32 datasets found
  1. o

    Data from: Google Play Store Dataset

    • opendatabay.com
    .undefined
    Updated Jun 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Google Play Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/33624898-8133-421d-9b3b-42f76e1e4fe2
    Explore at:
    .undefinedAvailable download formats
    Dataset updated
    Jun 15, 2025
    Dataset authored and provided by
    Bright Data
    Area covered
    Website Analytics & User Experience
    Description

    Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.

    Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.

    Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.

    Dataset Features

    • url: The URL link to the app’s detail page on the Google Play Store.
    • title: The name of the application.
    • developer: The developer or company behind the app.
    • monetization_features: Information regarding how the app generates revenue (e.g., in-app purchases, ads).
    • images: Links or references to images associated with the app.
    • about: Details or a summary description of the app.
    • data_safety: Information regarding data safety and privacy practices.
    • rating: The overall rating of the app provided by its users.
    • number_of_reviews: The total count of user reviews received.
    • star_reviews: A breakdown of reviews by star ratings.
    • reviews: Reviews and user feedback about the app.
    • what_new: Information on the latest updates or features added to the app.
    • more_by_this_developer: Other apps by the same developer.
    • content_rating: The content rating which guides suitability based on user age.
    • downloads: The download count or range indicating the app’s popularity.
    • country: The country associated with the app listing.
    • app_category: The category or genre under which the app is classified.

    Distribution

    • Data Volume: 17 Columns and 65.54M Rows
    • Format: CSV

    Usage

    This dataset is ideal for a variety of applications:

    • App Market Analysis: Enables market researchers to extract insights on app popularity, engagement, and trends across different categories.
    • Machine Learning: Can be used by data scientists to build recommendation engines or sentiment analysis models based on app review data.
    • User Behavior Studies: Facilitates academic or industrial research into user preferences and behavior with respect to mobile applications.

    Coverage

    • Geographic Coverage: global.

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: To train machine learning models for app popularity prediction, sentiment analysis, or recommendation systems.
    • Researchers: For academic or scientific studies into market trends, consumer behavior, and app performance analysis.
    • Businesses: For strategic analysis, developing market insights, or enhancing app development and user engagement strategies.

    Suggested Dataset Name

    1. Play store Insights
    2. Android App Scope
    3. Market Analytics
    4. Play Store Metrics Vault

    5. AppTrend360: Google Play Edition

    Pricing

    Based on Delivery frequency

    ~Up to $0.0025 per record. Min order $250

    Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.

    • Monthly

    New snapshot each month, 12 snapshots/year Paid monthly

    • Quarterly

    New snapshot each quarter, 4 snapshots/year Paid quarterly

    • Bi-annual

    New snapshot every 6 months, 2 snapshots/year Paid twice-a-year

    • One-time purchase

    New snapshot one-time delivery Paid once

  2. Data from: Apple App Store Dataset

    • opendatabay.com
    .other
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2025). Apple App Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/cd5a7748-e9da-4d59-96cd-96a0c95f7994
    Explore at:
    .otherAvailable download formats
    Dataset updated
    Jun 7, 2025
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    Area covered
    Website Analytics & User Experience
    Description

    Apple App Store dataset to explore detailed information on app popularity, user feedback, and monetization features. Popular use cases include market trend analysis, app performance evaluation, and consumer behavior insights in the mobile app ecosystem.

    Use our Apple App Store dataset to gain comprehensive insights into the mobile app ecosystem, including app popularity, user ratings, monetization features, and user feedback. This dataset covers various aspects of apps, such as descriptions, categories, and download metrics, offering a full picture of app performance and trends.

    Tailored for marketers, developers, and industry analysts, this dataset allows you to track market trends, identify emerging apps, and refine promotional strategies. Whether you're optimizing app development, analyzing competitive landscapes, or forecasting market opportunities, the Apple App Store dataset is an essential tool for making data-driven decisions in the ever-evolving mobile app industry.

    Dataset Features

    • url: The URL linking to the app’s page on the Apple App Store.
    • title: The name of the app.
    • sub_title: A brief subtitle or tagline for the app.
    • developer: The name of the entity or individual that developed the app.
    • top_charts: Indicates if the app appears in top charts.
    • monetization_features: Information on monetization aspects (such as in-app purchases or advertisements).
    • image: A reference to the main app image.
    • screenshots: Contains screenshot images of the app.
    • description: Detailed app description outlining main features.
    • what_new: Details on the latest updates or new features.
    • rating: The overall rating based on user reviews.
    • number_of_raters: The total number of users who have rated the app.
    • reviews_by_stars: Breakdown of the number of reviews by star rating.
    • reviews: An aggregation of user reviews.
    • events: Any associated events or promotions.
    • data_linked_to_you: Indicates if any data is linked to the user.
    • seller: The entity responsible for selling or distributing the app.
    • category: The category or genre of the app.
    • languages: Languages supported by the app.
    • copyright: Copyright information provided by the developer.
    • size: The file size of the app.
    • compatibility: Device or OS compatibility details.
    • age_rating: The recommended age rating for the app.
    • price: The price of the app.
    • In_app_purchases: Details on in-app purchase options.
    • support: Information related to app support.
    • more_by_this_developer: Suggestions for other apps by the same developer.
    • you_might_also_like: Recommendations for similar apps.
    • app_support: Additional support details.
    • privacy_policy: Link or reference to the app’s privacy policy.
    • developer_website: The website of the app developer.
    • featured_in: Information on any features or showcases the app has being part of.
    • country: The country from which the app’s data was sourced.
    • timestamp: A timestamp indicating when the data record was last updated.
    • latest_app_version: The most recent version of the app available.
    • app_id: A unique identifier for the app.

    Distribution

    • Data Volume: 36 Columns and 68M Rows
    • Format: CSV

    Usage

    This dataset is versatile and can be used for various applications: - Market Analysis: Analyze app pricing strategies, monetization features, and category distribution to understand market trends and opportunities in the App Store. This can help developers and businesses make informed decisions about their app development and pricing strategies. - User Experience Research: Study the relationship between app ratings, number of reviews, and app features to understand what drives user satisfaction. The detailed review data and ratings can provide insights into user preferences and pain points. - Competitive Intelligence: Track and analyze apps within specific categories, comparing features, pricing, and user engagement metrics to identify successful patterns and market gaps. Particularly useful for developers planning new apps or improving existing ones. - Performance Prediction: Build predictive models using features like app size, category, pricing, and language support to forecast potential app success metrics. This can help in making data-driven decisions during app development. - Localization Strategy: Analyze the languages supported and regional performance to inform decisions about app localization and international market expansion.

