Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-citation-requiredhttps://fred.stlouisfed.org/legal/#copyright-citation-required
Graph and download economic data for Index of Common Stock Prices, New York Stock Exchange for United States (M11007USM322NNBR) from Jan 1902 to May 1923 about New York, stock market, indexes, and USA.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
All data acquired on December 11th 2023
1) Ticker: Stock symbol identifying the company.
2) Company: Name of the company.
3) Sector: Industry category to which the company belongs.
4) Industry: Specific sector or business category of the company.
5) Country: Country where the company is based.
6) Market Cap: Total market value of a company's outstanding shares.
7) Price: Current stock price.
8) Change (%): Percentage change in stock price.
9) Volume: Number of shares traded.
10) Price to Earnings Ratio: Ratio of stock price to earnings per share.
11) Price to Earnings: Price-to-earnings ratio based on past earnings.
12) Forward Price to Earnings: Expected price-to-earnings ratio.
13) Price/Earnings to Growth: Ratio of P/E to earnings growth.
14) Price to Sales: Ratio of stock price to annual sales.
15) Price to Book: Ratio of stock price to book value.
16) Price to Cash: Ratio of stock price to cash per share.
17) Price to Free Cash Flow: Ratio of stock price to free cash flow.
18) Earnings Per Share This Year (%): Percentage change in earnings per share for the current year.
19) Earnings Per Share Next Year (%): Percentage change in earnings per share for the next year.
20) Earnings Per Share Past 5 Years (%): Percentage change in earnings per share over the past 5 years.
21) Earnings Per Share Next 5 Years (%): Estimated percentage change in earnings per share over the next 5 years.
22) Sales Past 5 Years (%): Percentage change in sales over the past 5 years.
23) Dividend (%): Dividend yield as a percentage of the stock price.
24) Return on Assets (%): Percentage return on total assets.
25) Return on Equity (%): Percentage return on shareholder equity.
26) Return on Investment (%): Percentage return on total investment.
27) Current Ratio: Ratio of current assets to current liabilities.
28) Quick Ratio: Ratio of liquid assets to current liabilities.
29) Long-Term Debt to Equity: Ratio of long-term debt to shareholder equity.
30) Debt to Equity: Ratio of total debt to shareholder equity.
31) Gross Margin (%): Percentage difference between revenue and cost of goods sold.
32) Operating Margin (%): Percentage of operating income to revenue.
33) Profit Margin: Percentage of net income to revenue.
34) Earnings: Net income of the company.
35) Outstanding Shares: Total number of shares issued by the company.
36) Float: Tradable shares available to the public.
37) Insider Ownership (%): Percentage of company owned by insiders.
38) Insider Transactions: Recent insider buying or selling activity.
39) Institutional Ownership (%): Percentage of company owned by institutional investors.
40) Float Short (%): Percentage of tradable shares sold short by investors.
41) Short Ratio: Number of days it would take to cover short positions.
42) Average Volume: Average number of shares traded daily.
43) Performance (Week) (%): Weekly stock performance percentage.
44) Performance (Month) (%): Monthly stock performance percentage.
45) Performance (Quarter) (%): Quarterly stock performance percentage.
46) Performance (Half Year) (%): Semi-annual stock performance percentage.
47) Performance (Year) (%): Annual stock performance percentage.
48) Performance (Year to Date) (%): Year-to-date stock performance percentage.
49) Volatility (Week) (%): Weekly stock price volatility percentage.
50) Volatility (Month) (%): Monthly stock price volatility percentage.
51) Analyst Recommendation: Analyst consensus recommendation on the stock.
52) Relative Volume: Volume compared to the average volume.
53) Beta: Measure of stock price volatility relative to the market.
54) Average True Range: Average price range of a stock.
55) Simple Moving Average (20) (%): Percentage difference from the 20-day simple moving average.
56) Simple Moving Average (50) (%): Percentage difference from the 50-day simple moving average.
57) Simple Moving Average (200) (%): Percentage difference from the 200-day simple moving average.
58) Yearly High (%): Percentage difference from the yearly high stock price.
59) Yearly Low (%): Percentage difference from the yearly low stock price.
60) Relative Strength Index: Momentum indicator measuring the speed and change of price movements.
61) Change from Open (%): Percentage change from the opening stock price.
