Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://raw.githubusercontent.com/Masterx-AI/Project_Housing_Price_Prediction_/main/hs.jpg" alt="">
A simple yet challenging project, to predict the housing price based on certain factors like house area, bedrooms, furnished, nearness to mainroad, etc. The dataset is small yet, it's complexity arises due to the fact that it has strong multicollinearity. Can you overcome these obstacles & build a decent predictive model?
Harrison, D. and Rubinfeld, D.L. (1978) Hedonic prices and the demand for clean air. J. Environ. Economics and Management 5, 81–102. Belsley D.A., Kuh, E. and Welsch, R.E. (1980) Regression Diagnostics. Identifying Influential Data and Sources of Collinearity. New York: Wiley.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Median Sales Price of Houses Sold for the United States (MSPUS) from Q1 1963 to Q2 2025 about sales, median, housing, and USA.
Facebook
TwitterThe average sales price of new homes in the United States experienced a slight decrease in 2024, dropping to 512,2000 U.S. dollars from the peak of 521,500 U.S. dollars in 2022. This decline came after years of substantial price increases, with the average price surpassing 400,000 U.S. dollars for the first time in 2021. The recent cooling in the housing market reflects broader economic trends and changing consumer sentiment towards homeownership. Factors influencing home prices and affordability The rapid rise in home prices over the past few years has been driven by several factors, including historically low mortgage rates and increased demand during the COVID-19 pandemic. However, the market has since slowed down, with the number of home sales declining by over two million between 2021 and 2023. This decline can be attributed to rising mortgage rates and decreased affordability. The Housing Affordability Index hit a record low of 98.1 in 2023, indicating that the median-income family could no longer afford a median-priced home. Future outlook for the housing market Despite the recent cooling, experts forecast a potential recovery in the coming years. The Freddie Mac House Price Index showed a growth of 6.5 percent in 2023, which is still above the long-term average of 4.4 percent since 1990. However, homebuyer sentiment remains low across all age groups, with people aged 45 to 64 expressing the most pessimistic outlook. The median sales price of existing homes is expected to increase slightly until 2025, suggesting that affordability challenges may persist in the near future.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Average Sales Price of Houses Sold for the United States (ASPUS) from Q1 1963 to Q2 2025 about sales, housing, and USA.
Facebook
TwitterHouse prices grew year-on-year in most states in the U.S. in the first quarter of 2025. Hawaii was the only exception, with a decline of **** percent. The annual appreciation for single-family housing in the U.S. was **** percent, while in Rhode Island—the state where homes appreciated the most—the increase was ******percent. How have home prices developed in recent years? House price growth in the U.S. has been going strong for years. In 2025, the median sales price of a single-family home exceeded ******* U.S. dollars, up from ******* U.S. dollars five years ago. One of the factors driving house prices was the cost of credit. The record-low federal funds effective rate allowed mortgage lenders to set mortgage interest rates as low as *** percent. With interest rates on the rise, home buying has also slowed, causing fluctuations in house prices. Why are house prices growing? Many markets in the U.S. are overheated because supply has not been able to keep up with demand. How many homes enter the housing market depends on the construction output, whereas the availability of existing homes for purchase depends on many other factors, such as the willingness of owners to sell. Furthermore, growing investor appetite in the housing sector means that prospective homebuyers have some extra competition to worry about. In certain metros, for example, the share of homes bought by investors exceeded ** percent in 2025.
