http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The customer churn dataset is a collection of customer data that focuses on predicting customer churn, which refers to the tendency of customers to stop using a company's products or services. The dataset contains various features that describe each customer, such as their credit score, country, gender, age, tenure, balance, number of products, credit card status, active membership, estimated salary, and churn status. The churn status indicates whether a customer has churned or not. The dataset is used to analyze and understand factors that contribute to customer churn and to build predictive models to identify customers at risk of churning. The goal is to develop strategies and interventions to reduce churn and improve customer retention
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
259
https://www.marketresearchintellect.com/privacy-policyhttps://www.marketresearchintellect.com/privacy-policy
Dive into Market Research Intellect's Customer Churn Analysis Software Market Report, valued at USD 2.1 billion in 2024, and forecast to reach USD 4.8 billion by 2033, growing at a CAGR of 10.2% from 2026 to 2033.
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Customer Churn Dataset is a dataset that collects various customer characteristics and service usage information to predict whether or not communication service customers will turn.
2) Data Utilization (1) Customer Churn Dataset has characteristics that: • The dataset consists of several categorical and numerical variables, including customer demographics, service types, contract information, charges, usage patterns, and Turn. (2) Customer Churn Dataset can be used to: • Development of customer churn prediction model : Machine learning and deep learning techniques can be used to develop classification models that predict churn based on customer characteristics and service use data. • Segmenting customers and developing marketing strategies : It can be used to analyze customer groups at high risk of departure and to design custom retention strategies or targeted marketing campaigns.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F8d3442e6c82d8026c6a448e4780ab38c%2FPicture2.png?generation=1688638685268853&alt=media" alt="">
9. Plot the decision tree
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F9ab0591e323dc30fe116c79f6d014d06%2FPicture3.png?generation=1688638747644320&alt=media" alt="">
Average customer churn is 27%. The churn can take place if the tenure is more than >=7.5 and there is no internet service
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F16080ac04d3743ec238227e1ef2c8269%2FPicture4.png?generation=1688639197455166&alt=media" alt="">
Significant variables are Internet Service, Tenure and the least significant are Streaming Movies, Tech Support.
Run library(randomForest). Here we are using the default ntree (500) and mtry (p/3) where p is the number of
independent variables.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc27fe7e83f0b53b7e067371b69c7f4a7%2FPicture6.png?generation=1688640478682685&alt=media" alt="">
Through confusion matrix, accuracy is coming 79.27%. The accuracy is marginally higher than that of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and much higher when predicting "Yes".
Plot the model showing which variables reduce the gini impunity the most and least. Total charges and tenure reduce the gini impunity the most while phone service has the least impact.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fec25fc3ba74ab9cef1a81188209512b1%2FPicture7.png?generation=1688640726235724&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F50aa40e5dd676c8285020fd2fe627bf1%2FPicture8.png?generation=1688640896763066&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F87211e1b218c595911fbe6ea2806e27a%2FPicture9.png?generation=1688641103367564&alt=media" alt="">
Tune the model mtry=2 has the lowest OOB error rate
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F6057af5bb0719b16f1a97a58c3d4aa1d%2FPicture10.png?generation=1688641391027971&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2Fc7045eba4ee298c58f1bd0230c24c00d%2FPicture11.png?generation=1688641605829830&alt=media" alt="">
Use random forest with mtry = 2 and ntree = 200
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F10868729%2F01541eff1f9c6303591aa50dd707b5f5%2FPicture12.png?generation=1688641634979403&alt=media" alt="">
Through confusion matrix, accuracy is coming 79.71%. The accuracy is marginally higher than that of default (when ntree was 500 and mtry was 4) i.e 79.27% and of decision tree i.e 79.00%. The error rate is pretty low when predicting "No" and m...
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This Synthetic Customer Churn Prediction Dataset has been designed as an educational resource for exploring data science, machine learning, and predictive modelling techniques in a customer retention context. The dataset simulates key attributes relevant to customer churn analysis, such as service usage, contract details, and customer demographics. It allows users to practice data manipulation, visualization, and the development of models to predict churn behaviour in industries like telecommunications, subscription services, or utilities.
https://storage.googleapis.com/opendatabay_public/images/churn_c4aae9d4-3939-4866-a249-35d81c5965dc.png" alt="Synthetic Customer Churn Prediction Dataset Distribution">
This dataset is useful for a variety of applications, including:
This dataset is synthetic and anonymized, making it a safe tool for experimentation and learning without compromising real patient privacy.
