In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth
From now until 2100, India and China will remain the most populous countries in the world, however China's population decline has already started, and it is on course to fall by around 50 percent in the 2090s; while India's population decline is projected to begin in the 2060s. Of the 10 most populous countries in the world in 2100, five will be located in Asia, four in Africa, as well as the United States. Rapid growth in Africa Rapid population growth across Africa will see the continent's population grow from around 1.5 billion people in 2024 to 3.8 billion in 2100. Additionally, unlike China or India, population growth in many of these countries is not expected to go into decline, and instead is expected to continue well into the 2100s. Previous estimates had projected these countries' populations would be much higher by 2100 (the 2019 report estimated Nigeria's population would exceed 650 million), yet the increased threat of the climate crisis and persistent instability is delaying demographic development and extending population growth. The U.S. as an outlier Compared to the nine other largest populations in 2100, the United States stands out as it is more demographically advanced, politically stable, and economically stronger. However, while most other so-called "advanced countries" are projected to see their population decline drastically in the coming decades, the U.S. population is projected to continue growing into the 2100s. This will largely be driven by high rates of immigration into the U.S., which will drive growth despite fertility rates being around 1.6 births per woman (below the replacement level of 2.1 births per woman), and the slowing rate of life expectancy. Current projections estimate the U.S. will have a net migration rate over 1.2 million people per year for the remainder of the century.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second smallest country, with an area of about two square kilometers, and its population only numbers around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer stands at about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase as well. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of World population from 1950 to 2025. United Nations projections are also included through the year 2100.
Nigeria has the largest population in Africa. As of 2024, the country counted over 232.6 million individuals, whereas Ethiopia, which ranked second, has around 132 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 116 million people. In terms of inhabitants per square kilometer, Nigeria only ranks seventh, while Mauritius has the highest population density on the whole African continent. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.
This statistic shows the 20 countries with the highest population growth rate in 2024. In SouthSudan, the population grew by about 4.65 percent compared to the previous year, making it the country with the highest population growth rate in 2024. The global population Today, the global population amounts to around 7 billion people, i.e. the total number of living humans on Earth. More than half of the global population is living in Asia, while one quarter of the global population resides in Africa. High fertility rates in Africa and Asia, a decline in the mortality rates and an increase in the median age of the world population all contribute to the global population growth. Statistics show that the global population is subject to increase by almost 4 billion people by 2100. The global population growth is a direct result of people living longer because of better living conditions and a healthier nutrition. Three out of five of the most populous countries in the world are located in Asia. Ultimately the highest population growth rate is also found there, the country with the highest population growth rate is Syria. This could be due to a low infant mortality rate in Syria or the ever -expanding tourism sector.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset provides values for POPULATION reported in several countries. The data includes current values, previous releases, historical highs and record lows, release frequency, reported unit and currency.