62) Gap (%): Percentage difference between the previous close and the current open price.
63) Volume: Total number of shares traded.
Facebook
TwitterThe Dow Jones Industrial Average (DJIA) index dropped around ***** points in the four weeks from February 12 to March 11, 2020, but has since recovered and peaked at ********* points as of November 24, 2024. In February 2020 - just prior to the global coronavirus (COVID-19) pandemic, the DJIA index stood at a little over ****** points. U.S. markets suffer as virus spreads The COVID-19 pandemic triggered a turbulent period for stock markets – the S&P 500 and Nasdaq Composite also recorded dramatic drops. At the start of February, some analysts remained optimistic that the outbreak would ease. However, the increased spread of the virus started to hit investor confidence, prompting a record plunge in the stock markets. The Dow dropped by more than ***** points in the week from February 21 to February 28, which was a fall of **** percent – its worst percentage loss in a week since October 2008. Stock markets offer valuable economic insights The Dow Jones Industrial Average is a stock market index that monitors the share prices of the 30 largest companies in the United States. By studying the performance of the listed companies, analysts can gauge the strength of the domestic economy. If investors are confident in a company’s future, they will buy its stocks. The uncertainty of the coronavirus sparked fears of an economic crisis, and many traders decided that investment during the pandemic was too risky.
Facebook
TwitterThe value of the DJIA index amounted to ****** at the end of June 2025, up from ********* at the end of March 2020. Global panic about the coronavirus epidemic caused the drop in March 2020, which was the worst drop since the collapse of Lehman Brothers in 2008. Dow Jones Industrial Average index – additional information The Dow Jones Industrial Average index is a price-weighted average of 30 of the largest American publicly traded companies on New York Stock Exchange and NASDAQ, and includes companies like Goldman Sachs, IBM and Walt Disney. This index is considered to be a barometer of the state of the American economy. DJIA index was created in 1986 by Charles Dow. Along with the NASDAQ 100 and S&P 500 indices, it is amongst the most well-known and used stock indexes in the world. The year that the 2018 financial crisis unfolded was one of the worst years of the Dow. It was also in 2008 that some of the largest ever recorded losses of the Dow Jones Index based on single-day points were registered. On September 29, 2008, for instance, the Dow had a loss of ****** points, one of the largest single-day losses of all times. The best years in the history of the index still are 1915, when the index value increased by ***** percent in one year, and 1933, year when the index registered a growth of ***** percent.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Sure! Here's a copy-paste friendly version of the dataset details you can use directly in your Kaggle dataset description:
This dataset provides detailed information on over 500 publicly traded US companies, including their current stock price, volume, market capitalization, P/E ratio, and performance indicators such as daily change and 52-week change. It is ideal for financial analysis, algorithmic trading models, or studying market behavior.
stocks.csv| Column Name | Type | Description |
|---|---|---|
Symbol | object | Ticker symbol of the stock (e.g., AAPL, TSLA) |
Name | object | Full company name |
Price(USD) | float64 | Current stock price in USD |
Change | float64 | Daily price change (USD) |
Change % | float64 | Daily percentage change in price |
Volume_M | float64 | Current trading volume in millions |
Avg_Vol_3m | float64 | Average 3-month trading volume (millions) |
Market_Cap_B | float64 | Market capitalization in billions USD |
PE_Ratio | float64 | Price-to-Earnings ratio (NaN for companies with negative earnings) |
52_WK_Change % | float64 | Percentage change in price over the last 52 weeks |
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.
The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.
Feb 2018 note: I have just updated the dataset to include data up to Feb 2018. I have also accounted for changes in the stocks on the S&P 500 index (RIP whole foods etc. etc.).
The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the all_stocks_5yr.csv and corresponding folder).
The folder individual_stocks_5yr contains files of data for individual stocks, labelled by their stock ticker name. The all_stocks_5yr.csv contains the same data, presented in a merged .csv file. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.
All the files have the following columns: Date - in format: yy-mm-dd
Open - price of the stock at market open (this is NYSE data so all in USD)
High - Highest price reached in the day
Low Close - Lowest price reached in the day
Volume - Number of shares traded
Name - the stock's ticker name
Due to volatility in google finance, for the newest version I have switched over to acquiring the data from The Investor's Exchange api, the simple script I use to do this is found here. Special thanks to Kaggle, Github, pandas_datareader and The Market.
