States] Restricted-Use Files [Dataset]. http://doi.org/10.3886/ICPSR36231.v42
    Explore at:
    Dataset updated
    Jun 27, 2025
    Dataset provided by
    Inter-university Consortium for Political and Social Researchhttps://www.icpsr.umich.edu/web/pages/
    License

    https://www.icpsr.umich.edu/web/ICPSR/studies/36231/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/36231/terms

    Area covered
    United States
    Description

    The PATH Study was launched in 2011 to inform the Food and Drug Administration's regulatory activities under the Family Smoking Prevention and Tobacco Control Act (TCA). The PATH Study is a collaboration between the National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), and the Center for Tobacco Products (CTP), Food and Drug Administration (FDA). The study sampled over 150,000 mailing addresses across the United States to create a national sample of people who use or do not use tobacco. 45,971 adults and youth constitute the first (baseline) wave, Wave 1, of data collected by this longitudinal cohort study. These 45,971 adults and youth along with 7,207 "shadow youth" (youth ages 9 to 11 sampled at Wave 1) make up the 53,178 participants that constitute the Wave 1 Cohort. Respondents are asked to complete an interview at each follow-up wave. Youth who turn 18 by the current wave of data collection are considered "aged-up adults" and are invited to complete the Adult Interview. Additionally, "shadow youth" are considered "aged-up youth" upon turning 12 years old, when they are asked to complete an interview after parental consent. At Wave 4, a probability sample of 14,098 adults, youth, and shadow youth ages 10 to 11 was selected from the civilian, noninstitutionalized population (CNP) at the time of Wave 4. This sample was recruited from residential addresses not selected for Wave 1 in the same sampled Primary Sampling Unit (PSU)s and segments using similar within-household sampling procedures. This "replenishment sample" was combined for estimation and analysis purposes with Wave 4 adult and youth respondents from the Wave 1 Cohort who were in the CNP at the time of Wave 4. This combined set of Wave 4 participants, 52,731 participants in total, forms the Wave 4 Cohort. At Wave 7, a probability sample of 14,863 adults, youth, and shadow youth ages 9 to 11 was selected from the CNP at the time of Wave 7. This sample was recruited from residential addresses not selected for Wave 1 or Wave 4 in the same sampled PSUs and segments using similar within-household sampling procedures. This "second replenishment sample" was combined for estimation and analysis purposes with the Wave 7 adult and youth respondents from the Wave 4 Cohorts who were at least age 15 and in the CNP at the time of Wave 7. This combined set of Wave 7 participants, 46,169 participants in total, forms the Wave 7 Cohort. Please refer to the Restricted-Use Files User Guide that provides further details about children designated as "shadow youth" and the formation of the Wave 1, Wave 4, and Wave 7 Cohorts. Dataset 0002 (DS0002) contains the data from the State Design Data. This file contains 7 variables and 82,139 cases. The state identifier in the State Design file reflects the participant's state of residence at the time of selection and recruitment for the PATH Study. Dataset 1011 (DS1011) contains the data from the Wave 1 Adult Questionnaire. This data file contains 2,021 variables and 32,320 cases. Each of the cases represents a single, completed interview. Dataset 1012 (DS1012) contains the data from the Wave 1 Youth and Parent Questionnaire. This file contains 1,431 variables and 13,651 cases. Dataset 1411 (DS1411) contains the Wave 1 State Identifier data for Adults and has 5 variables and 32,320 cases. Dataset 1412 (DS1412) contains the Wave 1 State Identifier data for Youth (and Parents) and has 5 variables and 13,651 cases. The same 5 variables are in each State Identifier dataset, including PERSONID for linking the State Identifier to the questionnaire and biomarker data and 3 variables designating the state (state Federal Information Processing System (FIPS), state abbreviation, and full name of the state). The State Identifier values in these datasets represent participants' state of residence at the time of Wave 1, which is also their state of residence at the time of recruitment. Dataset 1611 (DS1611) contains the Tobacco Universal Product Code (UPC) data from Wave 1. This data file contains 32 variables and 8,601 cases. This file contains UPC values on the packages of tobacco products used or in the possession of adult respondents at the time of Wave 1. The UPC values can be used to identify and validate the specific products used by respondents and augment the analyses of the characteristics of tobacco products used

  13. F

    US Spanish TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). US Spanish TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-spanish-usa
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The Spanish TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native Spanish voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native Spanish speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native Spanish-speaking states from USA
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for disfluencies
    <div

  14. N

    Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and...