CCO (Public Domain)
https://cubig.ai/store/terms-of-servicehttps://cubig.ai/store/terms-of-service
1) Data Introduction • The Telco Customer Churn Dataset includes carrier customer service usage, account information, demographics and churn, which can be used to predict and analyze customer churn.
2) Data Utilization (1) Telco Customer Churn Dataset has characteristics that: • This dataset includes a variety of customer and service characteristics, including gender, age group, partner and dependents, service subscription status (telephone, Internet, security, backup, device protection, technical support, streaming, etc.), contract type, payment method, monthly fee, total fee, and departure. (2) Telco Customer Churn Dataset can be used to: • Development of customer churn prediction model: Using customer service usage patterns and account information, we can build a machine learning-based churn prediction model to proactively identify customers at risk of churn.
This dataset was created by T S S ABHI RAM KOTIPALLI
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of the proposed algorithms with other ensemble models.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In recent years, with the continuous improvement of the financial system and the rapid development of the banking industry, the competition of the banking industry itself has intensified. At the same time, with the rapid development of information technology and Internet technology, customers’ choice of financial products is becoming more and more diversified, and customers’ dependence and loyalty to banking institutions is becoming less and less, and the problem of customer churn in commercial banks is becoming more and more prominent. How to predict customer behavior and retain existing customers has become a major challenge for banks to solve. Therefore, this study takes a bank’s business data on Kaggle platform as the research object, uses multiple sampling methods to compare the data for balancing, constructs a bank customer churn prediction model for churn identification by GA-XGBoost, and conducts interpretability analysis on the GA-XGBoost model to provide decision support and suggestions for the banking industry to prevent customer churn. The results show that: (1) The applied SMOTEENN is more effective than SMOTE and ADASYN in dealing with the imbalance of banking data. (2) The F1 and AUC values of the model improved and optimized by XGBoost using genetic algorithm can reach 90% and 99%, respectively, which are optimal compared to other six machine learning models. The GA-XGBoost classifier was identified as the best solution for the customer churn problem. (3) Using Shapley values, we explain how each feature affects the model results, and analyze the features that have a high impact on the model prediction, such as the total number of transactions in the past year, the amount of transactions in the past year, the number of products owned by customers, and the total sales balance. The contribution of this paper is mainly in two aspects: (1) this study can provide useful information from the black box model based on the accurate identification of churned customers, which can provide reference for commercial banks to improve their service quality and retain customers; (2) it can provide reference for customer churn early warning models of other related industries, which can help the banking industry to maintain customer stability, maintain market position and reduce corporate losses.
This dataset was created by Vamshi
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Customer churn prediction is vital for organizations to mitigate costs and foster growth. Ensemble learning models are commonly used for churn prediction. Diversity and prediction performance are two essential principles for constructing ensemble classifiers. Therefore, developing accurate ensemble learning models consisting of diverse base classifiers is a considerable challenge in this area. In this study, we propose two multi-objective evolutionary ensemble learning models based on clustering (MOEECs), which are include a novel diversity measure. Also, to overcome the data imbalance problem, another objective function is presented in the second model to evaluate ensemble performance. The proposed models in this paper are evaluated with a dataset collected from a mobile operator database. Our first model, MOEEC-1, achieves an accuracy of 97.30% and an AUC of 93.76%, outperforming classical classifiers and other ensemble models. Similarly, MOEEC-2 attains an accuracy of 96.35% and an AUC of 94.89%, showcasing its effectiveness in churn prediction. Furthermore, comparison with previous churn models reveals that MOEEC-1 and MOEEC-2 exhibit superior performance in accuracy, precision, and F-score. Overall, our proposed MOEECs demonstrate significant advancements in churn prediction accuracy and outperform existing models in terms of key performance metrics. These findings underscore the efficacy of our approach in addressing the challenges of customer churn prediction and its potential for practical application in organizational decision-making.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
If you found the dataset useful, your upvote will help others discover it. Thanks for your support!
This dataset simulates customer behavior for a fictional telecommunications company. It contains demographic information, account details, services subscribed to, and whether the customer ultimately churned (stopped using the service) or not. The data is synthetically generated but designed to reflect realistic patterns often found in telecom churn scenarios.
