100+ datasets found
  1. i

    Dataset for Stock Market Prediction

    • ieee-dataport.org
    Updated Jul 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Umara Umar (2024). Dataset for Stock Market Prediction [Dataset]. https://ieee-dataport.org/documents/dataset-stock-market-prediction
    Explore at:
    Dataset updated
    Jul 8, 2024
    Authors
    Umara Umar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Hascol

  2. if the stock market goes down during a recession, you should sell all of...

    • kappasignal.com
    Updated May 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). if the stock market goes down during a recession, you should sell all of your investments to minimize your losses. (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/if-stock-market-goes-down-during.html
    Explore at:
    Dataset updated
    May 6, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    if the stock market goes down during a recession, you should sell all of your investments to minimize your losses.

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  3. Machine Learning stock prediction: HD Stock Prediction (Forecast)

    • kappasignal.com
    Updated Oct 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Machine Learning stock prediction: HD Stock Prediction (Forecast) [Dataset]. https://www.kappasignal.com/2022/10/machine-learning-stock-prediction-hd.html
    Explore at:
    Dataset updated
    Oct 13, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Machine Learning stock prediction: HD Stock Prediction

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  5. Global Stock Analysis Software Market Size By Functionality, By End-User, By...

    • verifiedmarketresearch.com
    Updated May 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Stock Analysis Software Market Size By Functionality, By End-User, By Deployment, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/stock-analysis-software-market/
    Explore at:
    Dataset updated
    May 14, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Stock Analysis Software Market Size And Forecast

    Stock Analysis Software Market size was valued at USD 145.6 Million in 2023 and is projected to reach USD 450.68 Million by 2031, growing at a CAGR of 15.17% during the forecast period 2024-2031.

    Global Stock Analysis Software Market Drivers

    The market drivers for the Stock Analysis Software Market can be influenced by various factors. These may include:

    Growing Interest from Investors: As more people and organizations engage in the stock market, there is an increasing need for tools that help monitor and evaluate investments. Automation and Efficiency: Software adoption is fueled by traders' and investors' need for automated solutions that will expedite their analysis and decision-making. Data Accessibility: An abundance of financial data, such as current stock prices and corporate details, presents prospects for thorough analytical instruments. Advanced Technologies: Adding AI and machine learning to stock analysis software improves its capacity for prediction and provides more individualized insights, which draws in more users. Growth in Retail Trading: Individual investors' need for user-friendly stock analysis tools has been fueled by the growing acceptance of retail trading platforms. Regulatory Compliance: Software solutions that support compliance are in great demand as financial markets become more regulated. Cost-Effectiveness: By eliminating the need for human analysts, automated analysis systems can offer both individual and institutional investors a more affordable option. Cross-platform Integration: Users seeking coherent investing ecosystems will find stock research software more appealing if it interfaces with other financial tools and platforms. Global Market Expansion: Software that can assess equities across multiple locations and adhere to international regulations is needed as stock markets become increasingly global. User-Friendly Interfaces: The movement toward more user-friendly interfaces increases the accessibility of stock analysis software, which encourages non-professional investors to use it.

  6. T

    Japan Stock Market Index (JP225) Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Japan Stock Market Index (JP225) Data [Dataset]. https://tradingeconomics.com/japan/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 5, 1965 - Aug 1, 2025
    Area covered
    Japan
    Description

    Japan's main stock market index, the JP225, fell to 40800 points on August 1, 2025, losing 0.66% from the previous session. Over the past month, the index has climbed 2.61% and is up 13.62% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on August of 2025.

  7. T

    Hong Kong Stock Market Index (HK50) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Hong Kong Stock Market Index (HK50) Data [Dataset]. https://tradingeconomics.com/hong-kong/stock-market
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    Feb 1, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 31, 1964 - Aug 1, 2025
    Area covered
    Hong Kong
    Description

    Hong Kong's main stock market index, the HK50, fell to 24508 points on August 1, 2025, losing 1.07% from the previous session. Over the past month, the index has climbed 1.18% and is up 44.63% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Hong Kong. Hong Kong Stock Market Index (HK50) - values, historical data, forecasts and news - updated on August of 2025.

