11 datasets found
  1. i

    Data from: Customer Churn Dataset

    • ieee-dataport.org
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Usman JOY (2024). Customer Churn Dataset [Dataset]. https://ieee-dataport.org/documents/customer-churn-dataset
    Explore at:
    Dataset updated
    Jun 4, 2024
    Authors
    Usman JOY
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    259

  2. Bank Customer Churn Dataset

    • kaggle.com
    Updated Jul 11, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhuvi Ranga (2023). Bank Customer Churn Dataset [Dataset]. https://www.kaggle.com/datasets/bhuviranga/customer-churn-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 11, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Bhuvi Ranga
    License

    http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/

    Description

    The customer churn dataset is a collection of customer data that focuses on predicting customer churn, which refers to the tendency of customers to stop using a company's products or services. The dataset contains various features that describe each customer, such as their credit score, country, gender, age, tenure, balance, number of products, credit card status, active membership, estimated salary, and churn status. The churn status indicates whether a customer has churned or not. The dataset is used to analyze and understand factors that contribute to customer churn and to build predictive models to identify customers at risk of churning. The goal is to develop strategies and interventions to reduce churn and improve customer retention

  3. E-commerce Customer Churn

    • kaggle.com
    Updated Aug 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Samuel Semaya (2024). E-commerce Customer Churn [Dataset]. https://www.kaggle.com/datasets/samuelsemaya/e-commerce-customer-churn
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 6, 2024
    Dataset provided by
    Kaggle
    Authors
    Samuel Semaya
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    E-commerce Customer Churn Dataset

    Context

    This dataset belongs to a leading online E-commerce company. The company wants to identify customers who are likely to churn, so they can proactively approach these customers with promotional offers.

    Content

    The dataset contains various features related to customer behavior and characteristics, which can be used to predict customer churn.

    Features

    1. Tenure: Tenure of a customer in the company (numeric)
    2. WarehouseToHome: Distance between the warehouse to the customer's home (numeric)
    3. NumberOfDeviceRegistered: Total number of devices registered to a particular customer (numeric)
    4. PreferedOrderCat: Preferred order category of a customer in the last month (categorical)
    5. SatisfactionScore: Satisfactory score of a customer on service (numeric)
    6. MaritalStatus: Marital status of a customer (categorical)
    7. NumberOfAddress: Total number of addresses added for a particular customer (numeric)
    8. Complaint: Whether any complaint has been raised in the last month (binary)
    9. DaySinceLastOrder: Days since last order by customer (numeric)
    10. CashbackAmount: Average cashback in last month (numeric)
    11. Churn: Churn flag (target variable, binary)

    Task

    The main task is to predict customer churn based on the given features. This is a binary classification problem where the target variable is 'Churn'.

    Potential Applications

    1. Customer Retention: Identify at-risk customers and take proactive measures to retain them.
    2. Targeted Marketing: Design specific marketing campaigns for customers likely to churn.
    3. Service Improvement: Analyze features contributing to churn and improve those aspects of the service.

    Acknowledgements

    This dataset is provided for educational purposes. While it represents a real-world scenario, the data itself may be simulated or anonymized.

  4. i

    WA_Fn-UseC_-Telco-Customer-Churn

    • ieee-dataport.org
    Updated Feb 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mengjing Hao (2024). WA_Fn-UseC_-Telco-Customer-Churn [Dataset]. https://ieee-dataport.org/documents/wafn-usec-telco-customer-churn
    Explore at:
    Dataset updated
    Feb 19, 2024
    Authors
    Mengjing Hao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Nowadays

  5. A

    ‘Customer Churn’ analyzed by Analyst-2

    • analyst-2.ai
    Updated Mar 5, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com) (2018). ‘Customer Churn’ analyzed by Analyst-2 [Dataset]. https://analyst-2.ai/analysis/kaggle-customer-churn-4f0b/a31eb722/?iid=005-077&v=presentation
    Explore at:
    Dataset updated
    Mar 5, 2018
    Dataset authored and provided by
    Analyst-2 (analyst-2.ai) / Inspirient GmbH (inspirient.com)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Analysis of ‘Customer Churn’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/hassanamin/customer-churn on 14 February 2022.