    • neilsberg.com
    csv, json
    Updated Feb 24, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Grass Range, MT Population Breakdown by Gender and Age Dataset: Male and Female Population Distribution Across 18 Age Groups // 2025 Edition [Dataset]. https://www.neilsberg.com/research/datasets/e1e392ff-f25d-11ef-8c1b-3860777c1fe6/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Feb 24, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Grass Range, Montana
    Variables measured
    Male and Female Population Under 5 Years, Male and Female Population over 85 years, Male and Female Population Between 5 and 9 years, Male and Female Population Between 10 and 14 years, Male and Female Population Between 15 and 19 years, Male and Female Population Between 20 and 24 years, Male and Female Population Between 25 and 29 years, Male and Female Population Between 30 and 34 years, Male and Female Population Between 35 and 39 years, Male and Female Population Between 40 and 44 years, and 8 more
    Measurement technique
    The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates. To measure the three variables, namely (a) Population (Male), (b) Population (Female), and (c) Gender Ratio (Males per 100 Females), we initially analyzed and categorized the data for each of the gender classifications (biological sex) reported by the US Census Bureau across 18 age groups, ranging from under 5 years to 85 years and above. These age groups are described above in the variables section. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the population of Grass Range by gender across 18 age groups. It lists the male and female population in each age group along with the gender ratio for Grass Range. The dataset can be utilized to understand the population distribution of Grass Range by gender and age. For example, using this dataset, we can identify the largest age group for both Men and Women in Grass Range. Additionally, it can be used to see how the gender ratio changes from birth to senior most age group and male to female ratio across each age group for Grass Range.

    Key observations

    Largest age group (population): Male # 35-39 years (7) | Female # 70-74 years (36). Source: U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.

    Age groups:

    • Under 5 years
    • 5 to 9 years
    • 10 to 14 years
    • 15 to 19 years
    • 20 to 24 years
    • 25 to 29 years
    • 30 to 34 years
    • 35 to 39 years
    • 40 to 44 years
    • 45 to 49 years
    • 50 to 54 years
    • 55 to 59 years
    • 60 to 64 years
    • 65 to 69 years
    • 70 to 74 years
    • 75 to 79 years
    • 80 to 84 years
    • 85 years and over

    Scope of gender :

    Please note that American Community Survey asks a question about the respondents current sex, but not about gender, sexual orientation, or sex at birth. The question is intended to capture data for biological sex, not gender. Respondents are supposed to respond with the answer as either of Male or Female. Our research and this dataset mirrors the data reported as Male and Female for gender distribution analysis.

    Variables / Data Columns

    • Age Group: This column displays the age group for the Grass Range population analysis. Total expected values are 18 and are define above in the age groups section.
    • Population (Male): The male population in the Grass Range is shown in the following column.
    • Population (Female): The female population in the Grass Range is shown in the following column.
    • Gender Ratio: Also known as the sex ratio, this column displays the number of males per 100 females in Grass Range for each age group.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Grass Range Population by Gender. You can refer the same here

  15. Age and Gender Demographics in the 2010 Census

    • anrgeodata.vermont.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 11, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri U.S. Federal Datasets (2017). Age and Gender Demographics in the 2010 Census [Dataset]. https://anrgeodata.vermont.gov/maps/306a3cf93cc543a996d0582918b09268
    Explore at:
    Dataset updated
    May 11, 2017
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri U.S. Federal Datasets
    Area covered
    Description