On March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.DOI: https://doi.org/10.6084/m9.figshare.125529863/7/2022 - Adjusted the rate of active cases calculation in the U.S. to reflect the rates of serious and severe cases due nearly completely dominant Omicron variant.6/24/2020 - Expanded Case Rates discussion to include fix on 6/23 for calculating active cases.6/22/2020 - Added Executive Summary and Subsequent Outbreaks sectionsRevisions on 6/10/2020 based on updated CDC reporting. This affects the estimate of active cases by revising the average duration of cases with hospital stays downward from 30 days to 25 days. The result shifted 76 U.S. counties out of Epidemic to Spreading trend and no change for national level trends.Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Correction on 6/1/2020Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Revisions added on 4/30/2020 are highlighted.Revisions added on 4/23/2020 are highlighted.Executive SummaryCOVID-19 Trends is a methodology for characterizing the current trend for places during the COVID-19 global pandemic. Each day we assign one of five trends: Emergent, Spreading, Epidemic, Controlled, or End Stage to geographic areas to geographic areas based on the number of new cases, the number of active cases, the total population, and an algorithm (described below) that contextualize the most recent fourteen days with the overall COVID-19 case history. Currently we analyze the countries of the world and the U.S. Counties. The purpose is to give policymakers, citizens, and analysts a fact-based data driven sense for the direction each place is currently going. When a place has the initial cases, they are assigned Emergent, and if that place controls the rate of new cases, they can move directly to Controlled, and even to End Stage in a short time. However, if the reporting or measures to curtail spread are not adequate and significant numbers of new cases continue, they are assigned to Spreading, and in cases where the spread is clearly uncontrolled, Epidemic trend.We analyze the data reported by Johns Hopkins University to produce the trends, and we report the rates of cases, spikes of new cases, the number of days since the last reported case, and number of deaths. We also make adjustments to the assignments based on population so rural areas are not assigned trends based solely on case rates, which can be quite high relative to local populations.Two key factors are not consistently known or available and should be taken into consideration with the assigned trend. First is the amount of resources, e.g., hospital beds, physicians, etc.that are currently available in each area. Second is the number of recoveries, which are often not tested or reported. On the latter, we provide a probable number of active cases based on CDC guidance for the typical duration of mild to severe cases.Reasons for undertaking this work in March of 2020:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-25 days + 5% from past 26-49 days - total deaths. On 3/17/2022, the U.S. calculation was adjusted to: Active Cases = 100% of new cases in past 14 days + 6% from past 15-25 days + 3% from past 26-49 days - total deaths. Sources: https://www.cdc.gov/mmwr/volumes/71/wr/mm7104e4.htm https://covid.cdc.gov/covid-data-tracker/#variant-proportions If a new variant arrives and appears to cause higher rates of serious cases, we will roll back this adjustment. We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source
The Vatican City, often called the Holy See, has the smallest population worldwide, with only 496 inhabitants. It is also the smallest country in the world by size. The islands Niue, Tuvalu, and Nauru followed in the next three positions. On the other hand, India is the most populated country in the world, with over 1.4 billion inhabitants.
COVID-19 Trends MethodologyOur goal is to analyze and present daily updates in the form of recent trends within countries, states, or counties during the COVID-19 global pandemic. The data we are analyzing is taken directly from the Johns Hopkins University Coronavirus COVID-19 Global Cases Dashboard, though we expect to be one day behind the dashboard’s live feeds to allow for quality assurance of the data.Revisions added on 4/23/2020 are highlighted.Revisions added on 4/30/2020 are highlighted.Discussion of our assertion of an abundance of caution in assigning trends in rural counties added 5/7/2020. Correction on 6/1/2020Methodology update on 6/2/2020: This sets the length of the tail of new cases to 6 to a maximum of 14 days, rather than 21 days as determined by the last 1/3 of cases. This was done to align trends and criteria for them with U.S. CDC guidance. The impact is areas transition into Controlled trend sooner for not bearing the burden of new case 15-21 days earlier.Reasons for undertaking this work:The popular online maps and dashboards show counts of confirmed cases, deaths, and recoveries by country or administrative sub-region. Comparing the counts of one country