    --- Dataset description provided by original source is as follows ---

    Binary Customer Churn

    A marketing agency has many customers that use their service to produce ads for the client/customer websites. They've noticed that they have quite a bit of churn in clients. They basically randomly assign account managers right now, but want you to create a machine learning model that will help predict which customers will churn (stop buying their service) so that they can correctly assign the customers most at risk to churn an account manager. Luckily they have some historical data, can you help them out? Create a classification algorithm that will help classify whether or not a customer churned. Then the company can test this against incoming data for future customers to predict which customers will churn and assign them an account manager.

    Content

    The data is saved as customer_churn.csv. Here are the fields and their definitions:

    Name : Name of the latest contact at Company

    Age: Customer Age

    Total_Purchase: Total Ads Purchased

    Account_Manager: Binary 0=No manager, 1= Account manager assigned

    Years: Totaly Years as a customer

    Num_sites: Number of websites that use the service.

    Onboard_date: Date that the name of the latest contact was onboarded

    Location: Client HQ Address

    Company: Name of Client Company

    Once you've created the model and evaluated it, test out the model on some new data (you can think of this almost like a hold-out set) that your client has provided, saved under new_customers.csv. The client wants to know which customers are most likely to churn given this data (they don't have the label yet).

    Acknowledgements

    We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.

    Inspiration

    Your data will be in front of the world's largest data science community. What questions do you want to see answered?

    --- Original source retains full ownership of the source dataset ---

  6. t

    Telco_Customer_churn_Data

    • test.researchdata.tuwien.at
    bin, csv, png
    Updated Apr 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Erum Naz; Erum Naz; Erum Naz; Erum Naz (2025). Telco_Customer_churn_Data [Dataset]. http://doi.org/10.82556/b0ch-cn44
    Explore at:
    png, csv, binAvailable download formats
    Dataset updated
    Apr 28, 2025
    Dataset provided by
    TU Wien
    Authors
    Erum Naz; Erum Naz; Erum Naz; Erum Naz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Apr 28, 2025
    Description

    Context and Methodology

    The dataset originates from the research domain of Customer Churn Prediction in the Telecom Industry. It was created as part of the project "Data-Driven Churn Prediction: ML Solutions for the Telecom Industry," completed within the Data Stewardship course (Master programme Data Science, TU Wien).

    The primary purpose of this dataset is to support machine learning model development for predicting customer churn based on customer demographics, service usage, and account information.
    The dataset enables the training, testing, and evaluation of classification algorithms, allowing researchers and practitioners to explore techniques for customer retention optimization.

    The dataset was originally obtained from the IBM Accelerator Catalog and adapted for academic use. It was uploaded to TU Wien’s DBRepo test system and accessed via SQLAlchemy connections to the MariaDB environment.

    Technical Details

    The dataset has a tabular structure and was initially stored in CSV format. It contains:

    • Rows: 7,043 customer records

    • Columns: 21 features including customer attributes (gender, senior citizen status, partner status), account information (tenure, contract type, payment method), service usage (internet service, streaming TV, tech support), and the target variable (Churn: Yes/No).

    Naming Convention:

    • The table in the database is named telco_customer_churn_data.

    Software Requirements:

    • To open and work with the dataset, any standard database client or programming language supporting MariaDB connections can be used (e.g., Python etc).

    • For machine learning applications, libraries such as pandas, scikit-learn, and joblib are typically used.

    Additional Resources:

    Further Details

    When reusing the dataset, users should be aware:

    • Licensing: The dataset is shared under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.

    • Use Case Suitability: The dataset is best suited for classification tasks, particularly binary classification (churn vs. no churn).