    Coverage

    • Geographic Coverage: Global

    License

    CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

    Who Can Use It

    • Data Scientists: Can leverage this dataset for training machine learning algorithms and building predictive models concerning app tr
  3. A

    App Analytics Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). App Analytics Market Report [Dataset]. https://www.marketreportanalytics.com/reports/app-analytics-market-88003
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Apr 27, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The app analytics market, valued at $7.29 billion in 2025, is experiencing robust growth, projected to expand at a compound annual growth rate (CAGR) of 21.09% from 2025 to 2033. This surge is driven by several key factors. The increasing adoption of mobile applications across diverse industries, coupled with the rising need for businesses to understand user behavior and optimize app performance, fuels the demand for sophisticated analytics solutions. Furthermore, advancements in data analytics technologies, including artificial intelligence (AI) and machine learning (ML), are enabling more insightful and actionable data analysis, further propelling market expansion. The diverse application of app analytics across marketing/advertising, revenue generation, and in-app performance monitoring across various sectors like BFSI, e-commerce, media, travel and tourism, and IT and telecom significantly contributes to this growth. The market is segmented by deployment (mobile apps and website/desktop apps) and end-user industry, with mobile app analytics currently dominating due to the widespread adoption of smartphones. The competitive landscape is characterized by a mix of established technology giants like Google and Amazon alongside specialized app analytics providers like AppsFlyer and Mixpanel. These companies are continuously innovating, integrating new technologies, and expanding their product offerings to cater to the evolving needs of businesses. While the North American market currently holds a significant share, the Asia-Pacific region is expected to witness substantial growth in the coming years driven by increasing smartphone penetration and digitalization initiatives. However, factors like data privacy concerns and the rising complexity of integrating various analytics tools could pose challenges to market growth. Nonetheless, the overall outlook for the app analytics market remains positive, indicating substantial opportunities for players across the value chain. Recent developments include: June 2024 - Comscore and Kochava unveiled an innovative performance media measurement solution, providing marketers with enhanced insights. This cutting-edge cross-screen solution empowers marketers to understand better how linear TV ad campaigns impact both online and offline actions. By integrating Comscore’s Exact Commercial Ratings (ECR) data with Kochava’s sophisticated marketing mix modeling, the solution facilitates the measurement of crucial metrics, including mobile app activities (such as installs and in-app purchases) and website interactions., June 2024 - AppsFlyer announced its integration of the Data Collaboration Platform with Start.io, an omnichannel advertising platform that focuses on real-time mobile audiences for publishers. Through this collaboration, businesses leveraging the AppsFlyer Data Collaboration Platform can merge their Start.io data with campaign metrics and audience insights, creating a more comprehensive dataset for precise audience targeting.. Key drivers for this market are: Increasing Usage of Mobile/Web Apps Across Various End-user Industries, Increasing Adoption of Technologies like 5G Technology and Deeper Penetration of Smartphones; Increase in the Amount of Time Spent on Mobile Devices Coupled With the Increasing Focus on Enhancing Customer Experience. Potential restraints include: Increasing Usage of Mobile/Web Apps Across Various End-user Industries, Increasing Adoption of Technologies like 5G Technology and Deeper Penetration of Smartphones; Increase in the Amount of Time Spent on Mobile Devices Coupled With the Increasing Focus on Enhancing Customer Experience. Notable trends are: Media and Entertainment Industry Expected to Capture Significant Share.

  4. P

    Myket Android Application Install Dataset

    • paperswithcode.com
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erfan Loghmani; Mohammadamin Fazli (2023). Myket Android Application Install Dataset [Dataset]. https://paperswithcode.com/dataset/myket-android-application-install
    Explore at:
    Dataset updated
    Aug 12, 2023
    Authors
    Erfan Loghmani; Mohammadamin Fazli
    Description

    This dataset contains information on application install interactions of users in the Myket android application market. The dataset was created for the purpose of evaluating interaction prediction models, requiring user and item identifiers along with timestamps of the interactions. Hence, the dataset can be used for interaction prediction and building a recommendation system. Furthermore, the data forms a dynamic network of interactions, and we can also perform network representation learning on the nodes in the network, which are users and applications.

    Data Creation The dataset was initially generated by the Myket data team, and later cleaned and subsampled by Erfan Loghmani a master student at Sharif University of Technology at the time. The data team focused on a two-week period and randomly sampled 1/3 of the users with interactions during that period. They then selected install and update interactions for three months before and after the two-week period, resulting in interactions spanning about 6 months and two weeks.

    We further subsampled and cleaned the data to focus on application download interactions. We identified the top 8000 most installed applications and selected interactions related to them. We retained users with more than 32 interactions, resulting in 280,391 users. From this group, we randomly selected 10,000 users, and the data was filtered to include only interactions for these users. The detailed procedure can be found in here.

    Data Structure The dataset has two main files.

    myket.csv: This file contains the interaction information and follows the same format as the datasets used in the "JODIE: Predicting Dynamic Embedding Trajectory in Temporal Interaction Networks" (ACM SIGKDD 2019) project. However, this data does not contain state labels and interaction features, resulting in associated columns being all zero. app_info_sample.csv: This file comprises features associated with applications present in the sample. For each individual application, information such as the approximate number of installs, average rating, count of ratings, and category are included. These features provide insights into the applications present in the dataset.

    Dataset Details

    Total Instances: 694,121 install interaction instances Instances Format: Triplets of user_id, app_name, timestamp 10,000 users and 7,988 android applications Item features for 7,606 applications

    For a detailed summary of the data's statistics, including information on users, applications, and interactions, please refer to the Python notebook available at summary-stats.ipynb. The notebook provides an overview of the dataset's characteristics and can be helpful for understanding the data's structure before using it for research or analysis.

    Top 20 Most Installed Applications | Package Name | Count of Interactions | | ---------------------------------- | --------------------- | | com.instagram.android | 15292 | | ir.resaneh1.iptv | 12143 | | com.tencent.ig | 7919 | | com.ForgeGames.SpecialForcesGroup2 | 7797 | | ir.nomogame.ClutchGame | 6193 | | com.dts.freefireth | 6041 | | com.whatsapp | 5876 | | com.supercell.clashofclans | 5817 | | com.mojang.minecraftpe | 5649 | | com.lenovo.anyshare.gps | 5076 | | ir.medu.shad | 4673 | | com.firsttouchgames.dls3 | 4641 | | com.activision.callofduty.shooter | 4357 | | com.tencent.iglite | 4126 | | com.aparat | 3598 | | com.kiloo.subwaysurf | 3135 | | com.supercell.clashroyale | 2793 | | co.palang.QuizOfKings | 2589 | | com.nazdika.app | 2436 | | com.digikala | 2413 |

    Comparison with SNAP Datasets The Myket dataset introduced in this repository exhibits distinct characteristics compared to the real-world datasets used by the project. The table below provides a comparative overview of the key dataset characteristics:

    Dataset#Users#Items#InteractionsAverage Interactions per UserAverage Unique Items per User
    Myket10,0007,988694,12169.454.6
    LastFM9801,0001,293,1031,319.5158.2
    Reddit10,000984672,44767.27.9
    Wikipedia8,2271,000157,47419.12.2
    MOOC7,04797411,74958.425.3

    The Myket dataset stands out by having an ample number of both users and items, highlighting its relevance for real-world, large-scale applications. Unlike LastFM, Reddit, and Wikipedia datasets, where users exhibit repetitive item interactions, the Myket dataset contains a comparatively lower amount of repetitive interactions. This unique characteristic reflects the diverse nature of user behaviors in the Android application market environment.