to another can only provide a basis for comparison during the initial stages of the outbreak when counts were low and the number of local outbreaks in each country was low. By late March 2020, countries with small populations were being left out of the mainstream news because it was not easy to recognize they had high per capita rates of cases (Switzerland, Luxembourg, Iceland, etc.). Additionally, comparing countries that have had confirmed COVID-19 cases for high numbers of days to countries where the outbreak occurred recently is also a poor basis for comparison.The graphs of confirmed cases and daily increases in cases were fit into a standard size rectangle, though the Y-axis for one country had a maximum value of 50, and for another country 100,000, which potentially misled people interpreting the slope of the curve. Such misleading circumstances affected comparing large population countries to small population counties or countries with low numbers of cases to China which had a large count of cases in the early part of the outbreak. These challenges for interpreting and comparing these graphs represent work each reader must do based on their experience and ability. Thus, we felt it would be a service to attempt to automate the thought process experts would use when visually analyzing these graphs, particularly the most recent tail of the graph, and provide readers with an a resulting synthesis to characterize the state of the pandemic in that country, state, or county.The lack of reliable data for confirmed recoveries and therefore active cases. Merely subtracting deaths from total cases to arrive at this figure progressively loses accuracy after two weeks. The reason is 81% of cases recover after experiencing mild symptoms in 10 to 14 days. Severe cases are 14% and last 15-30 days (based on average days with symptoms of 11 when admitted to hospital plus 12 days median stay, and plus of one week to include a full range of severely affected people who recover). Critical cases are 5% and last 31-56 days. Sources:U.S. CDC. April 3, 2020 Interim Clinical Guidance for Management of Patients with Confirmed Coronavirus Disease (COVID-19). Accessed online. Initial older guidance was also obtained online. Additionally, many people who recover may not be tested, and many who are, may not be tracked due to privacy laws. Thus, the formula used to compute an estimate of active cases is: Active Cases = 100% of new cases in past 14 days + 19% from past 15-30 days + 5% from past 31-56 days - total deaths.We’ve never been inside a pandemic with the ability to learn of new cases as they are confirmed anywhere in the world. After reviewing epidemiological and pandemic scientific literature, three needs arose. We need to specify which portions of the pandemic lifecycle this map cover. The World Health Organization (WHO) specifies six phases. The source data for this map begins just after the beginning of Phase 5: human to human spread and encompasses Phase 6: pandemic phase. Phase six is only characterized in terms of pre- and post-peak. However, these two phases are after-the-fact analyses and cannot ascertained during the event. Instead, we describe (below) a series of five trends for Phase 6 of the COVID-19 pandemic.Choosing terms to describe the five trends was informed by the scientific literature, particularly the use of epidemic, which signifies uncontrolled spread. The five trends are: Emergent, Spreading, Epidemic, Controlled, and End Stage. Not every locale will experience all five, but all will experience at least three: emergent, controlled, and end stage.This layer presents the current trends for the COVID-19 pandemic by country (or appropriate level). There are five trends:Emergent: Early stages of outbreak. Spreading: Early stages and depending on an administrative area’s capacity, this may represent a manageable rate of spread. Epidemic: Uncontrolled spread. Controlled: Very low levels of new casesEnd Stage: No New cases These trends can be applied at several levels of administration: Local: Ex., City, District or County – a.k.a. Admin level 2State: Ex., State or Province – a.k.a. Admin level 1National: Country – a.k.a. Admin level 0Recommend that at least 100,000 persons be represented by a unit; granted this may not be possible, and then the case rate per 100,000 will become more important.Key Concepts and Basis for Methodology: 10 Total Cases minimum threshold: Empirically, there must be enough cases to constitute an outbreak. Ideally, this would be 5.0 per 100,000, but not every area has a population of 100,000 or more. Ten, or fewer, cases are also relatively less difficult to track and trace to sources. 21 Days of Cases minimum threshold: Empirically based on COVID-19 and would need to be adjusted for any other event. 