  8. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +4more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market??sa=u&ei=ffhqvnvmn5dloatmoocabw&ved=0cjmbebywfq&usg=afqjcngzbcc8p0owixmdsdjcu_endviwgg
    Explore at:
    csv, json, excel, xmlAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Aug 1, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, fell to 6238 points on August 1, 2025, losing 1.60% from the previous session. Over the past month, the index has climbed 0.17% and is up 16.67% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.

  9. f

    Selected ML models for stock market prediction.

    • plos.figshare.com
    bin
    Updated Sep 21, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Azaz Hassan Khan; Abdullah Shah; Abbas Ali; Rabia Shahid; Zaka Ullah Zahid; Malik Umar Sharif; Tariqullah Jan; Mohammad Haseeb Zafar (2023). Selected ML models for stock market prediction. [Dataset]. http://doi.org/10.1371/journal.pone.0286362.t003
    Explore at:
    binAvailable download formats
    Dataset updated
    Sep 21, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Azaz Hassan Khan; Abdullah Shah; Abbas Ali; Rabia Shahid; Zaka Ullah Zahid; Malik Umar Sharif; Tariqullah Jan; Mohammad Haseeb Zafar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Stock market forecasting is one of the most challenging problems in today’s financial markets. According to the efficient market hypothesis, it is almost impossible to predict the stock market with 100% accuracy. However, Machine Learning (ML) methods can improve stock market predictions to some extent. In this paper, a novel strategy is proposed to improve the prediction efficiency of ML models for financial markets. Nine ML models are used to predict the direction of the stock market. First, these models are trained and validated using the traditional methodology on a historic data captured over a 1-day time frame. Then, the models are trained using the proposed methodology. Following the traditional methodology, Logistic Regression achieved the highest accuracy of 85.51% followed by XG Boost and Random Forest. With the proposed strategy, the Random Forest model achieved the highest accuracy of 91.27% followed by XG Boost, ADA Boost and ANN. In the later part of the paper, it is shown that only classification report is not sufficient to validate the performance of ML model for stock market prediction. A simulation model of the financial market is used in order to evaluate the risk, maximum draw down and returns associate with each ML model. The overall results demonstrated that the proposed strategy not only improves the stock market returns but also reduces the risks associated with each ML model.

  10. T

    Greece Stock Market (ASE) Data

    • tradingeconomics.com
    • jp.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Feb 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2020). Greece Stock Market (ASE) Data [Dataset]. https://tradingeconomics.com/greece/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Feb 2, 2020
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Feb 5, 1988 - Aug 1, 2025
    Area covered
    Greece
    Description

    Greece's main stock market index, the Athens General, fell to 1960 points on August 1, 2025, losing 1.73% from the previous session. Over the past month, the index has climbed 3.49% and is up 36.98% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Greece. Greece Stock Market (ASE) - values, historical data, forecasts and news - updated on August of 2025.

  11. T

    Sweden Stock Market Index Data

    • tradingeconomics.com
    • ru.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Apr 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2024). Sweden Stock Market Index Data [Dataset]. https://tradingeconomics.com/sweden/stock-market
    Explore at:
    csv, excel, xml, jsonAvailable download formats
    Dataset updated
    Apr 25, 2024
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 30, 1986 - Aug 1, 2025
    Area covered
    Sweden
    Description

    Sweden's main stock market index, the Stockholm, fell to 2534 points on August 1, 2025, losing 1.80% from the previous session. Over the past month, the index has climbed 0.45% and is up 2.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Sweden. Sweden Stock Market Index - values, historical data, forecasts and news - updated on August of 2025.

  12. T

    France Stock Market Index (FR40) Data

    • tradingeconomics.com
    • pl.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, France Stock Market Index (FR40) Data [Dataset]. https://tradingeconomics.com/france/stock-market
    Explore at:
    json, xml, csv, excelAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jul 9, 1987 - Aug 1, 2025
    Area covered
    France
    Description

    France's main stock market index, the FR40, fell to 7546 points on August 1, 2025, losing 2.91% from the previous session. Over the past month, the index has declined 2.48%, though it remains 4.06% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from France. France Stock Market Index (FR40) - values, historical data, forecasts and news - updated on August of 2025.