    Age and Gender Demographics in the 2010 CensusThis feature layer, utilizing data from the U.S. Census Bureau, displays 2010 demographics about age and gender in the U.S. for state, county, tract, and block group geographies. Per USCB, "Focusing on a population’s age and sex composition is one of the most basic ways to understand population change over time." The attributes cover topics such as population counts by 5-year age ranges, male and female population counts, and median age values. A small subset of attributes from the 2000 Census are also included as reference.The U.S. Census counts every resident in the United States. It is mandated by Article I, Section 2 of the Constitution and takes place every 10 years. The data collected by the decennial census determine the number of seats each state has in the U.S. House of Representatives and is also used to distribute billions in federal funds to local communities. Four layers are available: state, county, census tract, and census block group. Each layer contains the same set of demographic attributes. Each geography level has a viewing range optimal for the geography size, and the map has increasing detail as you zoom in to smaller areas. Only one geography is in view at any time.Wisconsin Census Tract: 550791851.00Data currency: 2010Data source: Explore Census DataData modification: NoneFor more information:Population Profiles 2010State and county boundaries are simplified representations offered from the Census Bureau's 2010 MAF/TIGER databaseTract and block group boundaries are 2010 TIGER boundaries with select water area boundaries erased (coastlines and major water bodies).For a list of fields and alias names, access the following excel document.For feedback please contact: ArcGIScomNationalMaps@esri.comU.S. Census BureauPer USCB, "the Census Bureau is the federal government’s largest statistical agency. We are dedicated to providing current facts and figures about America’s people, places, and economy. Federal law protects the confidentiality of all the information the Census Bureau collects."

  16. Z

    Graded Incremental Test Data (Cycling, Running, Kayaking, Rowing): an open...

    • data.niaid.nih.gov
    Updated Mar 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crampton, David (2024). Graded Incremental Test Data (Cycling, Running, Kayaking, Rowing): an open access dataset [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_6325734
    Explore at:
    Dataset updated
    Mar 19, 2024
    Dataset provided by
    Mahony, Nick
    Crampton, David
    Campbell, Garry
    Donne, Bernard
    Ward, Tomás
    Fleming, Neil
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Section 1: Introduction

    Brief overview of dataset contents:

    Current database contains anonymised data collected during exercise testing services performed on male and female participants (cycling, rowing, kayaking and running) provided by the Human Performance Laboratory, School of Medicine, Trinity College Dublin, Dublin 2, Ireland.

    835 graded incremental exercise test files (285 cycling, 266 rowing / kayaking, 284 running)

    Description file with each row representing a test file - COLUMNS: file name (AXXX), sport (cycling, running, rowing or kayaking)

    Anthropometric data of participants by sport (age, gender, height, body mass, BMI, skinfold thickness,% body fat, lean body mass and haematological data; namely, haemoglobin concentration (Hb), haematocrit (Hct), red blood cell (RBC) count and white blood cell (WBC) count )

    Test data (HR, VO2 and lactate data) at rest and across a range of exercise intensities

    Derived physiological indices quantifying each individual’s endurance profile

    Following a request from athletes seeking assessment by phone or e-mail the test protocol, risks, benefits and test and medical requirements, were explained verbally or by return e-mail. Subsequently, an appointment for an exercise assessment was arranged following the regulatory reflection period (7 days). Following this regulatory period each participant’s verbal consent was obtained pre-test, for participants under 18 years of age parent / guardian consent was obtained in writing. Ethics approval was obtained from the Faculty of Health Sciences ethics committee and all testing procedures were performed in compliance with Declaration of Helsinki guidelines.

    All consenting participants were required to attend the laboratory on one occasion in a rested, carbohydrate loaded and well-hydrated state, and for male participants’ clean shaven in the facial region. All participants underwent a pre-test medical examination, including assessment of resting blood pressure, pulmonary function testing and haematological (Coulter Counter Act Diff, Beckmann Coulter, CA,US) review performed by a qualified medical doctor prior to exercise testing. Any person presenting with any cardiac abnormalities, respiratory difficulties, symptoms of cold or influenza, musculoskeletal injury that could impair performance, diabetes, hypertension, metabolic disorders, or any other contra-indicatory symptoms were excluded. In addition, participants completed a medical questionnaire detailing training history, previous personal and family health abnormalities, recent illness or injury, menstrual status for female participants, as well as details of recent travel and current vaccination status, and current medications, supplements and allergies. Barefoot height in metre (Holtain, Crymych, UK), body mass (counter balanced scales) in kilogram (Seca, Hamburg, Germany) and skinfold thickness in millimetre using a Harpenden skinfold caliper (Bath International, West Sussex, UK) were recorded pre-exercise.