    Citation If you use this dataset in your research, please cite the following preprint:

    @misc{loghmani2023effect, title={Effect of Choosing Loss Function when Using T-batching for Representation Learning on Dynamic Networks}, author={Erfan Loghmani and MohammadAmin Fazli}, year={2023}, eprint={2308.06862}, archivePrefix={arXiv}, primaryClass={cs.LG} }

  5. Artificial Intelligence (AI) Training Dataset Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Artificial Intelligence (AI) Training Dataset Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/artificial-intelligence-training-dataset-market-global-industry-analysis
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 30, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Artificial Intelligence (AI) Training Dataset Market Outlook



    According to our latest research, the global Artificial Intelligence (AI) Training Dataset market size reached USD 3.15 billion in 2024, reflecting robust industry momentum. The market is expanding at a notable CAGR of 20.8% and is forecasted to attain USD 20.92 billion by 2033. This impressive growth is primarily attributed to the surging demand for high-quality, annotated datasets to fuel machine learning and deep learning models across diverse industry verticals. The proliferation of AI-driven applications, coupled with rapid advancements in data labeling technologies, is further accelerating the adoption and expansion of the AI training dataset market globally.




    One of the most significant growth factors propelling the AI training dataset market is the exponential rise in data-driven AI applications across industries such as healthcare, automotive, retail, and finance. As organizations increasingly rely on AI-powered solutions for automation, predictive analytics, and personalized customer experiences, the need for large, diverse, and accurately labeled datasets has become critical. Enhanced data annotation techniques, including manual, semi-automated, and fully automated methods, are enabling organizations to generate high-quality datasets at scale, which is essential for training sophisticated AI models. The integration of AI in edge devices, smart sensors, and IoT platforms is further amplifying the demand for specialized datasets tailored for unique use cases, thereby fueling market growth.




    Another key driver is the ongoing innovation in machine learning and deep learning algorithms, which require vast and varied training data to achieve optimal performance. The increasing complexity of AI models, especially in areas such as computer vision, natural language processing, and autonomous systems, necessitates the availability of comprehensive datasets that accurately represent real-world scenarios. Companies are investing heavily in data collection, annotation, and curation services to ensure their AI solutions can generalize effectively and deliver reliable outcomes. Additionally, the rise of synthetic data generation and data augmentation techniques is helping address challenges related to data scarcity, privacy, and bias, further supporting the expansion of the AI training dataset market.




    The market is also benefiting from the growing emphasis on ethical AI and regulatory compliance, particularly in data-sensitive sectors like healthcare, finance, and government. Organizations are prioritizing the use of high-quality, unbiased, and diverse datasets to mitigate algorithmic bias and ensure transparency in AI decision-making processes. This focus on responsible AI development is driving demand for curated datasets that adhere to strict quality and privacy standards. Moreover, the emergence of data marketplaces and collaborative data-sharing initiatives is making it easier for organizations to access and exchange valuable training data, fostering innovation and accelerating AI adoption across multiple domains.




    From a regional perspective, North America currently dominates the AI training dataset market, accounting for the largest revenue share in 2024, driven by significant investments in AI research, a mature technology ecosystem, and the presence of leading AI companies and data annotation service providers. Europe and Asia Pacific are also witnessing rapid growth, with increasing government support for AI initiatives, expanding digital infrastructure, and a rising number of AI startups. While North America sets the pace in terms of technological innovation, Asia Pacific is expected to exhibit the highest CAGR during the forecast period, fueled by the digital transformation of emerging economies and the proliferation of AI applications across various industry sectors.





    Data Type Analysis



    The AI training dataset market is segmented by data type into Text, Image/Video, Audio, and Others, each playing a crucial role in powering different AI applications. Text da

  6. d

    Autoscraping | Zillow USA Real Estate Data | 10M Listings with Pricing &...

    • datarade.ai
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AutoScraping, Autoscraping | Zillow USA Real Estate Data | 10M Listings with Pricing & Market Insights [Dataset]. https://datarade.ai/data-products/autoscraping-s-zillow-usa-real-estate-data-10m-listings-wit-autoscraping
    Explore at:
    .json, .csv, .xls, .sqlAvailable download formats
    Dataset authored and provided by
    AutoScraping
    Area covered
    United States
    Description

    Autoscraping's Zillow USA Real Estate Data is a comprehensive and meticulously curated dataset that covers over 10 million property listings across the United States. This data product is designed to meet the needs of professionals across various sectors, including real estate investment, market analysis, urban planning, and academic research. Our dataset is unique in its depth, accuracy, and timeliness, ensuring that users have access to the most relevant and actionable information available.

    What Makes Our Data Unique? The uniqueness of our data lies in its extensive coverage and the precision of the information provided. Each property listing is enriched with detailed attributes, including but not limited to, full addresses, asking prices, property types, number of bedrooms and bathrooms, lot size, and Zillow’s proprietary value and rent estimates. This level of detail allows users to perform in-depth analyses, make informed decisions, and gain a competitive edge in their respective fields.

    Furthermore, our data is continually updated to reflect the latest market conditions, ensuring that users always have access to current and accurate information. We prioritize data quality, and each entry is carefully validated to maintain a high standard of accuracy, making this dataset one of the most reliable on the market.

    Data Sourcing: The data is sourced directly from Zillow, one of the most trusted names in the real estate industry. By leveraging Zillow’s extensive real estate database, Autoscraping ensures that users receive data that is not only comprehensive but also highly reliable. Our proprietary scraping technology ensures that data is extracted efficiently and without errors, preserving the integrity and accuracy of the original source. Additionally, we implement strict data processing and validation protocols to filter out any inconsistencies or outdated information, further enhancing the quality of the dataset.

    Primary Use-Cases and Vertical Applications: Autoscraping's Zillow USA Real Estate Data is versatile and can be applied across a variety of use cases and industries:

    Real Estate Investment: Investors can use this data to identify lucrative opportunities, analyze market trends, and compare property values across different regions. The detailed pricing and valuation data allow for comprehensive due diligence and risk assessment.

