100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  2. India Stock Market (daily updated)

    • kaggle.com
    zip
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2022). India Stock Market (daily updated) [Dataset]. https://www.kaggle.com/datasets/andrewmvd/india-stock-market
    Explore at:
    zip(72359394 bytes)Available download formats
    Dataset updated
    Jan 31, 2022
    Authors
    Larxel
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    About this dataset

    India's National Stock Exchange (NSE) has a total market capitalization of more than US$3.4 trillion, making it the world's 10th-largest stock exchange as of August 2021, with a trading volume of ₹8,998,811 crore (US$1.2 trillion) and more 2000 total listings.

    NSE's flagship index, the NIFTY 50, is a 50 stock index is used extensively by investors in India and around the world as a barometer of the Indian capital market.

    This dataset contains data of all company stocks listed in the NSE, allowing anyone to analyze and make educated choices about their investments, while also contributing to their countries economy.

    How to use this dataset

    • Create a time series regression model to predict NIFTY-50 value and/or stock prices.
    • Explore the most the returns, components and volatility of the stocks.
    • Identify high and low performance stocks among the list.

    Highlighted Notebooks

    Acknowledgements

    License

    CC0: Public Domain

    Splash banner

    Stonks by unknown memer.

  3. ⚡ Energy Crisis and Stock Price Dataset: 2021-2024

    • kaggle.com
    zip
    Updated Nov 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pinar Topuz (2024). ⚡ Energy Crisis and Stock Price Dataset: 2021-2024 [Dataset]. https://www.kaggle.com/datasets/pinuto/energy-crisis-and-stock-price-dataset-2021-2024
    Explore at:
    zip(81518 bytes)Available download formats
    Dataset updated
    Nov 20, 2024
    Authors
    Pinar Topuz
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    ⚡ Energy Crisis and Stock Price Dataset: 2021-2024 📊

    📋 About Dataset

    This dataset provides a detailed view of how major energy companies' stock prices were influenced by the energy crises between 2021 and 2024. The data covers three prominent energy companies: ExxonMobil (XOM), Shell (SHEL), and BP (BP), with historical stock price information collected via the yfinance library. This dataset is particularly useful for those interested in financial analysis, market behavior, and the impact of global events on the energy sector. 🌍📉📈

    📅 Date Range

    • Start Date: January 1, 2021
    • End Date: Present day (updated periodically)

    🔍 Data Overview

    The dataset contains the daily adjusted closing prices of the selected companies from January 2021 to the present. The data was gathered to analyze the impact of different energy crises, such as the fluctuations in oil and gas prices during 2021-2024, and to help provide insights into investor behavior during times of energy uncertainty.

    The key columns available in each CSV file are:

    ColumnDescription
    Date 📆The date of the stock data point.
    Open 🚪The price at which the stock opened on a particular day.
    High ⬆️The highest price of the stock for that day.
    Low ⬇️The lowest price of the stock for that day.
    Close 🔒The closing price of the stock for that day.
    Adj Close 📝The adjusted closing price, accounting for splits and dividends.
    Volume 📊The total number of shares traded during the day.

    💡 Potential Use Cases

    This dataset can be used for various purposes including, but not limited to:

    • Financial Time Series Analysis 📈: Explore trends and volatility in the stock market, particularly in the energy sector.
    • Predictive Modeling 🤖: Develop models to predict future stock prices based on historical data.
    • Energy Crisis Impact Studies ⚡: Assess the effect of energy crises on global markets, specifically the energy sector.
    • Portfolio Analysis 💼: Evaluate the stability and performance of energy companies during different crisis periods.

    📊 Data Files

    File NameDescription
    XOM_data.csvContains data for ExxonMobil.
    SHEL_data.csvContains data for Shell.
    BP_data.csvContains data for BP.

    Each CSV file includes the daily stock prices from January 1, 2021, to the present, with columns for open, high, low, close, adjusted close, and volume.

    📂 Dataset Structure

    • Directory: data/raw/
      • XOM_data.csv
      • SHEL_data.csv
      • BP_data.csv

    🚀 Data Collection Process

    The data for this dataset was collected using the yfinance Python library, which provides access to historical market data from Yahoo Finance. The collection script (data_collection.py) automates the download of stock data for the selected companies, saving each company's data in CSV format within the data/raw/ directory.

    🔧 Tools Used

    • Python 🐍: For scripting and data processing.
    • yfinance 📈: To download historical stock data.
    • pandas 🐼: For data manipulation and cleaning.

    📜 License

    The dataset is provided under the MIT License. You are free to use, modify, and distribute this dataset, provided that proper attribution is given.