    Section 2: Testing protocols

    2.1: Cycling

    A continuous graded incremental exercise test (GxT) to volitional exhaustion was performed on an electromagnetically braked cycle ergometer (Lode Excalibur Sport, Groningen, The Netherlands). Participants initially identified a cycling position in which they were most comfortable by adjusting saddle height, saddle fore-aft position relative to the crank axis, saddle to handlebar distance and handlebar height. Participant’s feet were secured to the ergometer using their own cycling shoes with cleats and accompanying pedals. The protocol commenced with a 15-min warm-up at a workload of 120 Watt (W), followed by a 10-min rest. The GxT began with a 3-min stationary phase for resting data collection, followed by an active phase commencing at a workload of 100 or 120 W for female and male participants, respectively, and subsequently increasing by a 20, 30 or 40 W incremental increase every 3-min depending on gender and current competition category. During assessment participants maintained a constant self-selected cadence chosen during their warm-up (permitted window was 5 rev.min−1 within a permitted absolute range of 75 to 95 rev.min−1) and the test was terminated when a participant was no longer able to maintain a constant cadence.

    Heart rate (HR) data were recorded continuously by radio-telemetry using a Cosmed HR monitor (Cosmed, Rome, Italy). During the test, blood samples were collected from the middle finger of the right hand at the end of the second minute of each 3-min interval. The fingertip was cleaned to remove any sweat or blood and lanced using a long point sterile lancet (Braun, Melsungen, Germany). The blood sample was collected into a heparinised capillary tube (Brand, Wertheim, Germany) by holding the tube horizontal to the droplet and allowing transfer by capillary action. Subsequently, a 25μL aliquot of whole blood was drawn from the capillary tube using a YSI syringepet (YSI, OH, USA) and added into the chamber of a YSI 1500 Sport lactate analyser (YSI, OH, USA) for determination of non-lysed [Lac] in mmol.L−1. The lactate analyser was calibrated to the manufacturer’s requirements (± 0.05 mmol.L−1) before each test using a standard solution (YSI, OH, USA) of known concentration (5 mmol.L−1) and analyser linearity was confirmed using either a 15 or 30 mmol.L-1 standard solution (YSI, OH, USA).

    Gas exchange variables including respiration rate (Rf in breaths.min-1), minute ventilation (VE in L.min-1), oxygen consumption (VO2 in L.min-1 and in mL.kg-1.min-1) and carbon dioxide production (VCO2 in L.min-1), were measured on a breath-by-breath basis throughout the test, using a cardiopulmonary exercise testing unit (CPET) and an associated software package (Cosmed, Rome, Italy). Participants wore a face mask (Hans Rudolf, KA, USA) which was connected to the CPET unit. The metabolic unit was calibrated prior to each test using ambient air and an alpha certified gas mixture containing 16% O2, 5% CO2 and 79% N2 (Cosmed, Rome, Italy). Volume calibration was performed using a 3L gas calibration syringe (Cosmed, Rome, Italy). Barometric pressure recorded by the CPET was confirmed by recording barometric pressure using a laboratory grade barometer.

    Following testing mean HR and mean VO2 data at rest and during each exercise increment were computed and tabulated over the final minute of each 3-min interval. A graphical plot of [Lac], mean VO2 and mean HR versus cycling workload was constructed and analysed to quantify physiological endurance indices, see Data Analysis section. Data for VO2 peak in L.min-1 (absolute) and in mL.kg-1.min-1 (relative) and VE peak in L.min-1 were reported as the peak data recorded over any 10 consecutive breaths recorded during the last minute of the final exercise increment.

    2.2: Running protocol

    A continuous graded incremental exercise test (GxT) to volitional exhaustion was performed on a motorised treadmill (Powerjog, Birmingham, UK). The running protocol, performed at a gradient of 0%, commenced with a 15-min warm-up at a velocity (km.h-1) which was lower than the participant’s reported typical weekly long run (>60 min) on-road training velocity. Subsequently, the warm-up was followed by a 10 minute rest / dynamic stretching phase. From a safety perspective during all running GxT participants wore a suspended lightweight safety harness to minimise any potential falls risk. The GxT began with a 3-min stationary phase for resting data collection, followed by an active phase commencing at a sub-maximal running velocity which was lower than the participant’s reported typical weekly long run (>60 min) on-road training velocity, and subsequently increased by ≥ 1 km.h-1 every 3-min depending on gender and current competition category. The test was terminated when a participant was no longer able to maintain the imposed treadmill.

    Measurement variables, equipment and pre-test calibration procedures, timing and procedure for measurement of selected variables and subsequent data analysis were as outlined in Section 2.1.