This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom's main stock market index, the GB100, fell to 9690 points on December 2, 2025, losing 0.13% from the previous session. Over the past month, the index has declined 0.12%, though it remains 15.91% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United Kingdom. United Kingdom Stock Market Index (GB100) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterIn 2025, ** percent of adults in the United States invested in the stock market. This figure has remained steady over the last few years and is still below the levels before the Great Recession, when it peaked in 2007 at ** percent. What is the stock market? The stock market can be defined as a group of stock exchanges where investors can buy shares in a publicly traded company. In more recent years, it is estimated an increasing number of Americans are using neobrokers, making stock trading more accessible to investors. Other investments A significant number of people think stocks and bonds are the safest investments, while others point to real estate, gold, bonds, or a savings account. Since witnessing the significant one-day losses in the stock market during the financial crisis, many investors were turning towards these alternatives in hopes for more stability, particularly for investments with longer maturities. This could explain the decrease in this statistic since 2007. Nevertheless, some speculators enjoy chasing the short-run fluctuations, and others see value in choosing particular stocks.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Historical stock market data for current S&P 500 companies, from 2014-2017. Each record represents a single day of trading, and includes the ticker name, volume, high, low, open and close prices.
Which date in the sample saw the largest overall trading volume? On that date, which two stocks were traded most?
On which day of the week does volume tend to be highest? Lowest?
On which date did Amazon (AMZN) see the most volatility, measured by the difference between the high and low price?
If you could go back in time and invest in one stock from 1/2/2014 - 12/29/2017, which would you choose? What % gain would you realize?
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
About Dataset Context Stock market data can be interesting to analyze and as a further incentive, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I provide a dataset with historical stock prices (last 5 years) for all companies currently found on the S&P 500 index.
The script I used to acquire all of these .csv files can be found in this GitHub repository In the future if you wish for a more up to date dataset, this can be used to acquire new versions of the .csv files.
Feb 2018 note: I have just updated the dataset to include data up to Feb 2018. I have also accounted for changes in the stocks on the S&P 500 index (RIP whole foods etc. etc.).
Content The data is presented in a couple of formats to suit different individual's needs or computational limitations. I have included files containing 5 years of stock data (in the allstocks5yr.csv and corresponding folder).
The folder individualstocks5yr contains files of data for individual stocks, labelled by their stock ticker name. The allstocks5yr.csv contains the same data, presented in a merged .csv file. Depending on the intended use (graphing, modelling etc.) the user may prefer one of these given formats.
All the files have the following columns: Date - in format: yy-mm-dd
Open - price of the stock at market open (this is NYSE data so all in USD)
High - Highest price reached in the day
Low Close - Lowest price reached in the day
Volume - Number of shares traded
Name - the stock's ticker name
Acknowledgements Due to volatility in google finance, for the newest version I have switched over to acquiring the data from The Investor's Exchange api, the simple script I use to do this is found here. Special thanks to Kaggle, Github, pandas_datareader and The Market.
Inspiration This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. The million dollar question is: can you develop a model that can beat the market and allow you to make statistically informed trades!
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval
View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Japan's main stock market index, the JP225, rose to 49553 points on December 2, 2025, gaining 0.51% from the previous session. Over the past month, the index has declined 3.78%, though it remains 26.25% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Japan. Japan Stock Market Index (JP225) - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset shows the Capital Stock Statistics At Current Prices, 2000 - 2021. Footnote e = Estimate p = Preliminary Source: DEPARTMENT OF STATISTICS MALAYSIA No. of Views : 38
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset offers an in-depth analysis of Netflix's stock performance over the last decade, incorporating numerous technical indicators to examine its price fluctuations. It includes the recording date and several vital statistics: the opening, highest, lowest, and closing prices for each trading day, along with the trading volume. It also contains momentum indicators like the 7-day and 14-day Relative Strength Index (RSI) to determine if the stock is overbought or oversold. The Commodity Channel Index (CCI) for 7 and 14 days is also included, helping identify short- and medium-term market trends by comparing the current price to the historical average. The dataset integrates the 50-day and 100-day Simple Moving Average (SMA) and Exponential Moving Average (EMA), which shed light on the stock's trend direction. Additional important indicators are the Moving Average Convergence Divergence (MACD), Bollinger Bands for assessing price volatility, the True Range, and the 7-day and 14-day Average True Range (ATR), which provide a gauge of market volatility. This dataset is designed to forecast the closing price for the following day, making it a crucial tool for predicting future movements of Netflix's stock.