    Market Analysis: Market researchers can leverage this dataset to track real estate trends, evaluate the performance of different property types, and assess the impact of economic factors on property values. The dataset’s nationwide coverage makes it ideal for both local and national market studies.

    Urban Planning and Development: Urban planners and developers can use the data to identify growth areas, plan new developments, and assess the demand for different property types in various regions. The detailed location data is particularly valuable for site selection and zoning analysis.

    Academic Research: Universities and research institutions can utilize this data for studies on housing markets, urbanization, and socioeconomic trends. The comprehensive nature of the dataset allows for a wide range of academic applications.

    Integration with Our Broader Data Offering: Autoscraping's Zillow USA Real Estate Data is part of our broader data portfolio, which includes various datasets focused on real estate, market trends, and consumer behavior. This dataset can be seamlessly integrated with our other offerings to provide a more holistic view of the market. For example, combining this data with our consumer demographic datasets can offer insights into the relationship between property values and demographic trends.

    By choosing Autoscraping's data products, you gain access to a suite of complementary datasets that can be tailored to meet your specific needs. Whether you’re looking to gain a comprehensive understanding of the real estate market, identify new investment opportunities, or conduct advanced research, our data offerings are designed to provide you with the insights you need.

  7. d

    Dataplex: US Healthcare NPI Data | Access 8.5M B2B Contacts with Emails &...

    • datarade.ai
    .csv, .txt
    Updated Jul 8, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataplex (2024). Dataplex: US Healthcare NPI Data | Access 8.5M B2B Contacts with Emails & Phones | Perfect for Outreach & Market Research [Dataset]. https://datarade.ai/data-products/dataplex-us-healthcare-npi-data-access-8-5m-b2b-contacts-w-dataplex
    Explore at:
    .csv, .txtAvailable download formats
    Dataset updated
    Jul 8, 2024
    Dataset authored and provided by
    Dataplex
    Area covered
    United States
    Description

    US Healthcare NPI Data is a comprehensive resource offering detailed information on health providers registered in the United States.

    Dataset Highlights:

    • NPI Numbers: Unique identification numbers for health providers.
    • Contact Details: Includes addresses and phone numbers.
    • State License Numbers: State-specific licensing information.
    • Additional Identifiers: Other identifiers related to the providers.
    • Business Names: Names of the provider’s business entities.
    • Taxonomies: Classification of provider types and specialties.

    Taxonomy Data:

    • Includes codes, groupings, and classifications.
    • Facilitates detailed analysis and categorization of providers.

    Data Updates:

    • Weekly Delta Changes: Ensures the dataset is current with the latest changes.
    • Monthly Full Refresh: Comprehensive update to maintain accuracy.

    Use Cases:

    • Market Analysis: Understand the distribution and types of healthcare providers across the US. Analyze market trends and identify potential gaps in healthcare services.
    • Outreach: Create targeted marketing campaigns to reach specific types of healthcare providers. Use contact details for direct outreach and engagement with providers.
    • Research: Conduct in-depth research on healthcare providers and their specialties. Analyze provider attributes to support academic or commercial research projects.
    • Compliance and Verification: Verify provider credentials and compliance with state licensing requirements. Ensure accurate provider information for regulatory and compliance purposes.

    Data Quality and Reliability:

    • The dataset is meticulously curated to ensure high quality and reliability. Regular updates, both weekly and monthly, ensure that users have access to the most current information. The comprehensive nature of the data, combined with its regular updates, makes it a valuable tool for a wide range of applications in the healthcare sector.

    Access and Integration: - CSV Format: The dataset is provided in CSV format, making it easy to integrate with various data analysis tools and platforms. - Ease of Use: The structured format of the data ensures that it can be easily imported, analyzed, and utilized for various applications without extensive preprocessing.

    Ideal for:

    • Healthcare Professionals: Physicians, nurses, and other healthcare providers who need to verify information about their peers.
    • Analysts: Data analysts and business analysts who require detailed and accurate healthcare provider data for their projects.
    • Businesses: Companies in the healthcare sector looking to understand market dynamics and reach out to providers.
    • Researchers: Academic and commercial researchers conducting studies on healthcare providers and services.

    Why Choose This Dataset?

    • Comprehensive Coverage: Detailed information on millions of healthcare providers across the US.
    • Regular Updates: Weekly and monthly updates ensure that the data remains current and reliable.
    • Ease of Integration: Provided in a user-friendly CSV format for easy integration with your existing systems.
    • Versatility: Suitable for a wide range of applications, from market analysis to compliance and research.

    By leveraging the US Healthcare NPI & Taxonomy Data, users can gain valuable insights into the healthcare landscape, enhance their outreach efforts, and conduct detailed research with confidence in the accuracy and comprehensiveness of the data.

    Summary:

    • This dataset is an invaluable resource for anyone needing detailed and up-to-date information on US healthcare providers. Whether for market analysis, research, outreach, or compliance, the US Healthcare NPI & Taxonomy Data offers the detailed, reliable information needed to achieve your goals.
  8. Bird Song Recognition App Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Bird Song Recognition App Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/bird-song-recognition-app-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Jun 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Bird Song Recognition App Market Outlook



    According to our latest research, the global Bird Song Recognition App market size reached USD 182.6 million in 2024, demonstrating robust growth supported by increasing adoption of mobile technologies and heightened awareness of biodiversity. The market is expected to grow at a CAGR of 14.7% from 2025 to 2033, reaching a forecasted value of USD 547.3 million by 2033. This remarkable expansion is primarily driven by advancements in artificial intelligence, the proliferation of smartphones, and the growing interest in birdwatching and conservation activities worldwide.




    One of the most significant growth factors for the Bird Song Recognition App market is the integration of sophisticated AI and machine learning algorithms, which have dramatically improved the accuracy and usability of these applications. As the underlying technology becomes more advanced, apps are now capable of identifying a wider range of bird species with higher precision, even in noisy environments. This technological leap has not only enhanced user experience but also broadened the appeal of bird song recognition apps beyond hobbyists to professional researchers and conservationists. The seamless integration with cloud-based databases and real-time updating of bird song libraries further strengthens the value proposition of these solutions, making them indispensable tools for both casual and expert users.




    Another key driver is the surge in global interest in birdwatching and citizen science, particularly as more individuals seek outdoor recreational activities and ways to connect with nature. The COVID-19 pandemic catalyzed a renewed appreciation for outdoor hobbies, with birdwatching emerging as a popular, accessible activity. Bird song recognition apps have played a pivotal role in democratizing birdwatching, enabling individuals of all experience levels to participate in species identification and contribute valuable data to scientific research. This has resulted in a virtuous cycle, where increased participation leads to richer datasets, which in turn improve app accuracy and user satisfaction, further fueling market growth.