21 days is also the minimum threshold for analyzing the “tail” of the new cases curve, providing seven cases as the basis for a likely trend (note that 21 days in the tail is preferred). This is the minimum needed to encompass the onset and duration of a normal case (5-7 days plus 10-14 days). Specifically, a median of 5.1 days incubation time, and 11.2 days for 97.5% of cases to incubate. This is also driven by pressure to understand trends and could easily be adjusted to 28 days. Source used as basis:Stephen A. Lauer, MS, PhD *; Kyra H. Grantz, BA *; Qifang Bi, MHS; Forrest K. Jones, MPH; Qulu Zheng, MHS; Hannah R. Meredith, PhD; Andrew S. Azman, PhD; Nicholas G. Reich, PhD; Justin Lessler, PhD. 2020. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine DOI: 10.7326/M20-0504.New Cases per Day (NCD) = Measures the daily spread of COVID-19. This is the basis for all rates. Back-casting revisions: In the Johns Hopkins’ data, the structure is to provide the cumulative number of cases per day, which presumes an ever-increasing sequence of numbers, e.g., 0,0,1,1,2,5,7,7,7, etc. However, revisions do occur and would look like, 0,0,1,1,2,5,7,7,6. To accommodate this, we revised the lists to eliminate decreases, which make this list look like, 0,0,1,1,2,5,6,6,6.Reporting Interval: In the early weeks, Johns Hopkins' data provided reporting every day regardless of change. In late April, this changed allowing for days to be skipped if no new data was available. The day was still included, but the value of total cases was set to Null. The processing therefore was updated to include tracking of the spacing between intervals with valid values.100 News Cases in a day as a spike threshold: Empirically, this is based on COVID-19’s rate of spread, or r0 of ~2.5, which indicates each case will infect between two and three other people. There is a point at which each administrative area’s capacity will not have the resources to trace and account for all contacts of each patient. Thus, this is an indicator of uncontrolled or epidemic trend. Spiking activity in combination with the rate of new cases is the basis for determining whether an area has a spreading or epidemic trend (see below). Source used as basis:World Health Organization (WHO). 16-24 Feb 2020. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Obtained online.Mean of Recent Tail of NCD = Empirical, and a COVID-19-specific basis for establishing a recent trend. The recent mean of NCD is taken from the most recent fourteen days. A minimum of 21 days of cases is required for analysis but cannot be considered reliable. Thus, a preference of 42 days of cases ensures much higher reliability. This analysis is not explanatory and thus, merely represents a likely trend. The tail is analyzed for the following:Most recent 2 days: In terms of likelihood, this does not mean much, but can indicate a reason for hope and a basis to share positive change that is not yet a trend. There are two worthwhile indicators:Last 2 days count of new cases is less than any in either the past five or 14 days. Past 2 days has only one or fewer new cases – this is an extremely positive outcome if the rate of testing has continued at the same rate as the previous 5 days or 14 days. Most recent 5 days: In terms of likelihood, this is more meaningful, as it does represent at short-term trend. There are five worthwhile indicators:Past five days is greater than past 2 days and past 14 days indicates the potential of the past 2 days being an aberration. Past five days is greater than past 14 days and less than past 2 days indicates slight positive trend, but likely still within peak trend time frame.Past five days is less than the past 14 days. This means a downward trend. This would be an
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The average for 2023 based on 196 countries was 10.17 percent. The highest value was in Monaco: 36.36 percent and the lowest value was in Qatar: 1.57 percent. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.
Global Humanitarian Response Plan COVID-19 administrative level 1 boundaries, gazetteer and population tables for countries covered by the May update of the Global Humanitarian Response Plan COVID-19.
13 OCTOBER 2020 UPDATE:
The Ethiopia - Subnational Administrative Boundaries dataset has been updated with changes at administrative level 1 and below. However, as the Ethiopia - Subnational Population Statistics dataset has not been updated and no longer matches, this global dataset has not yet been updated.
30 SEPTEMBER 2020 UPDATE:
The dataset has been updated to reflect official Brazil P-codes. Users should note that the Brazil P-codes in earlier versions no longer correspond to the current CODs.
17 SEPTEMBER 2020 UPDATE:
The dataset has been updated to reflect the new (2020) Paraguay COD-PS projections and the adjusted Paraguay P-codes. Users should note that the Paraguay P-codes in earlier versions no longer correspond to the current CODs.
26 AUGUST 2020 UPDATE:
administrative level 1 total population statistics have been added for the following 11 countries: Benin , Djibouti, Liberia, Pakistan, Panama, Philippines, Paraguay, Sierra Leone, Togo, Uruguay, Zimbabwe. Population statistics are now available for 48 of the 63 countries or territories.
