A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.
Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.
Use cases for the Global Census Database (Consumer Demographic Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Real Estate Data Estimations
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Census data export methodology
Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our demographic databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.
Consumer Insurance Experience & Demographic Profile
This dataset provides a detailed view of how individuals engage with insurance products, paired with demographic and lifestyle attributes to enable powerful segmentation, behavioral analysis, and customer journey mapping. By combining real-world insurance experiences with contextual information about each respondent’s background and preferences, this dataset supports a wide range of data-driven decision-making for insurance providers, policy designers, marketing teams, and product strategists.
Value of the Dataset Understanding how consumers perceive and interact with insurance offerings is critical to building products that resonate and services that retain. This dataset offers that visibility across multiple dimensions—capturing not only what type of insurance consumers hold and how they purchased it, but also what drives their satisfaction, loyalty, and likelihood to switch. Paired with demographic details like income, education, family status, and lifestyle, this information becomes a foundation for more personalized outreach, better-designed offerings, and improved customer experiences.
Because the data reflects lived experiences across diverse markets, it is particularly valuable for benchmarking consumer sentiment in emerging economies, identifying service delivery gaps, or evaluating potential uptake of new policy formats such as digital or personalized insurance.
Example Use Cases 1. Targeted Product Design A health insurer looking to launch short-term, digital-first plans could filter this dataset for consumers with low policy tenure, high digital communication preference, and dissatisfaction with current providers. This segment would inform feature design and positioning.
Competitive Analysis A provider evaluating churn risk can identify patterns among users who have filed claims but report dissatisfaction—indicating operational areas that may be driving customer loss and where improvements could increase retention.
Communication Channel Optimization By analyzing preferred communication methods across different demographic segments, insurers can tailor outreach strategies (e.g., SMS vs. in-app chat) to improve engagement and reduce support costs.
Market Expansion & Localization International insurers can explore regional variations in satisfaction drivers, awareness levels, and price sensitivity to refine go-to-market strategies in countries like Senegal, Tanzania, or the UAE.
Personalized Policy Offer Design Using data on interest in personalized policies and lifestyle indicators, providers can build customizable offerings for consumers more likely to value flexibility, such as frequent travelers or those with irregular incomes.
Insurance-Specific Fields & Descriptions Current Insurance Type Captures the kind of insurance the individual currently holds, with a focus on health insurance in this dataset.
Purchase Method Indicates how the insurance was obtained—through an agent, online, employer, etc.—to understand acquisition channels.
Policy Length Duration of the current policy, categorized (e.g., less than 1 year, 1–3 years, more than 5 years) to analyze tenure-based behaviors.
Satisfaction Self-reported satisfaction with the current insurance provider, useful for benchmarking sentiment.
Top Factor in Choosing Provider Highlights what influenced the purchase decision most—such as coverage options, customer service, pricing, or brand reputation.
Policy Review Frequency Shows how often individuals revisit their policy details or compare with alternatives, revealing levels of engagement or passive behavior.
Filed Claim A yes/no indicator showing whether the consumer has ever filed a claim, useful for analyzing downstream service experiences.
Claim Satisfaction Measures satisfaction with how past claims were handled, providing insight into operational effectiveness.
Primary Value Sought Captures what consumers value most from their insurance—e.g., peace of mind, financial protection, access to quality care.
Likelihood to Recommend Acts as a proxy for Net Promoter Score (NPS), indicating brand advocacy and potential referral behavior.
Biggest Areas for Improvement Open-ended or multi-select responses identifying where insurers can do better—lower premiums, faster claims, more digital tools, etc.
Preferred Method of Communication Indicates how consumers want to be contacted—via online chat, phone, email, SMS—supporting channel strategy optimization.
Preferred Services Details the types of updates or services consumers want—such as claims status, policy changes, or coverage recommendations.
Insurance Awareness Score Self-reported awareness of how insurance works, including policy options, rights, and terms.
Interest in Personalized Policies Captures whether the individual is open to customized insurance plans, an important indicator for usage-ba...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset displays demographic information for all Boulder Parks and Recreation members and visitors. The dataset includes customer age, gender, resident status, location (city, state, and zipcode), entry date, and membership package type(s).
Please note that due to the nature of open-ended data entry for many customer detail fields, some customer data (e.g. city) will need to be cleaned and normalized before analysis.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
In this project, I conducted a comprehensive analysis of customer data using Power BI. The objective was to visualize and gain insights from the data, focusing on customer demographics and product categories.
📈The analysis includes the following key visualizations:
Customer Distribution by Age: illustrates the number of customers across different age groups, providing insights into the demographic distribution.
Customer Distribution by Time: This visualization shows the count of customers segmented by year, quarter, month, and day, helping identify trends over time.
Customer Distribution by Gender: displays the distribution of customers by gender, highlighting any significant differences.