    Furthermore, the rising emphasis on wildlife conservation and environmental education has propelled the adoption of bird song recognition apps among academic institutions, wildlife organizations, and conservation groups. These stakeholders leverage such apps to monitor bird populations, track migratory patterns, and assess habitat health more efficiently than ever before. Governments and NGOs are increasingly collaborating with app developers to enhance conservation efforts and raise public awareness about the importance of avian biodiversity. This intersection of technology, education, and conservation is expected to sustain high demand for bird song recognition applications over the coming years.




    From a regional perspective, North America and Europe currently dominate the market, accounting for a combined share of over 60% in 2024, thanks to a strong culture of birdwatching, well-established research institutions, and high smartphone penetration. However, the Asia Pacific region is emerging as a high-growth market, driven by rapid urbanization, increasing environmental consciousness, and expanding digital infrastructure. Latin America and the Middle East & Africa are also witnessing steady adoption, particularly as local conservation initiatives and eco-tourism gain momentum. Regional disparities in internet access and smartphone usage remain a challenge, but ongoing digital transformation efforts are expected to bridge these gaps over the forecast period.





    Platform Analysis



    The Platform segment of the Bird Song Recognition App market is primarily divided into iOS, Android, and Web-based solutions, each catering to distinct user bases and offering unique advantages. iOS-based bird song recognition apps have historically enjoyed a strong presence, especially in North America and Europe, owing to the high market share of Apple

  9. b

    App Downloads Data (2025)

    • businessofapps.com
    Updated Sep 1, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business of Apps (2017). App Downloads Data (2025) [Dataset]. https://www.businessofapps.com/data/app-statistics/
    Explore at:
    Dataset updated
    Sep 1, 2017
    Dataset authored and provided by
    Business of Apps
    License

    Attribution-NonCommercial-NoDerivs 4.0 (CC BY-NC-ND 4.0)https://creativecommons.org/licenses/by-nc-nd/4.0/
    License information was derived automatically

    Description

    App Download Key StatisticsApp and Game DownloadsiOS App and Game DownloadsGoogle Play App and Game DownloadsGame DownloadsiOS Game DownloadsGoogle Play Game DownloadsApp DownloadsiOS App...

  10. A

    ‘Playstore Analysis’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Nov 12, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2021). ‘Playstore Analysis’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-playstore-analysis-2b2d/41638844/?iid=022-994&v=presentation
    Explore at:
    Dataset updated
    Nov 12, 2021
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Playstore Analysis’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/madhav000/playstore-analysis on 30 September 2021.

    --- Dataset description provided by original source is as follows ---

    Google Play Store team had launched a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Analysis to be done:

    The problem is to identify the apps that are going to be good for Google to promote. App ratings, which are provided by the customers, is always a great indicator of the goodness of the app. The problem reduces to: predict which apps will have high ratings.

    Problem Statement:

    Google Play Store team is about to launch a new feature wherein, certain apps that are promising, are boosted in visibility. The boost will manifest in multiple ways including higher priority in recommendations sections (“Similar apps”, “You might also like”, “New and updated games”). These will also get a boost in search results visibility. This feature will help bring more attention to newer apps that have the potential.

    Content:

    Dataset: Google Play Store data (“googleplaystore.csv”)

    Fields in the data: App: Application name Category: Category to which the app belongs Rating: Overall user rating of the app Reviews: Number of user reviews for the app Size: Size of the app Installs: Number of user downloads/installs for the app Type: Paid or Free Price: Price of the app Content Rating: Age group the app is targeted at - Children / Mature 21+ / Adult Genres: An app can belong to multiple genres (apart from its main category). For example, a musical family game will belong to Music, Game, Family genres. Last Updated: Date when the app was last updated on Play Store Current Ver: Current version of the app available on Play Store Android Ver: Minimum required Android version

    --- Original source retains full ownership of the source dataset ---

  11. Mobile internet users worldwide 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet users worldwide 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The global number of smartphone users in was forecast to continuously increase between 2024 and 2029 by in total 1.8 billion users (+42.62 percent). After the ninth consecutive increasing year, the smartphone user base is estimated to reach 6.1 billion users and therefore a new peak in 2029. Notably, the number of smartphone users of was continuously increasing over the past years.Smartphone users here are limited to internet users of any age using a smartphone. The shown figures have been derived from survey data that has been processed to estimate missing demographics.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the number of smartphone users in countries like Australia & Oceania and Asia.

  12. Data Science & Analytics Jobs In Australia 🇦🇺 📊

    • kaggle.com
    Updated Feb 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kanchana1990 (2024). Data Science & Analytics Jobs In Australia 🇦🇺 📊 [Dataset]. http://doi.org/10.34740/kaggle/ds/4451302
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 16, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Kanchana1990
    License

    Open Data Commons Attribution License (ODC-By) v1.0https://www.opendatacommons.org/licenses/by/1.0/
    License information was derived automatically

    Area covered
    Australia
    Description

    Dataset Description

    Overview: This collection features two distinct datasets, offering a detailed view of Data Science and Analytics job opportunities in Australia for 2024. Derived from Glassdoor, these datasets provide a comprehensive overview of the current trends, demands, and openings in the data-focused job market in Australia.

    Data Science Applications: With nearly 670 records combined, these datasets are ideal for conducting job market trend analysis, understanding skill requirements, and benchmarking salaries within the Australian data science and analytics sectors. They are invaluable for market research, career guidance, educational program adjustments, and strategic planning in alignment with industry evolution.

    Column Descriptors: - Company Name: The employing organization. - Job Title: The designated position. - Job Description: A summary of job responsibilities and requirements. - Location: City and Country of the job posting. - Salary Information: Details on salary estimates and pay periods. - Job Posted Date: The date when the job was made public.

    Ethically Mined Data: The information within these datasets has been responsibly collected, maintaining adherence to data privacy and protection regulations, ensuring ethical integrity.

    Acknowledgements: Thanks are due to Glassdoor for its role as a key source, offering transparent insights into the job market. The creative input of Dall-E 3 in producing the dataset's accompanying imagery is also recognized, enhancing the datasets' presentation.

    Final Thoughts: These datasets aim to support a nuanced understanding of the data science and analytics job landscape in Australia, facilitating informed decision-making for professionals, educators, and students in the field.