Data fields:
ADM1_PCODE: Administrative level 1 (various types) P-code
ADM0_PCODE: Administrative level 0 (country or territory) P-code
alpha_3: ISO 3166-1 Alpha 3 country or territory identifier
ADM0_REF: Administrative level 0 (country or territory) reference name (Latin script without special characters)
ADM1_REF: Administrative level 1 (various types) reference name (Latin script without special characters)
Population: Most recent available total population.
PLEASE SEE CAVEATS
There are approximately 8.16 billion people living in the world today, a figure that shows a dramatic increase since the beginning of the Common Era. Since the 1970s, the global population has also more than doubled in size. It is estimated that the world's population will reach and surpass 10 billion people by 2060 and plateau at around 10.3 billion in the 2080s, before it then begins to fall. Asia When it comes to number of inhabitants per continent, Asia is the most populous continent in the world by a significant margin, with roughly 60 percent of the world's population living there. Similar to other global regions, a quarter of inhabitants in Asia are under 15 years of age. The most populous nations in the world are India and China respectively; each inhabit more than three times the amount of people than the third-ranked United States. 10 of the 20 most populous countries in the world are found in Asia. Africa Interestingly, the top 20 countries with highest population growth rate are mainly countries in Africa. This is due to the present stage of Sub-Saharan Africa's demographic transition, where mortality rates are falling significantly, although fertility rates are yet to drop and match this. As much of Asia is nearing the end of its demographic transition, population growth is predicted to be much slower in this century than in the previous; in contrast, Africa's population is expected to reach almost four billion by the year 2100. Unlike demographic transitions in other continents, Africa's population development is being influenced by climate change on a scale unseen by most other global regions. Rising temperatures are exacerbating challenges such as poor sanitation, lack of infrastructure, and political instability, which have historically hindered societal progress. It remains to be seen how Africa and the world at large adapts to this crisis as it continues to cause drought, desertification, natural disasters, and climate migration across the region.
(by Joseph Kerski)This map is for use in the "What is the spatial pattern of demographic variables around the world?" activity in Section 1 of the Going Places with Spatial Analysiscourse. The map contains population characteristics by country for 2013.These data come from the Population Reference Bureau's 2014 World Population Data Sheet.The Population Reference Bureau (PRB) informs people around the world about population, health, and the environment, empowering them to use that information to advance the well-being of current and future generations.PRB analyzes complex demographic data and research to provide the most objective, accurate, and up-to-date population information in a format that is easily understood by advocates, journalists, and decision makers alike.The 2014 year's data sheet has detailed information on 16 population, health, and environment indicators for more than 200 countries. For infant mortality, total fertility rate, and life expectancy, we have included data from 1970 and 2013 to show change over time. This year's special data column is on carbon emissions.For more information about how PRB compiles its data, see: https://www.prb.org/
As of February 2025, China ranked first among the countries with the most internet users worldwide. The world's most populated country had 1.11 billion internet users, more than triple the third-ranked United States, with just around 322 million internet users. Overall, all BRIC markets had over two billion internet users, accounting for four of the ten countries with more than 100 million internet users. Worldwide internet usage As of October 2024, there were more than five billion internet users worldwide. There are, however, stark differences in user distribution according to region. Eastern Asia is home to 1.34 billion internet users, while African and Middle Eastern regions had lower user figures. Moreover, the urban areas showed a higher percentage of internet access than rural areas. Internet use in China China ranks first in the list of countries with the most internet users. Due to its ongoing and fast-paced economic development and a cultural inclination towards technology, more than a billion of the estimated 1.4 billion population in China are online. As of the third quarter of 2023, around 87 percent of Chinese internet users stated using WeChat, the most popular social network in the country. On average, Chinese internet users spent five hours and 33 minutes online daily.