Please find descriptions for the columns.
Open: The price at which a stock first trades upon the opening of an exchange on a trading day.
High: The highest price at which a stock traded during the trading day.
Low: The lowest price at which a stock traded during the trading day.
Close: The final price at which a stock trades during a trading day.
Volume: The total number of shares of a stock traded during a trading day.
RSI_7 / RSI_14: The Relative Strength Index (RSI) is a momentum oscillator that measures the speed and change of price movements. RSI_7 and RSI_14 indicate the RSI calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/r/rsi.asp
CCI_7 / CCI_14: The Commodity Channel Index (CCI) is a versatile indicator that can be used to identify a new trend or warn of extreme conditions. CCI_7 and CCI_14 are calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/c/commoditychannelindex.asp
SMA_50 / SMA_100: The Simple Moving Average (SMA) is calculated by averaging the price of a stock over a specific number of days. SMA_50 and SMA_100 are the averages over 50 days and 100 days, respectively. https://www.investopedia.com/terms/s/sma.asp
EMA_50 / EMA_100: The Exponential Moving Average (EMA) gives more weight to more recent prices and thus reacts more quickly to price changes than the SMA. EMA_50 and EMA_100 are calculated over 50 days and 100 days, respectively. https://www.investopedia.com/terms/e/ema.asp
MACD: The Moving Average Convergence Divergence (MACD) is a trend-following momentum indicator that shows the relationship between two moving averages of a stock’s price. https://www.investopedia.com/terms/m/macd.asp
Bollinger Bands (Bollinger): A set of lines plotted two standard deviations (positively and negatively) away from a simple moving average (SMA) of a stock's price. https://www.investopedia.com/terms/b/bollingerbands.asp
True Range: The greatest of the following: current high minus the current low, the absolute value of the current high minus the previous close, or the absolute value of the current low minus the previous close.
ATR_7 / ATR_14: The Average True Range (ATR) is a measure of volatility that shows how much a stock moves, on average, over a given period. ATR_7 and ATR_14 are calculated over 7 days and 14 days, respectively. https://www.investopedia.com/terms/a/atr.asp
Next Day Close: Future price. Closing price of a stock for the following trading day. Can be used as target variable for regression predictions.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
TwitterThe New York Stock Exchange (NYSE) is the largest stock exchange in the world, with an equity market capitalization of almost ** trillion U.S. dollars as of November 2025. The following largest three exchanges were the NASDAQ, PINK Exchange, and the Frankfurt Exchange. What is a stock exchange? A stock exchange is a marketplace where stockbrokers, traders, buyers, and sellers can trade in equities products. The largest exchanges have thousands of listed companies. These companies sell shares of their business, giving the general public the opportunity to invest in them. The oldest stock exchange worldwide is the Frankfurt Stock Exchange, founded in the late sixteenth century. Other functions of a stock exchange Since these are publicly traded companies, every firm listed on a stock exchange has had an initial public offering (IPO). The largest IPOs can raise billions of dollars in equity for the firm involved. Related to stock exchanges are derivatives exchanges, where stock options, futures contracts, and other derivatives can be traded.
Facebook
Twitterhttps://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html
This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.
Historical daily stock prices (open, high, low, close, volume)
Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)
Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)
Feature engineering based on financial data and technical indicators
Sentiment analysis data from social media and news articles
Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)
Stock price prediction
Portfolio optimization
Algorithmic trading
Market sentiment analysis
Risk management
Researchers investigating the effectiveness of machine learning in stock market prediction
Analysts developing quantitative trading Buy/Sell strategies
Individuals interested in building their own stock market prediction models
Students learning about machine learning and financial applications
The dataset may include different levels of granularity (e.g., daily, hourly)
Data cleaning and preprocessing are essential before model training
Regular updates are recommended to maintain the accuracy and relevance of the data
Facebook
Twitterhttps://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Capital stock at Current Purchasing Power Parities for United States (CKSPPPUSA666NRUG) from 1950 to 2019 about stocks, PPP, capital, and USA.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.