  13. Mobile internet usage reach in North America 2020-2029

    • statista.com
    Updated Feb 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista Research Department (2025). Mobile internet usage reach in North America 2020-2029 [Dataset]. https://www.statista.com/topics/779/mobile-internet/
    Explore at:
    Dataset updated
    Feb 5, 2025
    Dataset provided by
    Statistahttp://statista.com/
    Authors
    Statista Research Department
    Description

    The population share with mobile internet access in North America was forecast to increase between 2024 and 2029 by in total 2.9 percentage points. This overall increase does not happen continuously, notably not in 2028 and 2029. The mobile internet penetration is estimated to amount to 84.21 percent in 2029. Notably, the population share with mobile internet access of was continuously increasing over the past years.The penetration rate refers to the share of the total population having access to the internet via a mobile broadband connection.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in up to 150 countries and regions worldwide. All indicators are sourced from international and national statistical offices, trade associations and the trade press and they are processed to generate comparable data sets (see supplementary notes under details for more information).Find more key insights for the population share with mobile internet access in countries like Caribbean and Europe.

  14. i

    Database Monitoring Software Market - Current Analysis by Market Share

    • imrmarketreports.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swati Kalagate; Akshay Patil; Vishal Kumbhar, Database Monitoring Software Market - Current Analysis by Market Share [Dataset]. https://www.imrmarketreports.com/reports/database-monitoring-software-market
    Explore at:
    Dataset provided by
    IMR Market Reports
    Authors
    Swati Kalagate; Akshay Patil; Vishal Kumbhar
    License

    https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/

    Description

    Report of Database Monitoring Software is covering the summarized study of several factors encouraging the growth of the market such as market size, market type, major regions and end user applications. By using the report customer can recognize the several drivers that impact and govern the market. The report is describing the several types of Database Monitoring Software Industry. Factors that are playing the major role for growth of specific type of product category and factors that are motivating the status of the market.

  15. AI Training Dataset Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). AI Training Dataset Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-ai-training-dataset-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    AI Training Dataset Market Outlook



    The global AI training dataset market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 6.5 billion by 2032, growing at a compound annual growth rate (CAGR) of 20.5% from 2024 to 2032. This substantial growth is driven by the increasing adoption of artificial intelligence across various industries, the necessity for large-scale and high-quality datasets to train AI models, and the ongoing advancements in AI and machine learning technologies.



    One of the primary growth factors in the AI training dataset market is the exponential increase in data generation across multiple sectors. With the proliferation of internet usage, the expansion of IoT devices, and the digitalization of industries, there is an unprecedented volume of data being generated daily. This data is invaluable for training AI models, enabling them to learn and make more accurate predictions and decisions. Moreover, the need for diverse and comprehensive datasets to improve AI accuracy and reliability is further propelling market growth.



    Another significant factor driving the market is the rising investment in AI and machine learning by both public and private sectors. Governments around the world are recognizing the potential of AI to transform economies and improve public services, leading to increased funding for AI research and development. Simultaneously, private enterprises are investing heavily in AI technologies to gain a competitive edge, enhance operational efficiency, and innovate new products and services. These investments necessitate high-quality training datasets, thereby boosting the market.



    The proliferation of AI applications in various industries, such as healthcare, automotive, retail, and finance, is also a major contributor to the growth of the AI training dataset market. In healthcare, AI is being used for predictive analytics, personalized medicine, and diagnostic automation, all of which require extensive datasets for training. The automotive industry leverages AI for autonomous driving and vehicle safety systems, while the retail sector uses AI for personalized shopping experiences and inventory management. In finance, AI assists in fraud detection and risk management. The diverse applications across these sectors underline the critical need for robust AI training datasets.



    As the demand for AI applications continues to grow, the role of Ai Data Resource Service becomes increasingly vital. These services provide the necessary infrastructure and tools to manage, curate, and distribute datasets efficiently. By leveraging Ai Data Resource Service, organizations can ensure that their AI models are trained on high-quality and relevant data, which is crucial for achieving accurate and reliable outcomes. The service acts as a bridge between raw data and AI applications, streamlining the process of data acquisition, annotation, and validation. This not only enhances the performance of AI systems but also accelerates the development cycle, enabling faster deployment of AI-driven solutions across various sectors.



    Regionally, North America currently dominates the AI training dataset market due to the presence of major technology companies and extensive R&D activities in the region. However, Asia Pacific is expected to witness the highest growth rate during the forecast period, driven by rapid technological advancements, increasing investments in AI, and the growing adoption of AI technologies across various industries in countries like China, India, and Japan. Europe and Latin America are also anticipated to experience significant growth, supported by favorable government policies and the increasing use of AI in various sectors.



    Data Type Analysis



    The data type segment of the AI training dataset market encompasses text, image, audio, video, and others. Each data type plays a crucial role in training different types of AI models, and the demand for specific data types varies based on the application. Text data is extensively used in natural language processing (NLP) applications such as chatbots, sentiment analysis, and language translation. As the use of NLP is becoming more widespread, the demand for high-quality text datasets is continually rising. Companies are investing in curated text datasets that encompass diverse languages and dialects to improve the accuracy and efficiency of NLP models.



    Image data is critical for computer vision application

  16. I

    In-memory Computing Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). In-memory Computing Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/in-memory-computing-industry-14057
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The in-memory computing market is experiencing robust growth, fueled by the increasing demand for real-time data processing and analytics across diverse sectors. The market's Compound Annual Growth Rate (CAGR) of 25.37% from 2019 to 2024 indicates a significant upward trajectory, projected to continue throughout the forecast period (2025-2033). Key drivers include the exponential growth of data volume, the need for faster decision-making, and the rise of applications requiring immediate data insights, such as fraud detection in BFSI, real-time patient monitoring in healthcare, and advanced network management in IT & Telecom. The adoption of in-memory databases and applications is accelerating across various end-user verticals, with the BFSI and healthcare sectors leading the charge due to their stringent real-time data processing requirements. Technological advancements, such as improvements in memory technology and optimized algorithms, are further contributing to market expansion. While challenges such as high initial investment costs and the need for specialized skills exist, the overall market outlook remains highly positive. The segmentation of the in-memory computing market reflects the diverse applications of this technology. In-memory data management solutions offer faster data access and manipulation, while in-memory applications leverage this speed to deliver real-time insights. The robust growth across segments is further evidenced by the significant participation of major players like IBM, Microsoft, and SAP, alongside specialized providers like TIBCO and Datastax. Geographic distribution indicates strong market penetration in North America and Europe, with Asia-Pacific expected to witness substantial growth in the coming years driven by increasing digitalization and technological adoption in emerging economies. The continuous evolution of cloud computing and the integration of in-memory computing within cloud platforms will likely further fuel market expansion and accessibility for a wider range of businesses. The competitive landscape is characterized by both established technology vendors and emerging players, leading to innovation and a diverse range of solutions for various business needs. This comprehensive report provides a detailed analysis of the in-memory computing market, encompassing its current state, future trends, and key players. The study period covers 2019-2033, with a base year of 2025 and a forecast period of 2025-2033. We analyze the historical period (2019-2024) to provide a robust understanding of market evolution. The report uses millions (M) as the unit for all financial figures. This analysis provides invaluable insights for stakeholders including investors, vendors, and technology enthusiasts in the rapidly evolving landscape of in-memory data management, in-memory databases, and in-memory analytics. Key drivers for this market are: , Explosion of Big Data; Growing Need for Rapid Data Processing. Potential restraints include: , Concerns Regarding Data Security and Data Breaching Globally. Notable trends are: In-memory Data Management to Hold Significant Share.