Total Amount by Product Category: depicts the total revenue generated by each product category, allowing for easy comparison.
Quantity by Product Category: shows the total quantity of products sold in each category, helping to identify popular items.
The cards display key metrics:
Average Age: 41.39 Total Customers: 1000 Total Quantity Sold: 2514 Total Amount Sold: 465 000$ Total Transactions: 1000 Additionally, I implemented filters for product category, date, gender, quantity, and age, providing users with the ability to refine their analysis.
Findings:
The analysis of customer distribution by age reveals no specific relationship between age and the quantity of products sold. This indicates that purchasing behavior may not be strongly influenced by the customer’s age. There are notable peaks in the quantity sold on May 20, 2023, and again in July, suggesting higher purchasing activity during these periods. The customer distribution by gender shows that 49% of customers are female, while 51% are male. In terms of total amount sold by product category, electronics is the top category, generating the highest revenue, followed by clothing, with beauty ranking last. Similarly, when looking at quantity sold by product category, electronics makes up 33.77%, clothing is slightly higher at 35.56%, and beauty is the smallest category at 3.67%. This project demonstrates the power of Power BI in analyzing customer data and deriving actionable insights. The visualizations created provide a clear understanding of customer behavior and preferences, which can help businesses make informed decisions.
https://www.marketresearchstore.com/privacy-statementhttps://www.marketresearchstore.com/privacy-statement
Global PVALB Test Market to grow from US$ 58.96 Million in 2023 to US$ 103.04 Million by 2032, at a CAGR of 6.4% from 2024 - 2032
Envestnet®| Yodlee®'s Consumer Transaction Data (Aggregate/Row) Panels consist of de-identified, near-real time (T+1) USA credit/debit/ACH transaction level data – offering a wide view of the consumer activity ecosystem. The underlying data is sourced from end users leveraging the aggregation portion of the Envestnet®| Yodlee®'s financial technology platform.
Envestnet | Yodlee Consumer Panels (Aggregate/Row) include data relating to millions of transactions, including ticket size and merchant location. The dataset includes de-identified credit/debit card and bank transactions (such as a payroll deposit, account transfer, or mortgage payment). Our coverage offers insights into areas such as consumer, TMT, energy, REITs, internet, utilities, ecommerce, MBS, CMBS, equities, credit, commodities, FX, and corporate activity. We apply rigorous data science practices to deliver key KPIs daily that are focused, relevant, and ready to put into production.
We offer free trials. Our team is available to provide support for loading, validation, sample scripts, or other services you may need to generate insights from our data.
Investors, corporate researchers, and corporates can use our data to answer some key business questions such as: - How much are consumers spending with specific merchants/brands and how is that changing over time? - Is the share of consumer spend at a specific merchant increasing or decreasing? - How are consumers reacting to new products or services launched by merchants? - For loyal customers, how is the share of spend changing over time? - What is the company’s market share in a region for similar customers? - Is the company’s loyal user base increasing or decreasing? - Is the lifetime customer value increasing or decreasing?
Additional Use Cases: - Use spending data to analyze sales/revenue broadly (sector-wide) or granular (company-specific). Historically, our tracked consumer spend has correlated above 85% with company-reported data from thousands of firms. Users can sort and filter by many metrics and KPIs, such as sales and transaction growth rates and online or offline transactions, as well as view customer behavior within a geographic market at a state or city level. - Reveal cohort consumer behavior to decipher long-term behavioral consumer spending shifts. Measure market share, wallet share, loyalty, consumer lifetime value, retention, demographics, and more.) - Study the effects of inflation rates via such metrics as increased total spend, ticket size, and number of transactions. - Seek out alpha-generating signals or manage your business strategically with essential, aggregated transaction and spending data analytics.