Purpose:
The primary goal of this dataset is to provide a clean and straightforward resource for beginners learning about:
Features:
The dataset includes the following columns:
CustomerID
: Unique identifier for each customer.Age
: Customer's age in years.Gender
: Customer's gender (Male/Female).Location
: General location of the customer (e.g., New York, Los Angeles).SubscriptionDurationMonths
: How many months the customer has been subscribed.MonthlyCharges
: The amount the customer is charged each month.TotalCharges
: The total amount the customer has been charged over their subscription period.ContractType
: The type of contract the customer has (Month-to-month, One year, Two year).PaymentMethod
: How the customer pays their bill (e.g., Electronic check, Credit card).OnlineSecurity
: Whether the customer has online security service (Yes, No, No internet service).TechSupport
: Whether the customer has tech support service (Yes, No, No internet service).StreamingTV
: Whether the customer has TV streaming service (Yes, No, No internet service).StreamingMovies
: Whether the customer has movie streaming service (Yes, No, No internet service).Churn
: (Target Variable) Whether the customer churned (1 = Yes, 0 = No).Data Quality:
This dataset is intentionally clean with no missing values, making it easy for beginners to focus on analysis and modeling concepts without complex data cleaning steps.
Inspiration:
Understanding customer churn is crucial for many businesses. This dataset provides a sandbox environment to practice the fundamental techniques used in churn analysis and prediction.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Customer Churn’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/hassanamin/customer-churn on 14 February 2022.
--- Dataset description provided by original source is as follows ---
A marketing agency has many customers that use their service to produce ads for the client/customer websites. They've noticed that they have quite a bit of churn in clients. They basically randomly assign account managers right now, but want you to create a machine learning model that will help predict which customers will churn (stop buying their service) so that they can correctly assign the customers most at risk to churn an account manager. Luckily they have some historical data, can you help them out? Create a classification algorithm that will help classify whether or not a customer churned. Then the company can test this against incoming data for future customers to predict which customers will churn and assign them an account manager.
The data is saved as customer_churn.csv. Here are the fields and their definitions:
Name : Name of the latest contact at Company
Age: Customer Age
Total_Purchase: Total Ads Purchased
Account_Manager: Binary 0=No manager, 1= Account manager assigned
Years: Totaly Years as a customer
Num_sites: Number of websites that use the service.
Onboard_date: Date that the name of the latest contact was onboarded
Location: Client HQ Address
Company: Name of Client Company
Once you've created the model and evaluated it, test out the model on some new data (you can think of this almost like a hold-out set) that your client has provided, saved under new_customers.csv. The client wants to know which customers are most likely to churn given this data (they don't have the label yet).
We wouldn't be here without the help of others. If you owe any attributions or thanks, include them here along with any citations of past research.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset originates from the research domain of Customer Churn Prediction in the Telecom Industry. It was created as part of the project "Data-Driven Churn Prediction: ML Solutions for the Telecom Industry," completed within the Data Stewardship course (Master programme Data Science, TU Wien).
The primary purpose of this dataset is to support machine learning model development for predicting customer churn based on customer demographics, service usage, and account information.
The dataset enables the training, testing, and evaluation of classification algorithms, allowing researchers and practitioners to explore techniques for customer retention optimization.
The dataset was originally obtained from the IBM Accelerator Catalog and adapted for academic use. It was uploaded to TU Wien’s DBRepo test system and accessed via SQLAlchemy connections to the MariaDB environment.
The dataset has a tabular structure and was initially stored in CSV format. It contains:
Rows: 7,043 customer records
Columns: 21 features including customer attributes (gender, senior citizen status, partner status), account information (tenure, contract type, payment method), service usage (internet service, streaming TV, tech support), and the target variable (Churn: Yes/No).
Naming Convention:
The table in the database is named telco_customer_churn_data
.
Software Requirements:
To open and work with the dataset, any standard database client or programming language supporting MariaDB connections can be used (e.g., Python etc).
For machine learning applications, libraries such as pandas
, scikit-learn
, and joblib
are typically used.
Additional Resources:
Source code for data loading, preprocessing, model training, and evaluation is available at the associated GitHub repository: https://github.com/nazerum/fair-ml-customer-churn
When reusing the dataset, users should be aware:
Licensing: The dataset is shared under the Creative Commons Attribution 4.0 International (CC BY 4.0) license.
Use Case Suitability: The dataset is best suited for classification tasks, particularly binary classification (churn vs. no churn).
Metadata Standards: Metadata describing the dataset adheres to FAIR principles and is supplemented by CodeMeta and Croissant standards for improved interoperability.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Explore the 'Bank Churn (test)' dataset, a comprehensive collection designed for evaluating predictive models and analyzing customer attrition in the banking sector. This test dataset, derived from real-world scenarios, offers a robust platform to assess the effectiveness of machine learning algorithms in predicting and understanding bank churn dynamics.
https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Customer Churn Analysis Software Market size was valued at USD 1.9 Billion in 2024 and is projected to reach USD 8.4 Billion by 2032, growing at a CAGR of 19.80% during the forecast period 2026-2032.Global Customer Churn Analysis Software Market DriversThe market drivers for the Customer Churn Analysis Software Market can be influenced by various factors. These may include:Customer Retention Methods: As obtaining new consumers is becoming more expensive, greater emphasis is placed on retaining existing ones. Churn analysis software is used to forecast and reduce turnover, resulting in increased customer lifetime value.An Increase in the Usage of Predictive Analytics and AI Technologies: To examine big data sets, churn prediction technologies now incorporate artificial intelligence and machine learning. Their application is allowing for more accurate churn forecasting and targeted actions.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘JB Link Telco Customer Churn’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/johnflag/jb-link-telco-customer-churn on 28 January 2022.