  17. U

    US Data Center Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Dec 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2024). US Data Center Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/us-data-center-industry-11517
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Dec 16, 2024
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    United States
    Variables measured
    Market Size
    Description

    The size of the US Data Center Industry market was valued at USD XX Million in 2023 and is projected to reach USD XXX Million by 2032, with an expected CAGR of 6.00% during the forecast period.A data center is a facility that keeps computer systems and networking equipment housed, processing, and transmitting data. It represents the infrastructure on which organizations carry out their IT operations and host websites, email servers, and database servers. Data centers, therefore, are imperative to any size business: small start-ups or large enterprise since they enable digital transformation, thus making business applications available.The US data center industry is one of the largest and most developed in the world. The country boasts robust digital infrastructure, abundant energy resources, and a highly skilled workforce, making it an attractive destination for data center operators. Some of the drivers of the US data center market are the growing trend of cloud computing, internet of things (IoT), and high-performance computing requirements.Top-of-the-line technology companies along with cloud service providers set up major data center footprints in the US, mostly in key regions such as Silicon Valley and Northern Virginia, Dallas, for example. These data centers support applications such as e-commerce-a manner of accessing streaming services-whose development depends on its artificial intelligence financial service type. As demand increases concerning data center capacity, therefore, the US data centre industry will continue to prosper as the world's hub for reliable and scalable solutions. Recent developments include: February 2023: The expansion of Souther Telecom to its data center in Atlanta, Georgia, at 345 Courtland Street, was announced by H5 Data Centers, a colocation and wholesale data center operator. One of the top communication service providers in the southeast is Southern Telecom. Customers in Alabama, Georgia, Florida, and Mississippi will receive better service due to the expansion of this low-latency fiber optic network.December 2022: DigitalBridge Group, Inc. and IFM Investors announced completing their previously announced transaction in which funds affiliated with the investment management platform of DigitalBridge and an affiliate of IFM Investors acquired all outstanding common shares of Switch, Inc. for USD approximately USD 11 billion, including the repayment of outstanding debt.October 2022: Three additional data centers in Charlotte, Nashville, and Louisville have been made available to Flexential's cloud customers, according to the supplier of data center colocation, cloud computing, and connectivity. By the end of the year, clients will have access to more than 220MW of hybrid IT capacity spread across 40 data centers in 19 markets, which is well aligned with Flexential's 2022 ambition to add 33MW of new, sustainable data center development projects.. Key drivers for this market are: , High Mobile penetration, Low Tariff, and Mature Regulatory Authority; Successful Privatization and Liberalization Initiatives. Potential restraints include: , Difficulties in Customization According to Business Needs. Notable trends are: OTHER KEY INDUSTRY TRENDS COVERED IN THE REPORT.

  18. Database Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2024). Database Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/global-database-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Dec 3, 2024
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Database Market Outlook



    The global database market size was valued at approximately USD 67 billion in 2023 and is projected to reach USD 138 billion by 2032, growing at a compound annual growth rate (CAGR) of 8.3%. The market is poised for significant growth due to the increasing demand for data storage solutions and the rapid digital transformation across various industries. As businesses continue to generate massive volumes of data, the need for efficient and scalable database solutions is becoming more critical than ever. This growth is further propelled by advancements in cloud computing and the increasing adoption of artificial intelligence and machine learning technologies, which require robust database management systems to handle complex data sets.



    One of the primary growth factors for the database market is the exponential increase in data generation from various sources, including social media, IoT devices, and enterprise applications. As organizations strive to leverage data for competitive advantage, the demand for sophisticated database technologies that can manage, process, and analyze large volumes of data is on the rise. These technologies enable businesses to gain actionable insights, improve decision-making, and enhance customer experiences. Additionally, the proliferation of connected devices and the Internet of Things (IoT) are contributing to the surge in data volume, necessitating the deployment of advanced database systems to handle the influx of information efficiently.



    The cloud computing revolution is another significant growth driver for the database market. With the increasing adoption of cloud-based services, organizations are shifting from traditional on-premises database solutions to cloud-based database management systems. This transition is driven by the need for scalability, flexibility, and cost-effectiveness, as cloud solutions offer the ability to scale resources up or down based on demand. Cloud databases also provide enhanced data security, disaster recovery, and backup solutions, making them an attractive option for businesses of all sizes. Moreover, cloud service providers continuously innovate by offering managed database services, reducing the burden on IT departments and allowing organizations to focus on core business activities.



    The rise of artificial intelligence (AI) and machine learning (ML) technologies is also playing a crucial role in shaping the future of the database market. These technologies require robust and dynamic database systems capable of handling complex algorithms and large data sets. Databases optimized for AI and ML applications enable organizations to harness the power of predictive analytics, automation, and data-driven decision-making. The integration of AI and ML with database systems enhances the ability to identify patterns, detect anomalies, and predict future trends, further driving the demand for advanced database solutions.



    From a regional perspective, North America is expected to dominate the database market, owing to the presence of established technology companies and the rapid adoption of advanced technologies. The region's mature IT infrastructure and the increasing need for data-driven insights in various industries contribute to the market's growth. Asia Pacific is anticipated to witness the highest growth rate during the forecast period, driven by the increasing digitization efforts, rising internet penetration, and the growing popularity of cloud-based solutions. Europe is also expected to experience significant growth due to the expanding IT sector and the increasing adoption of data analytics solutions across industries.



    Type Analysis



    The database market can be segmented by type into relational, non-relational, cloud, and others. Relational databases are among the oldest and most established types of database systems, widely used across industries due to their ability to handle structured data efficiently. These databases rely on structured query language (SQL) for managing and manipulating data, making them suitable for applications that require complex querying and transaction processing. Despite their maturity, relational databases continue to evolve, with advancements such as NewSQL and distributed SQL databases enhancing their scalability and performance for modern applications.