Facebook
TwitterRedfin is a real estate brokerage and publishes the US housing market data on a regular basis. Using this dataset, you can analyze and visualize housing market data for US cities. Timeline: Starting from February 2012 until the present time (Data is refreshed and updated on a monthly basis)
The dataset has the following columns:
- period_begin
- period_end
- period_duration
- region_type
- region_type_id
- table_id
- is_seasonally_adjusted. (indicates if prices are seasonally adjusted; f represents False)
- region
- city
- state
- state_code
- property_type
- property_type_id
- median_sale_price
- median_sale_price_mom (median sale price changes month over month)
- median_sale_price_yoy (median sale price changes year over year)
- median_list_price
- median_list_price_mom (median list price changes month over month)
- median_list_price_yoy (median list price changes year over year)
- median_ppsf (median sale price per square foot)
- median_ppsf_mom (median sale price per square foot changes month over month)
- median_ppsf_yoy (median sale price per square foot changes year over year)
- median_list_ppsf (median list price per square foot)
- median_list_ppsf_mom (median list price per square foot changes month over month)
- median_list_ppsf_yoy. (median list price per square foot changes year over year)
- homes_sold (number of homes sold)
- homes_sold_mom (number of homes sold month over month)
- homes_sold_yoy (number of homes sold year over year)
- pending_sales
- pending_sales_mom
- pending_sales_yoy
- new_listings
- new_listings_mom
- new_listings_yoy
- inventory
- inventory_mom
- inventory_yoy
- months_of_supply
- months_of_supply_mom
- months_of_supply_yoy
- median_dom (median days on market until property is sold)
- median_dom_mom (median days on market changes month over month)
- median_dom_yoy (median days on market changes year over year)
- avg_sale_to_list (average sale price to list price ratio)
- avg_sale_to_list_mom (average sale price to list price ratio changes month over month)
- avg_sale_to_list_yoy (average sale price to list price ratio changes year over year)
- sold_above_list
- sold_above_list_mom
- sold_above_list_yoy
- price_drops
- price_drops_mom
- price_drops_yoy
- off_market_in_two_weeks (number of properties that will be taken off the market within 2 weeks)
- off_market_in_two_weeks_mom (changes in number of properties that will be taken off the market within 2 weeks, month over month)
- off_market_in_two_weeks_yoy (changes in number of properties that will be taken off the market within 2 weeks, year over year)
- parent_metro_region
- parent_metro_region_metro_code
- last_updated
Filetype: gzip (gz) Support for gzip files in Python: https://docs.python.org/3/library/gzip.html
Data Source & Credit: Redfin.com
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Key information about House Prices Growth
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for Michigan (MISTHPI) from Q1 1975 to Q3 2025 about MI, appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
TwitterThe U.S. housing market has slowed, after ** consecutive years of rising home prices. In 2021, house prices surged by an unprecedented ** percent, marking the highest increase on record. However, the market has since cooled, with the Freddie Mac House Price Index showing more modest growth between 2022 and 2024. In 2024, home prices increased by *** percent. That was lower than the long-term average of *** percent since 1990. Impact of mortgage rates on homebuying The recent cooling in the housing market can be partly attributed to rising mortgage rates. After reaching a record low of **** percent in 2021, the average annual rate on a 30-year fixed-rate mortgage more than doubled in 2023. This significant increase has made homeownership less affordable for many potential buyers, contributing to a substantial decline in home sales. Despite these challenges, forecasts suggest a potential recovery in the coming years. How much does it cost to buy a house in the U.S.? In 2023, the median sales price of an existing single-family home reached a record high of over ******* U.S. dollars. Newly built homes were even pricier, despite a slight decline in the median sales price in 2023. Naturally, home prices continue to vary significantly across the country, with West Virginia being the most affordable state for homebuyers.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All-Transactions House Price Index for the United States (USSTHPI) from Q1 1975 to Q3 2025 about appraisers, HPI, housing, price index, indexes, price, and USA.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset provides a comprehensive overview of new housing price indexes in Canada. The data is sourced from a reliable statistical survey, offering a detailed breakdown of housing prices across different components such as total house and land, house only, and land only. The dataset is structured to include key metrics such as geographical location, price index classification, and specific price values, providing a robust foundation for analyzing housing price dynamics within the country.