    • Metadata Standards: Metadata describing the dataset adheres to FAIR principles and is supplemented by CodeMeta and Croissant standards for improved interoperability.

  7. Expresso Churn Prediction Challenge

    • kaggle.com
    Updated Aug 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hamza (2021). Expresso Churn Prediction Challenge [Dataset]. https://www.kaggle.com/hamzaghanmi/expresso-churn-prediction-challenge/tasks
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 30, 2021
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Hamza
    Description

    Context

    This data was imported from the zindi platform in the context of competition and here is the link to the competition The objective of the competition is to develop a predictive model that determines the likelihood for a customer to churn - to stop purchasing airtime and data from Expresso.

    Content

    The data describes 2.5 million Expresso clients. * Train.csv - contains information about 2 million customers. There is a column called CHURN that indicates if a client churned or did not churn. This is the target. You must estimate the likelihood that these clients churned. You will use this file to train your model. * Test.csv - is similar to train, but without the Churn column. You will use this file to test your model on. * SampleSubmission.csv - is an example of what your submission should look like. The order of the rows does not matter but the name of the user_id must be correct.

  8. Club Data Set

    • kaggle.com
    Updated Mar 4, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    so NaN (2020). Club Data Set [Dataset]. https://www.kaggle.com/sonannguyenngoc/club-data-set/metadata
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 4, 2020
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    so NaN
    Description

    Context

    A certain premium club boasts a large customer membership. The members pay an annual membership fee in return for using the exclusive facilities offered by this club. The fees are customized for every member's personal package. In the last few years, however, the club has been facing an issue with a lot of members cancelling their memberships. The club management plans to address this issue by proactively addressing customer grievances. They, however, do not have enough bandwidth to reach out to the entire customer base individually and are looking to see whether a statistical approach can help them identify customers at risk. Can you help them ? Relevant historical data is provided in the “club_churn_train.csv”

    Acknowledgements

    Club Data Set

    Inspiration

    Club Data Set

  9. h

    cofinfad

    • huggingface.co
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Luis David Trejos Rojas, cofinfad [Dataset]. http://doi.org/10.57967/hf/2942
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Authors
    Luis David Trejos Rojas
    License

    https://choosealicense.com/licenses/odc-by/https://choosealicense.com/licenses/odc-by/

    Description

    COFINFAD: Colombian Fintech Financial Analytics Dataset

    COFINFAD (Colombian Fintech Financial Analytics Dataset) is a dataset containing almost 12 months of transactional and demographic data from an anonymous Colombian fintech company. This dataset is designed to facilitate research in customer behavior analysis, churn prediction, and financial pattern recognition in the Latin American fintech sector.

      Files
    

    customer_data.csv: Contains demographic, behavioral… See the full description on the dataset page: https://huggingface.co/datasets/luisdavidtrejosrojas/cofinfad.

  10. BCG Data Science Simulation

    • kaggle.com
    Updated Feb 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    PAVITR KUMAR SWAIN (2025). BCG Data Science Simulation [Dataset]. https://www.kaggle.com/datasets/pavitrkumar/bcg-data-science-simulation
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 12, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    PAVITR KUMAR SWAIN
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description
    ** Feature Engineering for Churn Prediction**

    🚀**# BCG Data Science Job Simulation | Forage** This notebook focuses on feature engineering techniques to enhance a dataset for churn prediction modeling. As part of the BCG Data Science Job Simulation, I transformed raw customer data into valuable features to improve predictive performance.