    Non-relational databases, also known as NoSQL databases, have gained popularity in recent years due to their flexibility and ability to handle unstructured data. These databases are designed to accommodate a diverse range of data types, making them ideal for applications involving large v

  19. d

    Database Marketing Report

    • datainsightsmarket.com
    ppt
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Database Marketing Report [Dataset]. https://www.datainsightsmarket.com/reports/database-marketing-1399153
    Explore at:
    pptAvailable download formats
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Variables measured
    Market Size
    Description

    The Database Marketing market is experiencing robust growth, driven by the increasing need for personalized customer experiences and the availability of sophisticated data analytics tools. The market's expansion is fueled by the rising adoption of advanced technologies like AI and machine learning, enabling businesses to segment their audiences more precisely and deliver targeted marketing campaigns. This results in improved customer engagement, higher conversion rates, and ultimately, increased return on investment (ROI). The market is witnessing a shift towards multi-channel strategies, integrating database marketing efforts across various platforms like email, social media, and mobile applications. This omnichannel approach allows businesses to reach their target audience more effectively and create a cohesive brand experience. While data privacy regulations present a challenge, the market is adapting by emphasizing transparency and consent-based marketing practices. Key players are innovating to enhance data security and compliance, ensuring ethical and responsible use of customer data. We estimate the current market size (2025) at approximately $15 billion, with a Compound Annual Growth Rate (CAGR) of 12% projecting a market size of over $30 billion by 2033. This growth is projected across various segments, including software, services, and consulting, with significant contributions from North America and Europe. The competitive landscape is marked by both established players like Adobe (Marketo) and Oracle, and emerging companies focusing on niche solutions and specialized technologies. These companies are constantly innovating to offer advanced functionalities such as predictive analytics, customer journey mapping, and real-time personalization. The strategic partnerships and acquisitions within the industry indicate a dynamic and rapidly evolving market. To maintain a competitive edge, companies are prioritizing investment in research and development, focusing on improving their platforms' capabilities and expanding their service offerings to meet the evolving needs of businesses. The future of database marketing hinges on responsible data usage, continuous technological advancements, and a focus on delivering personalized and engaging customer experiences.

  20. i

    Real-time Database Market - Comprehensive Study Report & Recent Trends

    • imrmarketreports.com
    Updated Aug 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Swati Kalagate; Akshay Patil; Vishal Kumbhar (2024). Real-time Database Market - Comprehensive Study Report & Recent Trends [Dataset]. https://www.imrmarketreports.com/reports/real-time-database-market
    Explore at:
    Dataset updated
    Aug 2024
    Dataset provided by
    IMR Market Reports
    Authors
    Swati Kalagate; Akshay Patil; Vishal Kumbhar
    License

    https://www.imrmarketreports.com/privacy-policy/https://www.imrmarketreports.com/privacy-policy/

    Description

    Report of Real-time Database is covering the summarized study of several factors encouraging the growth of the market such as market size, market type, major regions and end user applications. By using the report customer can recognize the several drivers that impact and govern the market. The report is describing the several types of Real-time Database Industry. Factors that are playing the major role for growth of specific type of product category and factors that are motivating the status of the market.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Bright Data (2025). Google Play Store Dataset [Dataset]. https://www.opendatabay.com/data/premium/33624898-8133-421d-9b3b-42f76e1e4fe2

Data from: Google Play Store Dataset

Related Article
Explore at:
.undefinedAvailable download formats
Dataset updated
Jun 15, 2025
Dataset authored and provided by
Bright Data
Area covered
Website Analytics & User Experience
Description

Google Play Store dataset to explore detailed information about apps, including ratings, descriptions, updates, and developer details. Popular use cases include app performance analysis, market research, and consumer behavior insights.

Use our Google Play Store dataset to explore detailed information about apps available on the platform, including app titles, developers, monetization features, user ratings, reviews, and more. This dataset also includes data on app descriptions, safety measures, download counts, recent updates, and compatibility, providing a complete overview of app performance and features.

Tailored for app developers, marketers, and researchers, this dataset offers valuable insights into user preferences, app trends, and market dynamics. Whether you're optimizing app development, conducting competitive analysis, or tracking app performance, the Google Play Store dataset is an essential resource for making data-driven decisions in the mobile app ecosystem.

Dataset Features

  • url: The URL link to the app’s detail page on the Google Play Store.
  • title: The name of the application.
  • developer: The developer or company behind the app.
  • monetization_features: Information regarding how the app generates revenue (e.g., in-app purchases, ads).
  • images: Links or references to images associated with the app.
  • about: Details or a summary description of the app.
  • data_safety: Information regarding data safety and privacy practices.
  • rating: The overall rating of the app provided by its users.
  • number_of_reviews: The total count of user reviews received.
  • star_reviews: A breakdown of reviews by star ratings.
  • reviews: Reviews and user feedback about the app.
  • what_new: Information on the latest updates or features added to the app.
  • more_by_this_developer: Other apps by the same developer.
  • content_rating: The content rating which guides suitability based on user age.
  • downloads: The download count or range indicating the app’s popularity.
  • country: The country associated with the app listing.
  • app_category: The category or genre under which the app is classified.

Distribution

  • Data Volume: 17 Columns and 65.54M Rows
  • Format: CSV

Usage

This dataset is ideal for a variety of applications:

  • App Market Analysis: Enables market researchers to extract insights on app popularity, engagement, and trends across different categories.
  • Machine Learning: Can be used by data scientists to build recommendation engines or sentiment analysis models based on app review data.
  • User Behavior Studies: Facilitates academic or industrial research into user preferences and behavior with respect to mobile applications.

Coverage

  • Geographic Coverage: global.

License

CUSTOM Please review the respective licenses below: 1. Data Provider's License - Bright Data Master Service Agreement

Who Can Use It

  • Data Scientists: To train machine learning models for app popularity prediction, sentiment analysis, or recommendation systems.
  • Researchers: For academic or scientific studies into market trends, consumer behavior, and app performance analysis.
  • Businesses: For strategic analysis, developing market insights, or enhancing app development and user engagement strategies.

Suggested Dataset Name

  1. Play store Insights
  2. Android App Scope
  3. Market Analytics
  4. Play Store Metrics Vault

5. AppTrend360: Google Play Edition

Pricing

Based on Delivery frequency

~Up to $0.0025 per record. Min order $250

Approximately 10M new records are added each month. Approximately 13.8M records are updated each month. Get the complete dataset each delivery, including all records. Retrieve only the data you need with the flexibility to set Smart Updates.

  • Monthly

New snapshot each month, 12 snapshots/year Paid monthly

  • Quarterly

New snapshot each quarter, 4 snapshots/year Paid quarterly

  • Bi-annual

New snapshot every 6 months, 2 snapshots/year Paid twice-a-year

  • One-time purchase

New snapshot one-time delivery Paid once

Search
Clear search
Close search
Google apps
Main menu