    2.3: Rowing / kayaking protocol

    A discontinuous graded incremental exercise test (GxT) to volitional exhaustion was performed on a Concept 2C rowing ergometer (Concept, VA, US) in rowers or a Dansprint kayak ergometer (Dansprint, Hvidovre, Denmark) in flat-water kayakers. The protocol commenced with a 15-min low-intensity warm-up at a workload (W) dependent on gender, sport and competition category, followed by a 10-min rest. For rowing the flywheel damping (120, 125 or 130W) was set dependent on gender and competition category. For kayaking the bungee cord tension was adjusted by individual participants to suit their requirements. A discontinuous protocol of 3-min exercise at a targeted load followed by a 1-min rest phase to facilitate stationary earlobe capillary blood sample collection and resetting of ergometer display (Dansprint ergometer) was used. The GxT began with a 3-min stationary phase for resting data collection, followed by an active phase commencing at a sub-maximal load 80 to 120 W for rowing, 50 to 90 W for kayaking and subsequently increased by 20,30 or 40 W every 3-min depending on gender, sport and current competition category. The test was terminated when a participant was no longer able to maintain the targeted workload.

    Measurement variables, equipment and pre-test calibration procedures, timing and procedure for measurement of selected variables and subsequent data analysis were as outlined in Section 2.1.

    3.1: Data analysis

    Constructed graphical plots (HR, VO2 and [Lac] versus load / velocity) were analysed to quantify the following; load / velocity at TLac, HR at TLac, [Lac] at TLac, % of VO2 peak at TLac, % of HRmax at TLac, load / velocity and HR at a nominal [Lac] of 2 mmol.L-1, load / velocity, VO2 and [Lac} at a nominal HR of

  17. o

    Burn Model System National Longitudinal Public Access Dataset 2024

    • openicpsr.org
    Updated Oct 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Andrew Humbert; Dagmar Amtmann; Haig Yenikomshian; Karen Kowalske; Jeffrey C Schneider; Barclay Stewart (2024). Burn Model System National Longitudinal Public Access Dataset 2024 [Dataset]. http://doi.org/10.3886/E209847V1
    Explore at:
    Dataset updated
    Oct 24, 2024
    Dataset provided by
    Spaulding Rehabilitation Hospital
    University of Texas Southwestern Medical Center at Dallas
    University of Washington
    University of Southern California, Keck School of Medicine
    Authors
    Andrew Humbert; Dagmar Amtmann; Haig Yenikomshian; Karen Kowalske; Jeffrey C Schneider; Barclay Stewart
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Severe burns are one of the most complex forms of traumatic injury. People with burn injuries often require long-term rehabilitation. Survivors of a burn injury often have a wide range of physical and psychosocial problems that can affect their quality of life. The Burn Model System (BMS) program began in 1994, with funding from the National Institute on Disability, Independent Living, and Rehabilitation Research (NIDILRR), in the Administration of Community Living and the U.S. Department of Education. The BMS program seeks to improve, through research, care and outcomes for people with burn injuries. Its research programs are housed in clinical burn centers that provide a coordinated and multidisciplinary system of rehabilitation care, including emergency medical, acute medical, post-acute, and long-term follow-up services. In addition, and with funding from NIDILRR, each BMS center conducts research and contributes follow-up data to the BMS National Data and Statistical Center (BMS NDSC). The four BMS centers are: Boston-Harvard Burn Injury Model System (BH-BIMS) in Boston, Massachusetts North Texas Burn Rehabilitation Model System (NTBRMS) in Dallas, Texas Northwest Regional Burn Model System (NWRBMS) in Seattle, Washington; andSouthern California Burn Model System (SCBMS) in Los Angeles, CaliforniaPast centers include the University of Texas Medical Branch Burn Injury Rehabilitation Model System in Galveston, Texas, the Johns Hopkins University Burn Model System in Baltimore, Maryland, the University of Colorado Denver National Data and Statistical Center, and the University of Colorado Denver Burn Model System Center.The BMS NDSC supports the research teams in the clinical burn centers. It also manages data collected by the BMS centers on more than 7,000 people who have received medical care for burn injuries. The data include a wide range of information—including pre-injury; injury; acute care; rehabilitation; recovery; and outcomes at 6, 12, 24 months, and every five years after the burn injury. To be included in the database, the burn injuries of participants must meet several criteria (as of 2015): ·More than 10% total body surface area (TBSA) burned, 65 years of age and older with burn surgery for wound closure;More than 20% TBSA burned, 0–64 years of age with burn surgery for wound closure; Electrical high voltage/lightning injury with burn surgery for wound closure; or Hand burn and/or face burn and/or feet burn with burn surgery for wound closure.In 2015, the BMS began a major initiative to collect data every five years after the injury and to collect new psychometrically sound, patient-reported outcome measures. On December 31, 2023, the database contained information for 4,913 adults (18 years of age and older at the time of burn) and 2,402 children (17 years of age and younger at the time of burn). The BMS program disseminates evidence-based information to patients, family members, health care providers, educators, policymakers, and the general public. The BMS centers provide information in many ways: peer-reviewed publications, presentations at national professional meetings, fact sheets about different aspects of living with a burn injury, newsletters for patients on BMS research and center events, outreach satellite clinics for patients living in rural areas, and peer-support groups. The BMS program also collaborates with the NIDILRR-funded Model Systems Knowledge Translation Center to promote the adoption of research findings by rehabilitation professionals, policymakers, and persons with burn injuries and their family members. The BMS program establishes partnerships to increase the overall impact of research; information dissemination; and training of clinicians, researchers, and policymakers. Current partners include the American Burn Association (ABA) and the Phoenix Society. Together, these partners help the BMS to ensure that NIDILRR-funded research addresses issues that are relevant to people with burn injuries.