  13. CM:TSX Stock Forecast: A Buy For The Next 6 Month (Forecast)

    • kappasignal.com
    Updated Sep 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). CM:TSX Stock Forecast: A Buy For The Next 6 Month (Forecast) [Dataset]. https://www.kappasignal.com/2023/09/cmtsx-stock-forecast-buy-for-next-6.html
    Explore at:
    Dataset updated
    Sep 15, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    CM:TSX Stock Forecast: A Buy For The Next 6 Month

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. T

    Russia Stock Market Index MOEX CFD Data

    • tradingeconomics.com
    • ko.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Russia Stock Market Index MOEX CFD Data [Dataset]. https://tradingeconomics.com/russia/stock-market
    Explore at:
    json, csv, excel, xmlAvailable download formats
    Dataset updated
    Jul 25, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Sep 22, 1997 - Aug 1, 2025
    Area covered
    Russia
    Description

    Russia's main stock market index, the MOEX, fell to 2729 points on August 1, 2025, losing 0.12% from the previous session. Over the past month, the index has declined 3.07% and is down 5.87% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Russia. Russia Stock Market Index MOEX CFD - values, historical data, forecasts and news - updated on August of 2025.

  15. T

    Turkey Stock Market Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Turkey Stock Market Data [Dataset]. https://tradingeconomics.com/turkey/stock-market
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    Jul 16, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 2, 1988 - Aug 1, 2025
    Area covered
    Turkey
    Description

    Turkey's main stock market index, the BIST 100, rose to 10745 points on August 1, 2025, gaining 0.02% from the previous session. Over the past month, the index has climbed 5.46% and is up 2.60% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Turkey. Turkey Stock Market - values, historical data, forecasts and news - updated on August of 2025.

  16. T

    Germany Stock Market Index (DE40) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Stock Market Index (DE40) Data [Dataset]. https://tradingeconomics.com/germany/stock-market
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Jul 15, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 1987 - Aug 1, 2025
    Area covered
    Germany
    Description

    Germany's main stock market index, the DE40, fell to 23561 points on August 1, 2025, losing 2.10% from the previous session. Over the past month, the index has declined 0.96%, though it remains 33.40% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on August of 2025.

  17. Can we predict stock market using machine learning? (BWSN Stock Forecast)...

    • kappasignal.com
    Updated Nov 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (BWSN Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_60.html
    Explore at:
    Dataset updated
    Nov 23, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (BWSN Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  18. T

    Canada Stock Market Index (TSX) Data

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Canada Stock Market Index (TSX) Data [Dataset]. https://tradingeconomics.com/canada/stock-market
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 29, 1979 - Aug 1, 2025
    Area covered
    Canada
    Description

    Canada's main stock market index, the TSX, fell to 27020 points on August 1, 2025, losing 0.88% from the previous session. Over the past month, the index has climbed 0.56% and is up 21.56% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Canada. Canada Stock Market Index (TSX) - values, historical data, forecasts and news - updated on August of 2025.

  19. T

    Euro Area Stock Market Index (EU50) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS, Euro Area Stock Market Index (EU50) Data [Dataset]. https://tradingeconomics.com/euro-area/stock-market
    Explore at:
    excel, json, csv, xmlAvailable download formats
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1986 - Aug 1, 2025
    Area covered
    Euro Area
    Description

    Euro Area's main stock market index, the EU50, fell to 5174 points on August 1, 2025, losing 2.80% from the previous session. Over the past month, the index has declined 2.72%, though it remains 11.54% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Euro Area. Euro Area Stock Market Index (EU50) - values, historical data, forecasts and news - updated on August of 2025.

  20. Can we predict stock market using machine learning? (LPRO Stock Forecast)...

    • kappasignal.com
    Updated Nov 24, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (LPRO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_24.html
    Explore at:
    Dataset updated
    Nov 24, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (LPRO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Umara Umar (2024). Dataset for Stock Market Prediction [Dataset]. https://ieee-dataport.org/documents/dataset-stock-market-prediction

Dataset for Stock Market Prediction

Explore at:
9 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 8, 2024
Authors
Umara Umar
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

Hascol

Search
Clear search
Close search
Google apps
Main menu