In 2023, it is estimated that the BRICS countries have a combined population of 3.25 billion people, which is over 40 percent of the world population. The majority of these people live in either China or India, which have a population of more than 1.4 billion people each, while the other three countries have a combined population of just under 420 million. Comparisons Although the BRICS countries are considered the five foremost emerging economies, they are all at various stages of the demographic transition and have different levels of population development. For all of modern history, China has had the world's largest population, but rapidly dropping fertility and birth rates in recent decades mean that its population growth has slowed. In contrast, India's population growth remains much higher, and it is expected to overtake China in the next few years to become the world's most populous country. The fastest growing population in the BRICS bloc, however, is that of South Africa, which is at the earliest stage of demographic development. Russia, is the only BRICS country whose population is currently in decline, and it has been experiencing a consistent natural decline for most of the past three decades. Growing populations = growing opportunities Between 2000 and 2026, the populations of the BRICS countries is expected to grow by 625 million people, and the majority of this will be in India and China. As the economies of these two countries grow, so too do living standards and disposable income; this has resulted in the world's two most populous countries emerging as two of the most profitable markets in the world. China, sometimes called the "world's factory" has seen a rapid growth in its middle class, increased potential of its low-tier market, and its manufacturing sector is now transitioning to the production of more technologically advanced and high-end goods to meet its domestic demand.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
The GRID3 settlement extents characterizes building density into three (3) classes: built-up areas (bua_extents), small settlement areas (ssa_extents), and hamlets (hamlet_extents) (Inuwa 2014). These three classes of settlement agglomerations are presented below:Built-up areas (BUAs) are generally areas of urbanization with moderately-to-densely-spaced buildings and a visible grid of streets and blocks. Built-up areas are characterized as polygons containing 13 or more buildings across an area greater than or equal to 400,000 square meters. Small settlements (SSAs) are settled areas of permanently inhabited structures and compounds of roughly a few hundred to a few thousand inhabitants. The housing pattern in SSAs is an assemblage of family compounds adjoining other similar habitations. Small settlement areas are characterized as polygons containing 50 or more buildings across an area less than 400,000 square meters. Hamlets are collections of several compounds or sleeping houses in isolation from small settlements or urban areas. Hamlets are characterized as polygons containing between 1 and 49 buildings across an area less than 400,000 square meters.For full methodological details please explore the data release statement available for download here.Population AttributesThe associated population estimates for the Settlement Extents datasets are derived from two WorldPop high resolution data sources. The WorldPop Top-down constrained population estimates 2020 (Population) uses, for each country, the highest admin level official population totals of the 2000 and 2010 census rounds, that are publicly available and can be mapped to associated boundaries, and projects them to 2020. These projected values then disaggregated statistically to 100x100m resolution using a set of detailed geospatial datasets to disaggregate them to grid cell-based counts. The estimates are constrained to settlements based on the satellite-derived building footprint data from Maxar/ecopia for the 51 African countries, and based on a built settlement growth model of WorldPop for the remaining countries. The Population Counts / Constrained Individual countries 2020 UN adjusted (100m resolution) population estimates (Pop_UN_adj) recognizes that the United Nations produce their own estimates of national population totals. WorldPop, in order to provide flexibility to users, adjusted the number of people per pixel of its top-down constrained population estimates nationally to match the corresponding official United Nations population estimates (i.e. 2019 Revision of World Population Prospects). "Population Counts / Constrained Individual countries 2020 (100m resolution)" & "Population Counts / Constrained Individual countries 2020 UN adjusted (100m resolution)" derived from WorldPop.orgThe GRID3 population estimates (pop_wp1_2) are based on the most recent and best available data of that country and were calculated using the random forest-based dasymetric mapping approach, using the random forest algorithm, to produce a gridded population density data set. This weighting layer was subsequently used to dasymetrically disaggregate population counts from district level totals into grid cells, based on those grid cells which were deemed “settled”. District level population totals from the 2017 Census were downloaded from INE’s website (https://www.ine.gov.mz/iv-rgph-2017). Please, read the relevant data documentation on the WorldPop open Data Repository (https://wopr.worldpop.org/?MOZ/Population).For more information about WorldPop's methods, see:● WorldPop: Methods for Gridded Population Estimate Datasets● WorldPop: Top-down estimation modelling: Constrained vs Unconstrained Suggested Data Set Citation: Center for International Earth Science Information Network (CIESIN), Columbia University and Novel-T. 2021. GRID3 Burkina Faso Settlement Extents, Version 01.01. Palisades, NY: Geo-Referenced Infrastructure and Demographic Data for Development (GRID3). https://doi.org/10.7916/d8-d023-ws42 . Accessed DAY MONTH YEAR
The statistic shows the 30 largest countries in the world by area. Russia is the largest country by far, with a total area of about 17 million square kilometers.