    📊 What’s Inside? ✅ Data Cleaning: Removing irrelevant columns to reduce noise ✅ Date-Based Feature Extraction: Converting raw dates into useful insights like activation year, contract length, and renewal month ✅ New Predictive Features:

    consumption_trend → Measures if a customer’s last-month usage is increasing or decreasing total_gas_and_elec → Aggregates total energy consumption ✅ Final Processed Dataset: Ready for churn prediction modeling

    📂Dataset Used: 📌 clean_data_after_eda.csv → Original dataset after Exploratory Data Analysis (EDA) 📌 clean_data_with_new_features.csv → Final dataset after feature engineering

    🛠 Technologies Used: 🔹 Python (Pandas, NumPy) 🔹 Data Preprocessing & Feature Engineering

    🌟 Why Feature Engineering? Feature engineering is one of the most critical steps in machine learning. Well-engineered features improve model accuracy and uncover deeper insights into customer behavior.

    🚀 This notebook is a great reference for anyone learning data preprocessing, feature selection, and predictive modeling in Data Science!

    📩 Connect with Me: 🔗 GitHub Repo: https://github.com/Pavitr-Swain/BCG-Data-Science-Job-Simulation 💼 LinkedIn: https://www.linkedin.com/in/pavitr-kumar-swain-ab708b227/

    🔍 Let’s explore churn prediction insights together! 🎯

  11. Airline Loyalty Program (Canada)

    • kaggle.com
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Siddharth Vora (2025). Airline Loyalty Program (Canada) [Dataset]. https://www.kaggle.com/datasets/siddharth0935/airline-loyalty-program
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 28, 2025
    Dataset provided by
    Kaggle
    Authors
    Siddharth Vora
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    Canada
    Description

    Airline Loyalty Program Promotion Dataset

    This dataset contains information about customer activity and demographics related to an airline's loyalty program, including a promotional campaign aimed at enhancing program enrollment.

    Files

    1. Customer Flight Activity.csv

    FieldDescription
    Loyalty NumberCustomer's unique loyalty number
    YearYear of the period
    MonthMonth of the period
    Flights BookedNumber of flights booked for member only in the period
    Flights with CompanionsNumber of flights booked with additional passengers in the period
    Total FlightsSum of Flights Booked and Flights with Companions
    DistanceFlight distance traveled in the period (km)
    Points AccumulatedLoyalty points accumulated in the period
    Points RedeemedLoyalty points redeemed in the period
    Dollar Cost Points RedeemedDollar equivalent for points redeemed in the period in CDN

    2. Customer Loyalty History.csv

    FieldDescription
    Loyalty NumberCustomer's unique loyalty number
    CountryCountry of residence
    ProvinceProvince of residence
    CityCity of residence
    Postal CodePostal code of residence
    GenderGender
    EducationHighest education level (High school or lower > College > Bachelor > Master > Doctor)
    SalaryAnnual income
    Marital StatusMarital status (Single, Married, Divorced)
    Loyalty CardLoyalty card status (Star > Nova > Aurora)
    CLVCustomer lifetime value - total invoice value for all flights ever booked by member
    Enrollment TypeEnrollment type (Standard / 2018 Promotion)
    Enrollment YearYear Member enrolled in membership program
    Enrollment MonthMonth Member enrolled in membership program
    Cancellation YearYear Member cancelled their membership
    Cancellation MonthMonth Member cancelled their membership

    Context

    The airline implemented a promotional campaign (2018 Promotion) aimed at enhancing program enrollment. The dataset encompasses information regarding: - Customer flight activity and loyalty points - Program signups and enrollment details - Cancellations within the loyalty program - Comprehensive customer demographics

    Potential Use Cases

    • Analyze the effectiveness of the promotional campaign
    • Predict customer churn/cancellations
    • Identify high-value customer segments
    • Understand factors influencing loyalty program engagement
    • Optimize loyalty point redemption strategies
  12. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Usman JOY (2024). Customer Churn Dataset [Dataset]. https://ieee-dataport.org/documents/customer-churn-dataset

Data from: Customer Churn Dataset

Related Article
Explore at:
Dataset updated
Jun 4, 2024
Authors
Usman JOY
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

259

Search
Clear search
Close search
Google apps
Main menu