    🙌 Contributions

    Contributions are welcome! If you have any suggestions or improvements, feel free to fork the repository and make a pull request. Let's make this dataset even more comprehensive and insightful together. 💪🌟

    Contribute

    📧 Contact

    For any questions or further information, feel free to reach out:

    GitHub Email

    I hope this dataset helps you uncover new insights about the relationship between energy crises and stock prices! If you find it helpful, don't forget to give it a ⭐️ on Kaggle! 😊✨

  4. T

    United Kingdom Stock Market Index (GB100) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United Kingdom Stock Market Index (GB100) Data [Dataset]. https://tradingeconomics.com/united-kingdom/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1984 - Dec 2, 2025
    Area covered
    United Kingdom
    Description

    United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.

  5. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  6. US Stock Metrics & Performance

    • kaggle.com
    zip
    Updated Dec 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jeremy Larcher (2023). US Stock Metrics & Performance [Dataset]. https://www.kaggle.com/datasets/jeremylarcher/us-stock-metrics-and-performance
    Explore at:
    zip(1188103 bytes)Available download formats
    Dataset updated
    Dec 13, 2023
    Authors
    Jeremy Larcher
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    All data acquired on December 11th 2023

    1) Ticker: Stock symbol identifying the company.

    2) Company: Name of the company.

    3) Sector: Industry category to which the company belongs.

    4) Industry: Specific sector or business category of the company.

    5) Country: Country where the company is based.

    6) Market Cap: Total market value of a company's outstanding shares.

    7) Price: Current stock price.

    8) Change (%): Percentage change in stock price.

    9) Volume: Number of shares traded.

    10) Price to Earnings Ratio: Ratio of stock price to earnings per share.

    11) Price to Earnings: Price-to-earnings ratio based on past earnings.

    12) Forward Price to Earnings: Expected price-to-earnings ratio.

    13) Price/Earnings to Growth: Ratio of P/E to earnings growth.

    14) Price to Sales: Ratio of stock price to annual sales.

    15) Price to Book: Ratio of stock price to book value.

    16) Price to Cash: Ratio of stock price to cash per share.

    17) Price to Free Cash Flow: Ratio of stock price to free cash flow.

    18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.

    19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.

    20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.

    21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.

    22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.

    23) Dividend (%): Dividend yield as a percentage of the stock price.

    24) Return on Assets (%): Percentage return on total assets.

    25) Return on Equity (%): Percentage return on shareholder equity.

    26) Return on Investment (%): Percentage return on total investment.

    27) Current Ratio: Ratio of current assets to current liabilities.

    28) Quick Ratio: Ratio of liquid assets to current liabilities.

    29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.

    30) Debt to Equity: Ratio of total debt to shareholder equity.

    31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.

    32) Operating Margin (%): Percentage of operating income to revenue.

    33) Profit Margin: Percentage of net income to revenue.

    34) Earnings: Net income of the company.

    35) Outstanding Shares: Total number of shares issued by the company.

    36) Float: Tradable shares available to the public.

    37) Insider Ownership (%): Percentage of company owned by insiders.

    38) Insider Transactions: Recent insider buying or selling activity.

    39) Institutional Ownership (%): Percentage of company owned by institutional investors.

    40) Float Short (%): Percentage of tradable shares sold short by investors.

    41) Short Ratio: Number of days it would take to cover short positions.

    42) Average Volume: Average number of shares traded daily.

    43) Performance (Week) (%): Weekly stock performance percentage.

    44) Performance (Month) (%): Monthly stock performance percentage.

    45) Performance (Quarter) (%): Quarterly stock performance percentage.

    46) Performance (Half Year) (%): Semi-annual stock performance percentage.

    47) Performance (Year) (%): Annual stock performance percentage.

    48) Performance (Year to Date) (%): Year-to-date stock performance percentage.

    49) Volatility (Week) (%): Weekly stock price volatility percentage.

    50) Volatility (Month) (%): Monthly stock price volatility percentage.

    51) Analyst Recommendation: Analyst consensus recommendation on the stock.

    52) Relative Volume: Volume compared to the average volume.

    53) Beta: Measure of stock price volatility relative to the market.

    54) Average True Range: Average price range of a stock.

    55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.

    56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.

    57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.

    58) Yearly High (%): Percentage difference from the yearly high stock price.

    59) Yearly Low (%): Percentage difference from the yearly low stock price.

    60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.

    61) Change from Open (%): Percentage change from the opening stock price.

    62) Gap (%): Percentage difference between the previous close and the current open price.

    63) Volume: Total number of shares traded.

  7. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Dec 2, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.

  8. F

    Index of Common Stock Prices, New York Stock Exchange for United States

    • fred.stlouisfed.org
    json
    Updated Aug 15, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2012). Index of Common Stock Prices, New York Stock Exchange for United States [Dataset]. https://fred.stlouisfed.org/series/M11007USM322NNBR
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Aug 15, 2012
    License

    https://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required

    Area covered
    United States, New York
    Description

    Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.