  18. o

    European Business Performance Database

    • openicpsr.org
    Updated Sep 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Youssef Cassis; Harm Schroeter; Andrea Colli (2018). European Business Performance Database [Dataset]. http://doi.org/10.3886/E106060V2
    Explore at:
    Dataset updated
    Sep 15, 2018
    Dataset provided by
    EUI, Florence
    Bocconi University
    Bergen University
    Authors
    Youssef Cassis; Harm Schroeter; Andrea Colli
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The European Business Performance database describes the performance of the largest enterprises in the twentieth century. It covers eight countries that together consistently account for above 80 per cent of western European GDP: Great Britain, Germany, France, Belgium, Italy, Spain, Sweden, and Finland. Data have been collected for five benchmark years, namely on the eve of WWI (1913), before the Great Depression (1927), at the extremes of the golden age (1954 and 1972), and in 2000.The database is comprised of two distinct datasets. The Small Sample (625 firms) includes the largest enterprises in each country across all industries (economy-wide). To avoid over-representation of certain countries and sectors, countries contribute a number of firms that is roughly proportionate to the size of the economy: 30 firms from Great Britain, 25 from Germany, 20 from France, 15 from Italy, 10 from Belgium, Spain, and Sweden, and 5 from Finland. By the same token, a cap has been set on the number of financial firms entering the sample, so that they range between up to 6 for Britain and 1 for Finland.The second dataset, or Large Sample (1,167 firms), is made up of the largest firms per industry. Here industries are so selected as to take into account long-term technological developments and the rise of entirely new products and services. Firms have been individually classified using the two-digit ISIC Rev. 3.1 codes, then grouped under a manageable number of industries. To some extent and broadly speaking, the two samples have a rather distinct focus: the Small Sample is biased in favour of sheer bigness, whereas the Large Sample emphasizes industries.As far as size and performance indicators are concerned, total assets has been picked as the main size measure in the first three benchmarks, turnover in 1972 and 2000 (financial intermediaries, though, are ranked by total assets throughout the database). Performance is gauged by means of two financial ratios, namely return on equity and shareholders’ return, i.e. the percentage year-on-year change in share price based on year-end values. In order to smooth out volatility, at each benchmark performance figures have been averaged over three consecutive years (for instance, performance in 1913 reflects average performance in 1911, 1912, and 1913).All figures were collected in national currency and converted to US dollars at current year-average exchange rates.

  19. g

    Study of Women's Health Across the Nation (SWAN): Visit 03 Dataset, [United...