Use Cases Categories (Our data provides an innumerable amount of use cases, and we look forward to working with new ones): 1. Market Research: Company Analysis, Company Valuation, Competitive Intelligence, Competitor Analysis, Competitor Analytics, Competitor Insights, Customer Data Enrichment, Customer Data Insights, Customer Data Intelligence, Demand Forecasting, Ecommerce Intelligence, Employee Pay Strategy, Employment Analytics, Job Income Analysis, Job Market Pricing, Marketing, Marketing Data Enrichment, Marketing Intelligence, Marketing Strategy, Payment History Analytics, Price Analysis, Pricing Analytics, Retail, Retail Analytics, Retail Intelligence, Retail POS Data Analysis, and Salary Benchmarking
Investment Research: Financial Services, Hedge Funds, Investing, Mergers & Acquisitions (M&A), Stock Picking, Venture Capital (VC)
Consumer Analysis: Consumer Data Enrichment, Consumer Intelligence
Market Data: AnalyticsB2C Data Enrichment, Bank Data Enrichment, Behavioral Analytics, Benchmarking, Customer Insights, Customer Intelligence, Data Enhancement, Data Enrichment, Data Intelligence, Data Modeling, Ecommerce Analysis, Ecommerce Data Enrichment, Economic Analysis, Financial Data Enrichment, Financial Intelligence, Local Economic Forecasting, Location-based Analytics, Market Analysis, Market Analytics, Market Intelligence, Market Potential Analysis, Market Research, Market Share Analysis, Sales, Sales Data Enrichment, Sales Enablement, Sales Insights, Sales Intelligence, Spending Analytics, Stock Market Predictions, and Trend Analysis
This statistic shows the importance of the use of real time customer analytics for customer experience in the United States as of March 2018. According to the source, ** percent of respondents stated that they thought the use of real time customer analytics was very important for improving customer experience at the time of the survey.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Washington township: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Washington township median household income by age. You can refer the same here
https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Life and Health (L&H) Insurance industry is experiencing a rapid transformation driven by the increasing adoption of data analytics. The market, valued at $2647.3 million in 2025, is projected to grow at a Compound Annual Growth Rate (CAGR) of 9.2% from 2025 to 2033. This robust growth is fueled by several key factors. Firstly, the need for improved risk assessment and underwriting is pushing insurers to leverage advanced analytics for predictive modeling. This allows for more accurate pricing, reduced fraud, and better customer segmentation. Secondly, demographic profiling enabled by data analytics helps insurers tailor products and services to specific customer needs, leading to increased customer satisfaction and retention. Data visualization tools further enhance decision-making by providing clear and concise insights into complex datasets, facilitating better strategy development and operational efficiency. Finally, the rise of Insurtech companies and the increasing availability of sophisticated software solutions are accelerating the adoption of data analytics across the L&H insurance sector. The competitive landscape is shaped by a mix of established players like Deloitte, SAP AG, and IBM, alongside specialized Insurtech firms offering innovative data analytics solutions. The segmentation of the market reveals significant opportunities across various applications and types. Predictive analysis, demographic profiling, and data visualization are the most prominent application segments, reflecting the industry's focus on risk management, customer understanding, and improved operational efficiency. The service and software segments represent the primary delivery models for data analytics solutions. While North America currently holds a dominant market share, regions like Asia-Pacific are experiencing rapid growth, driven by increasing digitalization and a rising middle class with growing insurance needs. Regulatory changes promoting data sharing and increased customer data privacy awareness are likely to influence market dynamics in the coming years. The key challenges include data security concerns, the need for skilled data scientists, and the integration of legacy systems with new data analytics platforms. Successfully navigating these challenges will be crucial for insurers to fully capitalize on the transformative potential of data analytics.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Winona: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Winona median household income by age. You can refer the same here
Official statistics are produced impartially and free from political influence.
https://www.marketresearchstore.com/privacy-statementhttps://www.marketresearchstore.com/privacy-statement
Global Fast-casual Dining Market size valued at US$ 26.96 Billion in 2023, set to reach US$ 45.94 Billion by 2032 at a CAGR of about 6.1% from 2024-2032.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Whitestown: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Whitestown median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Wingate: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wingate median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Weston: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Weston median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Warren County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Warren County median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Worth County: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Worth County median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in Wappinger town: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Wappinger town median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in West township: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2018-2022 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West township median household income by age. You can refer the same here
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset presents the the household distribution across 16 income brackets among four distinct age groups in West Long Branch: Under 25 years, 25-44 years, 45-64 years, and over 65 years. The dataset highlights the variation in household income, offering valuable insights into economic trends and disparities within different age categories, aiding in data analysis and decision-making..
Key observations
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2019-2023 5-Year Estimates.
Income brackets:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for West Long Branch median household income by age. You can refer the same here
A global database of Census Data that provides an understanding of population distribution at administrative and zip code levels over 55 years, past, present, and future.
Leverage up-to-date census data with population trends for real estate, market research, audience targeting, and sales territory mapping.
Self-hosted commercial demographic dataset curated based on trusted sources such as the United Nations or the European Commission, with a 99% match accuracy. The global Census Data is standardized, unified, and ready to use.
Use cases for the Global Census Database (Consumer Demographic Data)
Ad targeting
B2B Market Intelligence
Customer analytics
Real Estate Data Estimations
Marketing campaign analysis
Demand forecasting
Sales territory mapping
Retail site selection
Reporting
Audience targeting
Census data export methodology
Our consumer demographic data packages are offered in CSV format. All Demographic data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.
Product Features
Historical population data (55 years)
Changes in population density
Urbanization Patterns
Accurate at zip code and administrative level
Optimized for easy integration
Easy customization
Global coverage
Updated yearly
Standardized and reliable
Self-hosted delivery
Fully aggregated (ready to use)
Rich attributes
Why do companies choose our demographic databases
Standardized and unified demographic data structure
Seamless integration in your system
Dedicated location data expert
Note: Custom population data packages are available. Please submit a request via the above contact button for more details.