--- Dataset description provided by original source is as follows ---
This is a customized version of the widely known IBM Telco Customer Churn dataset. I've added a few more columns and modified others in order to make it a little more realistic.
My customizations are based on the following version: Telco customer churn (11.1.3+)
Below you may find a fictional business problem I created. You may use it in order to start developing something around this dataset.
JB Link is a small size telecom company located in the state of California that provides Phone and Internet services to customers on more than a 1,000 cities and 1,600 zip codes.
The company is in the market for just 6 years and has quickly grown by investing on infrastructure to bring internet and phone networks to regions that had poor or no coverage.
The company also has a very skilled sales team that is always performing well on attracting new customers. The number of new customers acquired in the past quarter represent 15% over the total.
However, by the end of this same period, only 43% of this customers stayed with the company and most of them decided on not renewing their contracts after a few months, meaning the customer churn rate is very high and the company is now facing a big challenge on retaining its customers.
The total customer churn rate last quarter was around 27%, resulting in a decrease of almost 12% in the total number of customers.
The executive leadership of JB Link is aware that some competitors are investing on new technologies and on the expansion of their network coverage and they believe this is one of the main drivers of the high customer churn rate.
Therefore, as an action plan, they have decided to created a task force inside the company that will be responsible to work on a customer retention strategy.
The task force will involve members from different areas of the company, including Sales, Finance, Marketing, Customer Service, Tech Support and a recent formed Data Science team.
The data science team will play a key role on this process and was assigned some very important tasks that will support on the decisions and actions the other teams will be taking : - Gather insights from the data to understand what is driving the high customer churn rate. - Develop a Machine Learning model that can accurately predict the customers that are more likely to churn. - Prescribe customized actions that could be taken in order to retain each of those customers.
The Data Science team was given a dataset with a random sample of 7,043 customers that can help on achieving this task.
The executives are aware that the cost of acquiring a new customer can be up to five times higher than the cost of retaining a customer, so they are expecting that the results of this project will save a lot of money to the company and make it start growing again.
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analyzing customers’ characteristics and giving the early warning of customer churn based on machine learning algorithms, can help enterprises provide targeted marketing strategies and personalized services, and save a lot of operating costs. Data cleaning, oversampling, data standardization and other preprocessing operations are done on 900,000 telecom customer personal characteristics and historical behavior data set based on Python language. Appropriate model parameters were selected to build BPNN (Back Propagation Neural Network). Random Forest (RF) and Adaboost, the two classic ensemble learning models were introduced, and the Adaboost dual-ensemble learning model with RF as the base learner was put forward. The four models and the other four classical machine learning models-decision tree, naive Bayes, K-Nearest Neighbor (KNN), Support Vector Machine (SVM) were utilized respectively to analyze the customer churn data. The results show that the four models have better performance in terms of recall rate, precision rate, F1 score and other indicators, and the RF-Adaboost dual-ensemble model has the best performance. Among them, the recall rates of BPNN, RF, Adaboost and RF-Adaboost dual-ensemble model on positive samples are respectively 79%, 90%, 89%,93%, the precision rates are 97%, 99%, 98%, 99%, and the F1 scores are 87%, 95%, 94%, 96%. The RF-Adaboost dual-ensemble model has the best performance, and the three indicators are 10%, 1%, and 6% higher than the reference. The prediction results of customer churn provide strong data support for telecom companies to adopt appropriate retention strategies for pre-churn customers and reduce customer churn.
This dataset was created by Md Maaz
Released under Other (specified in description)
http://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The customer churn dataset is a collection of customer data that focuses on predicting customer churn, which refers to the tendency of customers to stop using a company's products or services. The dataset contains various features that describe each customer, such as their credit score, country, gender, age, tenure, balance, number of products, credit card status, active membership, estimated salary, and churn status. The churn status indicates whether a customer has churned or not. The dataset is used to analyze and understand factors that contribute to customer churn and to build predictive models to identify customers at risk of churning. The goal is to develop strategies and interventions to reduce churn and improve customer retention