    • search.gesis.org
    Updated Jul 9, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GESIS search (2019). Study of Women's Health Across the Nation (SWAN): Visit 03 Dataset, [United States], 1999-2001 - Version 2 [Dataset]. http://doi.org/10.3886/ICPSR29701.v2
    Explore at:
    Dataset updated
    Jul 9, 2019
    Dataset provided by
    GESIS search
    Inter-University Consortium for Political and Social Research
    License

    https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de653307https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de653307

    Description

    Abstract (en): The Study of Women's Health Across the Nation (SWAN), is a multi-site longitudinal, epidemiologic study designed to examine the health of women during their middle years. The study examines the physical, biological, psychological, and social changes during this transitional period. The goal of SWAN's research is to help scientists, health care providers, and women learn how mid-life experiences affect health and quality of life during aging. The data include questions about doctor visits, medical conditions, medications, treatments, medical procedures, relationships, smoking, and menopause related information. The study is co-sponsored by the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR), the National Institutes of Health (NIH), and the NIH Office of Research on Women's Health. The study began in 1994. Between 1999 and 2001, 2,710 of the 3,302 women that joined SWAN were seen for their third follow-up visit. The research centers are located in the following communities: Detroit, Michigan; Boston, Massachusetts; Chicago, Illinois; Oakland and Los Angeles, California; Newark, New Jersey; and Pittsburgh, Pennsylvania. SWAN participants represent five racial/ethnic groups and a variety of backgrounds and cultures. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Presence of Common Scales: Raw data can be used to create CES-D and SF-36 scores. Response Rates: 16,065 completed the screening interview. 3,302 were enrolled in the longitudinal study. 2,881 completed the first follow-up visit. 2,748 completed the second follow-up visit. 2,710 completed the third follow-up visit. Datasets:DS1: Study of Womens Health Across the Nation (SWAN): Visit 03 Dataset, [United States], 1999-2001 Women age 40 through 55, living in designated geographic areas, with the ability to speak English or other designated languages (Japanese, Cantonese, or Spanish), who had the cognitive ability to provide verbal informed consent, and had membership in a specific site's targeted ethnic group. Smallest Geographic Unit: None Site-specific sampling frames were used and encompassed a range of types, including lists of households, telephone numbers, and individual names of women. 2019-05-29 This data collection has been enhanced in the following ways. The title of the study was updated to match current ICPSR standards. Variable labels have been revised to spell out abbreviations and acronyms, and to correct prior misspellings. The variables in the dataset have also been reordered to match the documentation provided by the Principal Investigator. A fuller version of the question text pertaining to individual variables was completed, and now available in the ICPSR codebook. An additional document was included in this release that lists all the publications based off of the SWAN data series. Lastly, the study is now available for online analysis.2018-08-22 The data were updated to adjust missing values.2014-02-12 This data collection is now publicly available. Funding institution(s): United States Department of Health and Human Services. National Institutes of Health (NR004061). United States Department of Health and Human Services. National Institutes of Health. National Institute on Aging (AG012495, AG012505, AG012539, AG012546, AG012553, AG012554). United States Department of Health and Human Services. National Institutes of Health. National Institute of Nursing Research (AG012535). United States Department of Health and Human Services. National Institutes of Health. Office of Research on Women's Health (AG012531). face-to-face interview self-enumerated questionnaire

  20. F

    US English TTS Speech Dataset for Speech Synthesis

    • futurebeeai.com
    wav
    Updated Aug 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FutureBee AI (2022). US English TTS Speech Dataset for Speech Synthesis [Dataset]. https://www.futurebeeai.com/dataset/speech-dataset/tts-monolgue-english-us
    Explore at:
    wavAvailable download formats
    Dataset updated
    Aug 1, 2022
    Dataset provided by
    FutureBeeAI
    Authors
    FutureBee AI
    License

    https://www.futurebeeai.com/policies/ai-data-license-agreementhttps://www.futurebeeai.com/policies/ai-data-license-agreement

    Dataset funded by
    FutureBeeAI
    Description

    The English TTS Monologue Speech Dataset is a professionally curated resource built to train realistic, expressive, and production-grade text-to-speech (TTS) systems. It contains studio-recorded long-form speech by trained native English voice artists, each contributing 1 to 2 hours of clean, uninterrupted monologue audio.

    Unlike typical prompt-based datasets with short, isolated phrases, this collection features long-form, topic-driven monologues that mirror natural human narration. It includes content types that are directly useful for real-world applications, like audiobook-style storytelling, educational lectures, health advisories, product explainers, digital how-tos, formal announcements, and more.

    All recordings are captured in professional studios using high-end equipment and under the guidance of experienced voice directors.