Population of Russia
Despite its large area, Russia - nowadays the largest country in the world - has a relatively small total population. However, its population is still rather large in numbers in comparison to those of other countries. In mid-2014, it was ranked ninth on a list of countries with the largest population, a ranking led by China with a population of over 1.37 billion people. In 2015, the estimated total population of Russia amounted to around 146 million people. The aforementioned low population density in Russia is a result of its vast landmass; in 2014, there were only around 8.78 inhabitants per square kilometer living in the country. Most of the Russian population lives in the nation’s capital and largest city, Moscow: In 2015, over 12 million people lived in the metropolis.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Montreal, Canada metro area from 1950 to 2025. United Nations population projections are also included through the year 2035.
Globally, about 25 percent of the population is under 15 years of age and 10 percent is over 65 years of age. Africa has the youngest population worldwide. In Sub-Saharan Africa, more than 40 percent of the population is below 15 years, and only three percent are above 65, indicating the low life expectancy in several of the countries. In Europe, on the other hand, a higher share of the population is above 65 years than the population under 15 years. Fertility rates The high share of children and youth in Africa is connected to the high fertility rates on the continent. For instance, South Sudan and Niger have the highest population growth rates globally. However, about 50 percent of the world’s population live in countries with low fertility, where women have less than 2.1 children. Some countries in Europe, like Latvia and Lithuania, have experienced a population decline of one percent, and in the Cook Islands, it is even above two percent. In Europe, the majority of the population was previously working-aged adults with few dependents, but this trend is expected to reverse soon, and it is predicted that by 2050, the older population will outnumber the young in many developed countries. Growing global population As of 2025, there are 8.1 billion people living on the planet, and this is expected to reach more than nine billion before 2040. Moreover, the global population is expected to reach 10 billions around 2060, before slowing and then even falling slightly by 2100. As the population growth rates indicate, a significant share of the population increase will happen in Africa.
In 2022, India overtook China as the world's most populous country and now has almost 1.46 billion people. China now has the second-largest population in the world, still with just over 1.4 billion inhabitants, however, its population went into decline in 2023. Global population As of 2025, the world's population stands at almost 8.2 billion people and is expected to reach around 10.3 billion people in the 2080s, when it will then go into decline. Due to improved healthcare, sanitation, and general living conditions, the global population continues to increase; mortality rates (particularly among infants and children) are decreasing and the median age of the world population has steadily increased for decades. As for the average life expectancy in industrial and developing countries, the gap has narrowed significantly since the mid-20th century. Asia is the most populous continent on Earth; 11 of the 20 largest countries are located there. It leads the ranking of the global population by continent by far, reporting four times as many inhabitants as Africa. The Demographic Transition The population explosion over the past two centuries is part of a phenomenon known as the demographic transition. Simply put, this transition results from a drastic reduction in mortality, which then leads to a reduction in fertility, and increase in life expectancy; this interim period where death rates are low and birth rates are high is where this population explosion occurs, and population growth can remain high as the population ages. In today's most-developed countries, the transition generally began with industrialization in the 1800s, and growth has now stabilized as birth and mortality rates have re-balanced. Across less-developed countries, the stage of this transition varies; for example, China is at a later stage than India, which accounts for the change in which country is more populous - understanding the demographic transition can help understand the reason why China's population is now going into decline. The least-developed region is Sub-Saharan Africa, where fertility rates remain close to pre-industrial levels in some countries. As these countries transition, they will undergo significant rates of population growth