  9. Global Stock Price Archive

    • kaggle.com
    zip
    Updated Oct 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aditya kishor (2023). Global Stock Price Archive [Dataset]. https://www.kaggle.com/datasets/adityakishor1/global-stock-price-archive
    Explore at:
    zip(1216030 bytes)Available download formats
    Dataset updated
    Oct 7, 2023
    Authors
    Aditya kishor
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Description: The "Global Stock Price Archive" is a comprehensive dataset that provides a historical record of stock prices from a wide range of stock markets across the globe. This dataset is a valuable resource for researchers, investors, and analysts seeking to analyze trends, perform financial research, or develop trading strategies. Multi-Market Coverage: Historical stock price data from major stock exchanges worldwide, such as the New York Stock Exchange (NYSE), NASDAQ, London Stock Exchange (LSE), Tokyo Stock Exchange (TSE), and many others.

    Time Series Data: Daily, weekly, or monthly stock price information over a significant timeframe, allowing users to track the performance of individual stocks or market indices.

    Ticker Symbols: Ticker symbols or stock codes for easy identification of individual companies or securities.

    Open, Close, High, Low Prices: Detailed pricing information, including opening prices, closing prices, daily highs, and lows.

    Volume and Trading Data: Trading volumes, bid-ask spreads, and other relevant trading statistics.

    Adjustments: Adjusted prices to account for factors like dividends, stock splits, and other corporate actions.

    Data Formats: The dataset may be available in various formats, such as CSV, Excel, or API access, to accommodate different user needs

  10. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  11. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  12. Yahoo Finance Dataset (2018-2023)

    • kaggle.com
    zip
    Updated May 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Suruchi Arora (2023). Yahoo Finance Dataset (2018-2023) [Dataset]. https://www.kaggle.com/datasets/suruchiarora/yahoo-finance-dataset-2018-2023
    Explore at:
    zip(79394 bytes)Available download formats
    Dataset updated
    May 9, 2023
    Authors
    Suruchi Arora
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Description

    The "yahoo_finance_dataset(2018-2023)" dataset is a financial dataset containing daily stock market data for multiple assets such as equities, ETFs, and indexes. It spans from April 1, 2018 to March 31, 2023, and contains 1257 rows and 7 columns. The data was sourced from Yahoo Finance, and the purpose of the dataset is to provide researchers, analysts, and investors with a comprehensive dataset that they can use to analyze stock market trends, identify patterns, and develop investment strategies. The dataset can be used for various tasks, including stock price prediction, trend analysis, portfolio optimization, and risk management. The dataset is provided in XLSX format, which makes it easy to import into various data analysis tools, including Python, R, and Excel.

    The dataset includes the following columns:

    Date: The date on which the stock market data was recorded. Open: The opening price of the asset on the given date. High: The highest price of the asset on the given date. Low: The lowest price of the asset on the given date. Close*: The closing price of the asset on the given date. Note that this price does not take into account any after-hours trading that may have occurred after the market officially closed. Adj Close**: The adjusted closing price of the asset on the given date. This price takes into account any dividends, stock splits, or other corporate actions that may have occurred, which can affect the stock price. Volume: The total number of shares of the asset that were traded on the given date.

  13. Monthly development Dow Jones Industrial Average Index 2018-2025

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Monthly development Dow Jones Industrial Average Index 2018-2025 [Dataset]. https://www.statista.com/statistics/261690/monthly-performance-of-djia-index/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 2018 - Jun 2025
    Area covered
    United States
    Description

    The value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.

  14. Dow Jones: monthly value 1920-1955

    • statista.com
    Updated Jun 27, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Dow Jones: monthly value 1920-1955 [Dataset]. https://www.statista.com/statistics/1249670/monthly-change-value-dow-jones-depression/
    Explore at:
    Dataset updated
    Jun 27, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 1920 - Dec 1955
    Area covered
    United States
    Description

    Throughout the 1920s, prices on the U.S. stock exchange rose exponentially, however, by the end of the decade, uncontrolled growth and a stock market propped up by speculation and borrowed money proved unsustainable, resulting in the Wall Street Crash of October 1929. This set a chain of events in motion that led to economic collapse - banks demanded repayment of debts, the property market crashed, and people stopped spending as unemployment rose. Within a year the country was in the midst of an economic depression, and the economy continued on a downward trend until late-1932.