    Recording & Audio Quality

    Audio Format: WAV, 48 kHz, available in 16-bit, 24-bit, and 32-bit depth
    SNR: Minimum 30 dB
    Channel: Mono
    Recording Duration: 20-30 minutes
    Recording Environment: Studio-controlled, acoustically treated rooms
    Per Speaker Volume: 1–2 hours of speech per artist
    Quality Control: Each file is reviewed and cleaned for common acoustic issues, including: reverberation, lip smacks, mouth clicks, thumping, hissing, plosives, sibilance, background noise, static interference, clipping, and other artifacts.

    Only clean, production-grade audio makes it into the final dataset.

    Voice Artist Selection

    All voice artists are native English speakers with professional training or prior experience in narration. We ensure a diverse pool in terms of age, gender, and region to bring a balanced and rich vocal dataset.

    Artist Profile:
    Gender: Male and Female
    Age Range: 20–60 years
    Regions: Native English-speaking states from United States of America
    Selection Process: All artists are screened, onboarded, and sample-approved using FutureBeeAI’s proprietary Yugo platform.

    Script Quality & Coverage

    Scripts are not generic or repetitive. Scripts are professionally authored by domain experts to reflect real-world use cases. They avoid redundancy and include modern vocabulary, emotional range, and phonetically rich sentence structures.

    Word Count per Script: 3,000–5,000 words per 30-minute session
    Content Types:
    Storytelling
    Script and book reading
    Informational explainers
    Government service instructions
    E-commerce tutorials
    Motivational content
    Health & wellness guides
    Education & career advice
    Linguistic Design: Balanced punctuation, emotional range, modern syntax, and vocabulary diversity

    Transcripts & Alignment

    While the script is used during the recording, we also provide post-recording updates to ensure the transcript reflects the final spoken audio. Minor edits are made to adjust for skipped or rephrased words.

    Segmentation: Time-stamped at the sentence level, aligned to actual spoken delivery
    Format: Available in plain text and JSON
    Post-processing:
    Corrected for

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Neilsberg Research (2023). United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups [Dataset]. https://www.neilsberg.com/research/datasets/5fd2b2bb-3d85-11ee-9abe-0aa64bf2eeb2/

United States Age Group Population Dataset: A complete breakdown of United States age demographics from 0 to 85 years, distributed across 18 age groups

Explore at:
json, csvAvailable download formats
Dataset updated
Sep 16, 2023
Dataset authored and provided by
Neilsberg Research
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Area covered
United States
Variables measured
Population Under 5 Years, Population over 85 years, Population Between 5 and 9 years, Population Between 10 and 14 years, Population Between 15 and 19 years, Population Between 20 and 24 years, Population Between 25 and 29 years, Population Between 30 and 34 years, Population Between 35 and 39 years, Population Between 40 and 44 years, and 9 more
Measurement technique
The data presented in this dataset is derived from the latest U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. To measure the two variables, namely (a) population and (b) population as a percentage of the total population, we initially analyzed and categorized the data for each of the age groups. For age groups we divided it into roughly a 5 year bucket for ages between 0 and 85. For over 85, we aggregated data into a single group for all ages. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
Dataset funded by
Neilsberg Research
Description
About this dataset

Context

The dataset tabulates the United States population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for United States. The dataset can be utilized to understand the population distribution of United States by age. For example, using this dataset, we can identify the largest age group in United States.

Key observations

The largest age group in United States was for the group of age 25-29 years with a population of 22,854,328 (6.93%), according to the 2021 American Community Survey. At the same time, the smallest age group in United States was the 80-84 years with a population of 5,932,196 (1.80%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Content

When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.

Age groups:

  • Under 5 years
  • 5 to 9 years
  • 10 to 14 years
  • 15 to 19 years
  • 20 to 24 years
  • 25 to 29 years
  • 30 to 34 years
  • 35 to 39 years
  • 40 to 44 years
  • 45 to 49 years
  • 50 to 54 years
  • 55 to 59 years
  • 60 to 64 years
  • 65 to 69 years
  • 70 to 74 years
  • 75 to 79 years
  • 80 to 84 years
  • 85 years and over

Variables / Data Columns

  • Age Group: This column displays the age group in consideration
  • Population: The population for the specific age group in the United States is shown in this column.
  • % of Total Population: This column displays the population of each age group as a proportion of United States total population. Please note that the sum of all percentages may not equal one due to rounding of values.

Good to know

Margin of Error

Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

Custom data

If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

Inspiration

Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

Recommended for further research

This dataset is a part of the main dataset for United States Population by Age. You can refer the same here

Search
Clear search
Close search
Google apps
Main menu