Facebook
TwitterThe average price per square foot of floor space in new single-family housing in the United States decreased after the great financial crisis, followed by several years of stagnation. Since 2012, the price has continuously risen, hitting ****** U.S. dollars per square foot in 2024. In 2024, the average sales price of a new home exceeded ******* U.S. dollars. Development of house sales in the U.S. One of the reasons for rising property prices is the gradual growth of house sales between 2011 and 2020. This period was marked by the gradual recovery following the subprime mortgage crisis and a growing housing sentiment. Another significant factor for the housing demand was the growing number of new household formations each year. Despite this trend, housing transactions plummeted in 2021, amid soaring prices and borrowing costs. In 2021, the average construction cost for single-family housing rose by nearly ** percent year-on-year, and in 2022, the increase was even higher, at close to ** percent. Financing a house purchase Mortgage interest rates in the U.S. rose dramatically in 2022 and remained elevated until 2024. In 2020, a homebuyer could lock in a 30-year fixed interest rate of under ***** percent, whereas in 2024, the average rate for the same mortgage type was more than twice higher. That has led to a decline in homebuyer sentiment, and an increasing share of the population pessimistic about buying a home in the current market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
House Price Index YoY in the United States decreased to 1.70 percent in September from 2.40 percent in August of 2025. This dataset includes a chart with historical data for the United States FHFA House Price Index YoY.
Facebook
TwitterAfter a period of rapid increase, house price growth in the UK has moderated. In 2025, house prices are forecast to increase by ****percent. Between 2025 and 2029, the average house price growth is projected at *** percent. According to the source, home building is expected to increase slightly in this period, fueling home buying. On the other hand, higher borrowing costs despite recent easing of mortgage rates and affordability challenges may continue to suppress transaction activity. Historical house price growth in the UK House prices rose steadily between 2015 and 2020, despite minor fluctuations. In the following two years, prices soared, leading to the house price index jumping by about 20 percent. As the market stood in April 2025, the average price for a home stood at approximately ******* British pounds. Rents are expected to continue to grow According to another forecast, the prime residential market is also expected to see rental prices grow in the next five years. Growth is forecast to be stronger in 2025 and slow slightly until 2029. The rental market in London is expected to follow a similar trend, with Outer London slightly outperforming Central London.
Facebook
TwitterIn this Economic Commentary , we compare characteristics of the 2000–2006 house-price boom that preceded the Great Recession to the house-price boom that began in 2020 during the COVID-19 pandemic. These two episodes of high house-price growth have important differences, including the behavior of rental rates, the dynamics of housing supply and demand, and the state of the mortgage market. The absence of changes in fundamentals during the 2000s is consistent with the literature emphasizing house-price beliefs during this prior episode. In contrast to during the 2000s boom, changes in fundamentals (including rent and demand growth) played a more dominant role in the 2020s house-price boom.
Facebook
TwitterIn 2025, India was the country with the highest increase in house prices since 2010 among the Asia-Pacific (APAC) countries under observation. In the second quarter of the year, the nominal house price index in India reached over 359 index points. This suggests an increase of 259 percent since 2010, the baseline year when the index value was set to 100. It is important to note that the nominal index does not account for the effects of inflation, meaning when adjusted for inflation, price growth in real terms was slower.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View monthly updates and historical trends for US House Price Index. from United States. Source: Federal Housing Finance Agency. Track economic data with …
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Single Family Home Prices in the United States increased to 415200 USD in October from 412300 USD in September of 2025. This dataset provides - United States Existing Single Family Home Prices- actual values, historical data, forecast, chart, statistics, economic calendar and news.
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
These datasets contain comprehensive information on current real estate listings in Washington, D.C., obtained from Zillow, and offer a detailed overview of the Washington, D.C. housing market as of 5th June 2024.
The data was extracted from Zillow using a combination of two scraping tools from Apify: Zillow ZIP Code Scraper 🔗 https://apify.com/maxcopell/zillow-zip-search and Zillow Details Scraper 🔗 https://apify.com/maxcopell/zillow-detail-scraper.
The full dataset includes all details for each listing for sale, such as:
With over 5,000 current listings, this dataset is perfect for in-depth analysis of the Washington, D.C. housing market and the Washington, D.C. real estate scene. Potential applications include:
Whether you're a real estate professional, market analyst, data scientist, or simply interested in the Washington, D.C., housing market, this dataset offers a wealth of information to explore. You can begin investigating and discovering insights into Washington, D.C. real estate today.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset contains 2000 rows of house-related data, representing various features that could influence house prices. Below, we discuss key aspects of the dataset, which include its structure, the choice of features, and potential use cases for analysis.
The dataset is designed to capture essential attributes for predicting house prices, including:
Area: Square footage of the house, which is generally one of the most important predictors of price. Bedrooms & Bathrooms: The number of rooms in a house significantly affects its value. Homes with more rooms tend to be priced higher. Floors: The number of floors in a house could indicate a larger, more luxurious home, potentially raising its price. Year Built: The age of the house can affect its condition and value. Newly built houses are generally more expensive than older ones. Location: Houses in desirable locations such as downtown or urban areas tend to be priced higher than those in suburban or rural areas. Condition: The current condition of the house is critical, as well-maintained houses (in 'Excellent' or 'Good' condition) will attract higher prices compared to houses in 'Fair' or 'Poor' condition. Garage: Availability of a garage can increase the price due to added convenience and space. Price: The target variable, representing the sale price of the house, used to train machine learning models to predict house prices based on the other features.
Area Distribution: The area of the houses in the dataset ranges from 500 to 5000 square feet, which allows analysis across different types of homes, from smaller apartments to larger luxury houses. Bedrooms and Bathrooms: The number of bedrooms varies from 1 to 5, and bathrooms from 1 to 4. This variance enables analysis of homes with different sizes and layouts. Floors: Houses in the dataset have between 1 and 3 floors. This feature could be useful for identifying the influence of multi-level homes on house prices. Year Built: The dataset contains houses built from 1900 to 2023, giving a wide range of house ages to analyze the effects of new vs. older construction. Location: There is a mix of urban, suburban, downtown, and rural locations. Urban and downtown homes may command higher prices due to proximity to amenities. Condition: Houses are labeled as 'Excellent', 'Good', 'Fair', or 'Poor'. This feature helps model the price differences based on the current state of the house. Price Distribution: Prices range between $50,000 and $1,000,000, offering a broad spectrum of property values. This range makes the dataset appropriate for predicting a wide variety of housing prices, from affordable homes to luxury properties.
3. Correlation Between Features
A key area of interest is the relationship between various features and house price: Area and Price: Typically, a strong positive correlation is expected between the size of the house (Area) and its price. Larger homes are likely to be more expensive. Location and Price: Location is another major factor. Houses in urban or downtown areas may show a higher price on average compared to suburban and rural locations. Condition and Price: The condition of the house should show a positive correlation with price. Houses in better condition should be priced higher, as they require less maintenance and repair. Year Built and Price: Newer houses might command a higher price due to better construction standards, modern amenities, and less wear-and-tear, but some older homes in good condition may retain historical value. Garage and Price: A house with a garage may be more expensive than one without, as it provides extra storage or parking space.
The dataset is well-suited for various machine learning and data analysis applications, including:
House Price Prediction: Using regression techniques, this dataset can be used to build a model to predict house prices based on the available features. Feature Importance Analysis: By using techniques such as feature importance ranking, data scientists can determine which features (e.g., location, area, or condition) have the greatest impact on house prices. Clustering: Clustering techniques like k-means could help identify patterns in the data, such as grouping houses into segments based on their characteristics (e.g., luxury homes, affordable homes). Market Segmentation: The dataset can be used to perform segmentation by location, price range, or house type to analyze trends in specific sub-markets, like luxury vs. affordable housing. Time-Based Analysis: By studying how house prices vary with the year built or the age of the house, analysts can derive insights into the trends of older vs. newer homes.