    It was during this time where Franklin D. Roosevelt (FDR) was elected president, and he assumed office in March 1933 - through a series of economic reforms and New Deal policies, the economy began to recover. Stock prices fluctuated at more sustainable levels over the next decades, and developments were in line with overall economic development, rather than the uncontrolled growth seen in the 1920s. Overall, it took over 25 years for the Dow Jones value to reach its pre-Crash peak.

  15. T

    Indonesia Stock Market (JCI) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Indonesia Stock Market (JCI) Data [Dataset]. https://tradingeconomics.com/indonesia/stock-market
    Explore at:
    csv, excel, json, xmlAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 6, 1990 - Dec 2, 2025
    Area covered
    Indonesia
    Description

    Indonesia's main stock market index, the JCI, rose to 8617 points on December 2, 2025, gaining 0.80% from the previous session. Over the past month, the index has climbed 4.13% and is up 19.75% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Indonesia. Indonesia Stock Market (JCI) - values, historical data, forecasts and news - updated on December of 2025.

  16. Can we predict stock market using machine learning? (META Stock Forecast)...

    • kappasignal.com
    Updated Sep 1, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (META Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/can-we-predict-stock-market-using_30.html
    Explore at:
    Dataset updated
    Sep 1, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (META Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  17. NVIDIA Corporation (NVDA) stock price

    • kaggle.com
    zip
    Updated May 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AmirHosein Mousavian (2024). NVIDIA Corporation (NVDA) stock price [Dataset]. https://www.kaggle.com/datasets/amirhoseinmousavian/nvidia-corporation-nvda-stock-price
    Explore at:
    zip(33038 bytes)Available download formats
    Dataset updated
    May 23, 2024
    Authors
    AmirHosein Mousavian
    Description

    This dataset is just for personal, non-commercial purposes.

    Overview

    This dataset provides a comprehensive record of NVIDIA Corporation's (NVDA) daily stock prices over the last five years. NVIDIA, a prominent technology company known for its graphics processing units (GPUs), has experienced significant market activity, making its stock price data valuable for financial analysis, trading strategies, and market trend studies.

    Data Fields

    The dataset includes the following columns:

    1. Date: The trading date (YYYY-MM-DD format).
    2. Open: The price of the stock at market opening.
    3. High: The highest price of the stock during the trading day.
    4. Low: The lowest price of the stock during the trading day.
    5. Close: The price of the stock at market close.
    6. Adj Close: The adjusted closing price, accounting for dividends and stock splits.
    7. Volume: The number of shares traded on that day.

    Time Period

    • Start Date: Five years prior from the current date (for example, if today's date is 2024-05-23, the dataset starts from 2019-05-23).
    • End Date: The most recent trading day available in the dataset.

    Data Source

    The data is typically sourced from reliable financial database Yahoo Finance. It is crucial to ensure data accuracy and completeness for effective analysis.

    Usage

    This dataset can be used for: - Historical Analysis: Studying NVIDIA's stock performance over time. - Technical Analysis: Applying various technical indicators and chart patterns. - Machine Learning: Training models for stock price prediction. - Market Research: Understanding market trends and investor behavior. - Investment Strategies: Backtesting trading strategies to assess their performance.

    Example Applications

    • Trend Analysis: Identifying bullish or bearish trends in NVIDIA's stock price.
    • Volatility Analysis: Measuring the stock's volatility and assessing risk.
    • Correlation Studies: Examining the relationship between NVIDIA's stock price and other market variables.
    • Event Impact Analysis: Analyzing the impact of company announcements, earnings reports, or macroeconomic events on the stock price.

    Note

    It is important to handle the data responsibly, considering market hours, holidays, and any corporate actions like stock splits or dividends that might affect the stock price. Adjustments for these factors are usually reflected in the "Adj Close" column to provide a more accurate historical comparison.

    This dataset is ideal for analysts, investors, researchers, and students interested in financial markets, particularly in understanding the dynamics of a leading technology company's stock over a significant period.

  18. What are the most successful trading algorithms? (NTAP Stock Forecast)...

    • kappasignal.com
    Updated Sep 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). What are the most successful trading algorithms? (NTAP Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/what-are-most-successful-trading.html
    Explore at:
    Dataset updated
    Sep 2, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What are the most successful trading algorithms? (NTAP Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  19. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Dec 2, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, rose to 8121 points on December 2, 2025, gaining 0.29% from the previous session. Over the past month, the index has climbed 0.13% and is up 11.93% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on December of 2025.

  20. Largest stock exchange operators worldwide 2025, by market capitalization

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Largest stock exchange operators worldwide 2025, by market capitalization [Dataset]. https://www.statista.com/statistics/270126/largest-stock-exchange-operators-by-market-capitalization-of-listed-companies/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Nov 2025
    Area covered
    Worldwide
    Description

    The New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of November 2025. The following largest three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-12-02)

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Dec 2, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu