100+ datasets found
  1. d

    Factori USA People Data | socio-demographic, location, interest and intent...

    • datarade.ai
    .json, .csv
    Updated Jul 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori (2022). Factori USA People Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori
    Explore at:
    .json, .csvAvailable download formats
    Dataset updated
    Jul 23, 2022
    Dataset authored and provided by
    Factori
    Area covered
    United States of America
    Description

    Our People data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

    Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

    1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
    2. Demographics - Gender, Age Group, Marital Status, Language etc.
    3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
    4. Persona - Consumer type, Communication preferences, Family type, etc
    5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
    6. Household - Number of Children, Number of Adults, IP Address, etc.
    7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
    8. Firmographics - Industry, Company, Occupation, Revenue, etc
    9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
    10. Auto - Car Make, Model, Type, Year, etc.
    11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

    People Data Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

    People Data Use Cases:

    360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation.

    Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

    Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

    Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

    Using Factori People Data you can solve use cases like:

    Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

    Lookalike Modeling

    Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

    And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

    Here's the schema of People Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
    credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
    mortgage_loan2_type mortgage_lender_code
    mortgage_loan2_render_code
    mortgage_lender mortgage_loan2_lender
    mortgage_loan2_ratetype mortgage_rate
    mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
    office_census_block_group
    office_census_tract office_county_code
    company_phone
    company_credit_score
    company_csa_code
    company_dpbc
    company_franchiseflag
    company_facebookurl company_linkedinurl company_twitterurl
    company_website company_fortune_rank
    company_government_type company_headquarters_branch company_home_business
    company_industry
    company_num_pcs_used
    company_num_employees
    company_firm_individual company_msa company_msa_name
    company_naics_code
    company_naics_description
    company_naics_code2 company_naics_description2
    company_sic_code2
    company_sic_code2_description
    company_sic...

  2. Jimrealtex customer dataset

    • kaggle.com
    zip
    Updated Nov 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    JIMOH YEKINI (2025). Jimrealtex customer dataset [Dataset]. https://www.kaggle.com/datasets/jimohyekini/jimrealtex-customer-dataset
    Explore at:
    zip(1591 bytes)Available download formats
    Dataset updated
    Nov 22, 2025
    Authors
    JIMOH YEKINI
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset Description: Jimrealtex Customer Dataset

    This dataset contains customer demographic and behavioral information designed for exploring segmentation, clustering, and predictive analytics in retail and marketing contexts. It provides a simple yet powerful foundation for practicing data science techniques such as K-Means clustering, customer profiling, and recommendation systems.

    ### Dataset Features - CustomerID: Unique identifier for each customer
    - Genre: Gender of the customer (Male/Female)
    - Age: Age of the customer (years)
    - Annual Income (k$): Annual income in thousands of dollars
    - Spending Score: A score assigned by the business based on customer behavior and spending patterns

    Notes - Some records contain missing values (nan) in Age, Annual Income, or Spending Score. These can be handled using imputation, removal, or advanced techniques depending on the analysis.
    - Spending Score is an arbitrary metric often used in clustering exercises to simulate customer engagement.

    ### Potential Use Cases - Customer Segmentation: Apply clustering algorithms (e.g., K-Means, DBSCAN) to group customers by income and spending habits.
    - Marketing Strategy: Identify high-value customers and tailor promotions.
    - Predictive Modeling: Build models to predict spending behavior based on demographics.
    - Data Cleaning Practice: Handle missing values and prepare the dataset for machine learning tasks.

    ** Why This Dataset?**

    This dataset is widely used in machine learning tutorials and business analytics projects because it is small, interpretable, and directly applicable to real-world scenarios like retail customer analysis. It’s ideal for beginners learning clustering and for professionals prototyping segmentation strategies.

  3. Customer_Financial_Data

    • kaggle.com
    zip
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prashob Narendran (2025). Customer_Financial_Data [Dataset]. https://www.kaggle.com/datasets/prashobnarendran/customer-financial-data
    Explore at:
    zip(62099 bytes)Available download formats
    Dataset updated
    Nov 12, 2025
    Authors
    Prashob Narendran
    Description

    Context This dataset contains detailed, anonymized information about a bank's customers. It includes demographic data such as age, income, and family size, as well as financial information like mortgage value, credit card ownership, and average spending habits. The data is well-suited for a variety of machine learning tasks, particularly in the domain of financial services and marketing.

    Content The dataset consists of 5000 customer records with 14 attributes:

    • Customer_ID: A unique identifier for each customer.
    • Age: The customer's age in completed years.
    • Years_Experience: Years of professional experience.
    • Annual_Income: Annual income of the customer (in thousands of dollars).
    • ZIP_Code: The customer's home address ZIP code.
    • Family_size: The number of individuals in the customer's family.
    • Avg_Spending: Average monthly spending on credit cards (in thousands of dollars).
    • Education_Level: A categorical variable for education level (1: Undergraduate, 2: Graduate, 3: Advanced/Professional).
    • Mortgage: The value of the customer's house mortgage if any (in thousands of dollars).
    • Has_Consumer_Loan: Binary variable indicating if the customer accepted a personal loan in the last campaign (1: Yes, 0: No). This is a potential target variable.
    • Has_Securities_Account: Binary variable indicating if the customer has a securities account with the bank.
    • Has_CD_Account: Binary variable indicating if the customer has a certificate of deposit (CD) account with the bank.
    • Uses_Online_Banking: Binary variable indicating if the customer uses online banking services.
    • Has_CreditCard: Binary variable indicating if the customer uses a credit card issued by this bank.

    Data Quality Note Some rows contain negative values for the Years_Experience column. This is a data quality issue that may require preprocessing (e.g., imputation by taking the absolute value or using the average of similar age groups).

    Potential Use Cases This dataset is excellent for both educational and practical purposes. You can use it to:

    1. Predict Loan Acceptance: Build a classification model to predict which customers are most likely to accept a personal loan (Has_Consumer_Loan).
    2. Customer Segmentation: Use clustering algorithms (like K-Means) to identify distinct customer segments for targeted marketing campaigns.
    3. Credit Card Adoption: Analyze the factors that influence a customer's decision to get a bank-issued credit card.
    4. Exploratory Data Analysis (EDA): Practice your data analysis and visualization skills to uncover insights about customer behavior.
  4. d

    Demographic Profile of Family PACT Clients Served by Fiscal Year

    • catalog.data.gov
    • data.chhs.ca.gov
    • +3more
    Updated Nov 23, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Health Care Services (2025). Demographic Profile of Family PACT Clients Served by Fiscal Year [Dataset]. https://catalog.data.gov/dataset/demographic-profile-of-family-pact-clients-served-by-fiscal-year-de0fb
    Explore at:
    Dataset updated
    Nov 23, 2025
    Dataset provided by
    California Department of Health Care Services
    Description

    This data file includes demographics of clients served by the Family Planning, Access, Care, and Treatment (Family PACT) Program from July 1, 2003, through the current FY of available data. Parity is defined as the number of live births reported at the time of enrollment or recertification for the Family PACT Program. Clients are recertified annually and are considered served only if they had a paid claim. Age, race/ethnicity, language, and parity variables were self-reported by clients at time of enrollment and recertification. Reimbursement amounts are rounded to the nearest million.

  5. U.S. leading social media platform users 2024, by age group

    • statista.com
    Updated Nov 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. leading social media platform users 2024, by age group [Dataset]. https://www.statista.com/statistics/1337525/us-distribution-leading-social-media-platforms-by-age-group/
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jan 4, 2024 - Dec 12, 2024
    Area covered
    United States
    Description

    As of January 2025, ** percent of social media users in the United States aged 40 to 49 years were users of Facebook, as were ** percent of ** to ** year olds in the country. Overall, ** percent of those aged 18 to 29 years were using Instagram in the U.S. The social media market in the United States The number of social media users in the United States has shown continuous growth in the past years, and it is forecast to continue increasing to reach *** million users in 2029. As of 2023, the social network user penetration in the United States amounted to an impressive ***** percent, meaning that more than nine in ten people in the country engaged with online platforms. Furthermore, Facebook was by far the most popular social media platform in the United States, accounting for ** percent of all social media visits in 2023, followed by Pinterest with **** percent of visits. The global social media landscape As of April 2024, **** billion people were social media users, accounting for **** percent of the world’s population. Northern Europe was the region with the highest social media penetration rate with a reach of **** percent, followed by Western Europe with **** percent and Eastern Asia **** percent. In contrast, less than one in ten people in Middle Africa used social networks. Facebook’s popularity is not limited to the United States: this network leads the market on a global scale, and it accumulated more than three billion monthly active users (MAU) as of 2024, which is far more any other social media platform. YouTube, Instagram, and WhatsApp followed, all with *** billion or more MAU.

  6. Vintage 2018 Population Estimates: Demographic Characteristics Estimates by...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jul 19, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Census Bureau (2023). Vintage 2018 Population Estimates: Demographic Characteristics Estimates by Age Groups [Dataset]. https://catalog.data.gov/dataset/vintage-2018-population-estimates-demographic-characteristics-estimates-by-age-groups
    Explore at:
    Dataset updated
    Jul 19, 2023
    Dataset provided by
    United States Census Bureauhttp://census.gov/
    Description

    Annual Resident Population Estimates by Age Group, Sex, Race, and Hispanic Origin: April 1, 2010 to July 1, 2018 // Source: U.S. Census Bureau, Population Division // The contents of this file are released on a rolling basis from December through June. // Note: 'In combination' means in combination with one or more other races. The sum of the five race-in-combination groups adds to more than the total population because individuals may report more than one race. Hispanic origin is considered an ethnicity, not a race. Hispanics may be of any race. Responses of 'Some Other Race' from the 2010 Census are modified. This results in differences between the population for specific race categories shown for the 2010 Census population in this file versus those in the original 2010 Census data. For more information, see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/modified-race-summary-file-method/mrsf2010.pdf. // The estimates are based on the 2010 Census and reflect changes to the April 1, 2010 population due to the Count Question Resolution program and geographic program revisions. // For detailed information about the methods used to create the population estimates, see https://www.census.gov/programs-surveys/popest/technical-documentation/methodology.html. // Each year, the Census Bureau's Population Estimates Program (PEP) utilizes current data on births, deaths, and migration to calculate population change since the most recent decennial census, and produces a time series of estimates of population. The annual time series of estimates begins with the most recent decennial census data and extends to the vintage year. The vintage year (e.g., V2017) refers to the final year of the time series. The reference date for all estimates is July 1, unless otherwise specified. With each new issue of estimates, the Census Bureau revises estimates for years back to the last census. As each vintage of estimates includes all years since the most recent decennial census, the latest vintage of data available supersedes all previously produced estimates for those dates. The Population Estimates Program provides additional information including historical and intercensal estimates, evaluation estimates, demographic analysis, and research papers on its website: https://www.census.gov/programs-surveys/popest.html.

  7. Mobile_gaming_company_persona

    • kaggle.com
    zip
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Serdar Tafralı (2022). Mobile_gaming_company_persona [Dataset]. https://www.kaggle.com/datasets/serdartafrali/persona/code
    Explore at:
    zip(18032 bytes)Available download formats
    Dataset updated
    Jul 13, 2022
    Authors
    Serdar Tafralı
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Data Story

    The Persona.csv dataset contains the prices of the products sold by an international game company and some demographic information of the users who buy these products. The data set consists of records created in each sales transaction. This means that the table is not deduplicated. In other words, a user with certain demographic characteristics may have made more than one purchase.

    Variables (Features)

    PRICE: Customer spend amount, SOURCE: The type of device the customer is connecting to (IOS/Android), SEX: Gender of the customer, COUNTRY: Country of the customer, AGE: Age of the customer.

  8. a

    Demographics of Parks and Recreation Center Customers

    • hub.arcgis.com
    • open-data.bouldercolorado.gov
    Updated Aug 27, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BoulderCO (2020). Demographics of Parks and Recreation Center Customers [Dataset]. https://hub.arcgis.com/datasets/121a6643af894314bd02ea42544ce9d9
    Explore at:
    Dataset updated
    Aug 27, 2020
    Dataset authored and provided by
    BoulderCO
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Description

    This dataset displays demographic information for all Boulder Parks and Recreation members and visitors. The dataset includes customer age, gender, resident status, location (city, state, and zipcode), entry date, and membership package type(s). A data dictionary with descriptions of the fields included in the dataset can be downloaded here.Please note that due to the nature of open-ended data entry for many customer detail fields, some customer data (e.g. city) will need to be cleaned and normalized before analysis.

  9. i

    Demographic and Health Survey 1998 - Ghana

    • catalog.ihsn.org
    • datacatalog.ihsn.org
    • +1more
    Updated Jul 6, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ghana Statistical Service (GSS) (2017). Demographic and Health Survey 1998 - Ghana [Dataset]. https://catalog.ihsn.org/catalog/50
    Explore at:
    Dataset updated
    Jul 6, 2017
    Dataset authored and provided by
    Ghana Statistical Service (GSS)
    Time period covered
    1998 - 1999
    Area covered
    Ghana
    Description

    Abstract

    The 1998 Ghana Demographic and Health Survey (GDHS) is the latest in a series of national-level population and health surveys conducted in Ghana and it is part of the worldwide MEASURE DHS+ Project, designed to collect data on fertility, family planning, and maternal and child health.

    The primary objective of the 1998 GDHS is to provide current and reliable data on fertility and family planning behaviour, child mortality, children’s nutritional status, and the utilisation of maternal and child health services in Ghana. Additional data on knowledge of HIV/AIDS are also provided. This information is essential for informed policy decisions, planning and monitoring and evaluation of programmes at both the national and local government levels.

    The long-term objectives of the survey include strengthening the technical capacity of the Ghana Statistical Service (GSS) to plan, conduct, process, and analyse the results of complex national sample surveys. Moreover, the 1998 GDHS provides comparable data for long-term trend analyses within Ghana, since it is the third in a series of demographic and health surveys implemented by the same organisation, using similar data collection procedures. The GDHS also contributes to the ever-growing international database on demographic and health-related variables.

    Geographic coverage

    National

    Analysis unit

    • Household
    • Children under five years
    • Women age 15-49
    • Men age 15-59

    Kind of data

    Sample survey data

    Sampling procedure

    The major focus of the 1998 GDHS was to provide updated estimates of important population and health indicators including fertility and mortality rates for the country as a whole and for urban and rural areas separately. In addition, the sample was designed to provide estimates of key variables for the ten regions in the country.

    The list of Enumeration Areas (EAs) with population and household information from the 1984 Population Census was used as the sampling frame for the survey. The 1998 GDHS is based on a two-stage stratified nationally representative sample of households. At the first stage of sampling, 400 EAs were selected using systematic sampling with probability proportional to size (PPS-Method). The selected EAs comprised 138 in the urban areas and 262 in the rural areas. A complete household listing operation was then carried out in all the selected EAs to provide a sampling frame for the second stage selection of households. At the second stage of sampling, a systematic sample of 15 households per EA was selected in all regions, except in the Northern, Upper West and Upper East Regions. In order to obtain adequate numbers of households to provide reliable estimates of key demographic and health variables in these three regions, the number of households in each selected EA in the Northern, Upper West and Upper East regions was increased to 20. The sample was weighted to adjust for over sampling in the three northern regions (Northern, Upper East and Upper West), in relation to the other regions. Sample weights were used to compensate for the unequal probability of selection between geographically defined strata.

    The survey was designed to obtain completed interviews of 4,500 women age 15-49. In addition, all males age 15-59 in every third selected household were interviewed, to obtain a target of 1,500 men. In order to take cognisance of non-response, a total of 6,375 households nation-wide were selected.

    Note: See detailed description of sample design in APPENDIX A of the survey report.

    Mode of data collection

    Face-to-face

    Research instrument

    Three types of questionnaires were used in the GDHS: the Household Questionnaire, the Women’s Questionnaire, and the Men’s Questionnaire. These questionnaires were based on model survey instruments developed for the international MEASURE DHS+ programme and were designed to provide information needed by health and family planning programme managers and policy makers. The questionnaires were adapted to the situation in Ghana and a number of questions pertaining to on-going health and family planning programmes were added. These questionnaires were developed in English and translated into five major local languages (Akan, Ga, Ewe, Hausa, and Dagbani).

    The Household Questionnaire was used to enumerate all usual members and visitors in a selected household and to collect information on the socio-economic status of the household. The first part of the Household Questionnaire collected information on the relationship to the household head, residence, sex, age, marital status, and education of each usual resident or visitor. This information was used to identify women and men who were eligible for the individual interview. For this purpose, all women age 15-49, and all men age 15-59 in every third household, whether usual residents of a selected household or visitors who slept in a selected household the night before the interview, were deemed eligible and interviewed. The Household Questionnaire also provides basic demographic data for Ghanaian households. The second part of the Household Questionnaire contained questions on the dwelling unit, such as the number of rooms, the flooring material, the source of water and the type of toilet facilities, and on the ownership of a variety of consumer goods.

    The Women’s Questionnaire was used to collect information on the following topics: respondent’s background characteristics, reproductive history, contraceptive knowledge and use, antenatal, delivery and postnatal care, infant feeding practices, child immunisation and health, marriage, fertility preferences and attitudes about family planning, husband’s background characteristics, women’s work, knowledge of HIV/AIDS and STDs, as well as anthropometric measurements of children and mothers.

    The Men’s Questionnaire collected information on respondent’s background characteristics, reproduction, contraceptive knowledge and use, marriage, fertility preferences and attitudes about family planning, as well as knowledge of HIV/AIDS and STDs.

    Response rate

    A total of 6,375 households were selected for the GDHS sample. Of these, 6,055 were occupied. Interviews were completed for 6,003 households, which represent 99 percent of the occupied households. A total of 4,970 eligible women from these households and 1,596 eligible men from every third household were identified for the individual interviews. Interviews were successfully completed for 4,843 women or 97 percent and 1,546 men or 97 percent. The principal reason for nonresponse among individual women and men was the failure of interviewers to find them at home despite repeated callbacks.

    Note: See summarized response rates by place of residence in Table 1.1 of the survey report.

    Sampling error estimates

    The estimates from a sample survey are affected by two types of errors: (1) nonsampling errors, and (2) sampling errors. Nonsampling errors are the results of shortfalls made in implementing data collection and data processing, such as failure to locate and interview the correct household, misunderstanding of the questions on the part of either the interviewer or the respondent, and data entry errors. Although numerous efforts were made during the implementation of the 1998 GDHS to minimize this type of error, nonsampling errors are impossible to avoid and difficult to evaluate statistically.

    Sampling errors, on the other hand, can be evaluated statistically. The sample of respondents selected in the 1998 GDHS is only one of many samples that could have been selected from the same population, using the same design and expected size. Each of these samples would yield results that differ somewhat from the results of the actual sample selected. Sampling errors are a measure of the variability between all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.

    A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.

    If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, the 1998 GDHS sample is the result of a two-stage stratified design, and, consequently, it was necessary to use more complex formulae. The computer software used to calculate sampling errors for the 1998 GDHS is the ISSA Sampling Error Module. This module uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics such as fertility and mortality rates.

    Data appraisal

    Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Age distribution of eligible and interviewed men - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months

    Note: See detailed tables in APPENDIX C of the survey report.

  10. Customer Data for Telecommunication Analysis

    • kaggle.com
    zip
    Updated Nov 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bhavya Jha (2024). Customer Data for Telecommunication Analysis [Dataset]. https://www.kaggle.com/datasets/bhavyajha04/telecust
    Explore at:
    zip(10194 bytes)Available download formats
    Dataset updated
    Nov 16, 2024
    Authors
    Bhavya Jha
    Description

    This dataset focuses on telecommunication customers, providing demographic, socioeconomic, and usage-related data. It aims to support customer segmentation and predictive analytics.

    Content

    The dataset includes variables like region, tenure (1–72 months), age (18–77 years), marital status, address stability, income (range: $9–$1.67k), education level, employment status, retirement status, and gender distribution. Counts for each variable are segmented into defined intervals. Notably, age, income, and tenure have the highest variability, reflecting diverse customer profiles. Binary labels (e.g., 0/1 for specific statuses) are used for categorical features like marital and retirement status.

    Use

    This dataset can be leveraged for customer profiling, churn prediction, and service personalization. It enables telecom providers to understand customer lifetime value, tailor offerings based on income and employment patterns, and optimize retention strategies by identifying factors contributing to long-tenure customers.

    Summary

    The dataset provides a detailed overview of telecom customer behaviors and characteristics, helping companies develop targeted marketing campaigns and efficient customer support systems. Its broad scope across demographics, income brackets, and service usage makes it a valuable resource for data-driven decision-making in the telecom industry.

  11. Demographic by Race 2022 (all geographies, statewide)

    • opendata.atlantaregional.com
    • hub.arcgis.com
    Updated Mar 2, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2024). Demographic by Race 2022 (all geographies, statewide) [Dataset]. https://opendata.atlantaregional.com/maps/449b09ed0cd046078e8a3e7d7327b1bb
    Explore at:
    Dataset updated
    Mar 2, 2024
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. .
    For a deep dive into the data model including every specific metric, see the ACS 2018-2022 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e22Estimate from 2018-22 ACS_m22Margin of Error from 2018-22 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_22Change, 2010-22 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2018-2022). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2018-2022Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/3b86ee614e614199ba66a3ff1ebfe3b5/about

  12. Demographic by Race 2021 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • opendata.atlantaregional.com
    • +1more
    Updated Mar 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2023). Demographic by Race 2021 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/b1651445db7a419794f1dc107968d885
    Explore at:
    Dataset updated
    Mar 10, 2023
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable. For a deep dive into the data model including every specific metric, see the ACS 2017-2021 Data Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e21Estimate from 2017-21 ACS_m21Margin of Error from 2017-21 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_21Change, 2010-21 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLine (buffer)BeltLine Study (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Planning Unit STV (3 NPUs merged to a single geographic unit within City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)City of Atlanta Neighborhood Statistical Areas E02E06 (2 NSAs merged to single geographic unit within City of Atlanta)County (statewide)Georgia House (statewide)Georgia Senate (statewide)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)SPARCC = Strong, Prosperous And Resilient Communities ChallengeState of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)WFF = Westside Future Fund (subarea of City of Atlanta)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2017-2021). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2017-2021Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://garc.maps.arcgis.com/sharing/rest/content/items/34b9adfdcc294788ba9c70bf433bd4c1/data

  13. Z

    Data from: Customer Segmentation in the Digital Marketing Using a Q-Learning...

    • data-staging.niaid.nih.gov
    Updated Jan 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Wang, Guanqun (2025). Customer Segmentation in the Digital Marketing Using a Q-Learning Based Differential Evolution Algorithm Integrated with K-means clustering [Dataset]. https://data-staging.niaid.nih.gov/resources?id=zenodo_14614252
    Explore at:
    Dataset updated
    Jan 8, 2025
    Authors
    Wang, Guanqun
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The dataset was collected from Kaggle. It includes various features related to customer demographics, purchasing behavior, and other relevant metrics.

  14. Sample characteristics and demographic variables definition %.

    • plos.figshare.com
    xls
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tiziana de-Magistris; Azucena Gracia (2023). Sample characteristics and demographic variables definition %. [Dataset]. http://doi.org/10.1371/journal.pone.0146308.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Tiziana de-Magistris; Azucena Gracia
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sample characteristics and demographic variables definition %.

  15. Demographic change 2010 - 2023 (all geographies, statewide)

    • gisdata.fultoncountyga.gov
    • hub.arcgis.com
    Updated Feb 22, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2025). Demographic change 2010 - 2023 (all geographies, statewide) [Dataset]. https://gisdata.fultoncountyga.gov/maps/f70f4d7defb94a20987e59061b012bbe
    Explore at:
    Dataset updated
    Feb 22, 2025
    Dataset provided by
    The Georgia Association of Regional Commissions
    Authors
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    These data were developed by the Research & Analytics Department at the Atlanta Regional Commission using data from the U.S. Census Bureau across all standard and custom geographies at statewide summary level where applicable.For a deep dive into the data model including every specific metric, see the ACS 2019-2023. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics. Find naming convention prefixes/suffixes, geography definitions and user notes below.Prefixes:NoneCountpPercentrRatemMedianaMean (average)tAggregate (total)chChange in absolute terms (value in t2 - value in t1)pchPercent change ((value in t2 - value in t1) / value in t1)chpChange in percent (percent in t2 - percent in t1)sSignificance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computedSuffixes:_e23Estimate from 2019-23 ACS_m23Margin of Error from 2019-23 ACS_e102006-10 ACS, re-estimated to 2020 geography_m10Margin of Error from 2006-10 ACS, re-estimated to 2020 geography_e10_23Change, 2010-23 (holding constant at 2020 geography)GeographiesAAA = Area Agency on Aging (12 geographic units formed from counties providing statewide coverage)ARC21 = Atlanta Regional Commission modeling area (21 counties merged to a single geographic unit)ARWDB7 = Atlanta Regional Workforce Development Board (7 counties merged to a single geographic unit)BeltLineStatistical (buffer)BeltLineStatisticalSub (subareas)Census Tract (statewide)CFGA23 = Community Foundation for Greater Atlanta (23 counties merged to a single geographic unit)City (statewide)City of Atlanta Council Districts (City of Atlanta)City of Atlanta Neighborhood Planning Unit (City of Atlanta)City of Atlanta Neighborhood Statistical Areas (City of Atlanta)County (statewide)CCDIST = County Commission Districts (statewide where applicable)CCSUPERDIST = County Commission Superdistricts (DeKalb)Georgia House (statewide)Georgia Senate (statewide)HSSA = High School Statistical Area (11 county region)MetroWater15 = Atlanta Metropolitan Water District (15 counties merged to a single geographic unit)Regional Commissions (statewide)State of Georgia (single geographic unit)Superdistrict (ARC region)US Congress (statewide)UWGA13 = United Way of Greater Atlanta (13 counties merged to a single geographic unit)ZIP Code Tabulation Areas (statewide)The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2019-2023). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2019-2023Open Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the data manifest: https://opendata.atlantaregional.com/documents/182e6fcf8201449086b95adf39471831/about

  16. ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05)

    • catalog.data.gov
    • s.cnmilf.com
    • +2more
    Updated Oct 21, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Center for Education Statistics (NCES) (2024). ACS-ED 2013-2017 Total Population: Demographic Characteristics (DP05) [Dataset]. https://catalog.data.gov/dataset/acs-ed-2013-2017-total-population-demographic-characteristics-dp05-7a484
    Explore at:
    Dataset updated
    Oct 21, 2024
    Dataset provided by
    National Center for Education Statisticshttps://nces.ed.gov/
    Description

    The American Community Survey Education Tabulation (ACS-ED) is a custom tabulation of the ACS produced for the National Center of Education Statistics (NCES) by the U.S. Census Bureau. The ACS-ED provides a rich collection of social, economic, demographic, and housing characteristics for school systems, school-age children, and the parents of school-age children. In addition to focusing on school-age children, the ACS-ED provides enrollment iterations for children enrolled in public school. The data profiles include percentages (along with associated margins of error) that allow for comparison of school district-level conditions across the U.S. For more information about the NCES ACS-ED collection, visit the NCES Education Demographic and Geographic Estimates (EDGE) program at: https://nces.ed.gov/programs/edge/Demographic/ACSAnnotation values are negative value representations of estimates and have values when non-integer information needs to be represented. See the table below for a list of common Estimate/Margin of Error (E/M) values and their corresponding Annotation (EA/MA) values.All information contained in this file is in the public domain. Data users are advised to review NCES program documentation and feature class metadata to understand the limitations and appropriate use of these data.-9An '-9' entry in the estimate and margin of error columns indicates that data for this geographic area cannot be displayed because the number of sample cases is too small.-8An '-8' means that the estimate is not applicable or not available.-6A '-6' entry in the estimate column indicates that either no sample observations or too few sample observations were available to compute an estimate, or a ratio of medians cannot be calculated because one or both of the median estimates falls in the lowest interval or upper interval of an open-ended distribution.-5A '-5' entry in the margin of error column indicates that the estimate is controlled. A statistical test for sampling variability is not appropriate.-3A '-3' entry in the margin of error column indicates that the median falls in the lowest interval or upper interval of an open-ended distribution. A statistical test is not appropriate.-2A '-2' entry in the margin of error column indicates that either no sample observations or too few sample observations were available to compute a standard error and thus the margin of error. A statistical test is not appropriate.

  17. Kohl's brand profile in the United States 2024

    • statista.com
    Updated Jul 11, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Kohl's brand profile in the United States 2024 [Dataset]. https://www.statista.com/forecasts/1335771/kohl-s-fashion-stores-brand-profile-in-the-united-states
    Explore at:
    Dataset updated
    Jul 11, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    Jun 4, 2024 - Oct 13, 2024
    Area covered
    United States
    Description

    How high is the brand awareness of Kohl's in the United States?When it comes to fashion store customers, brand awareness of Kohl's is at **% in the United States. The survey was conducted using the concept of aided brand recognition, showing respondents both the brand's logo and the written brand name.How popular is Kohl's in the United States?In total, **% of U.S. fashion store customers say they like Kohl's. However, in actuality, among the **% of U.S. respondents who know Kohl's, **% of people like the brand.What is the usage share of Kohl's in the United States?All in all, **% of fashion store customers in the United States use Kohl's. That means, of the **% who know the brand, **% use them.How loyal are the customers of Kohl's?Around **% of fashion store customers in the United States say they are likely to use Kohl's again. Set in relation to the **% usage share of the brand, this means that **% of their customers show loyalty to the brand.What's the buzz around Kohl's in the United States?In the summer-fall period of 2024, about **% of U.S. fashion store customers had heard about Kohl's in the media, on social media, or in advertising over the past three months. Of the **% who know the brand, that's **%, meaning at the time of the survey there's some buzz around Kohl's in the United States.If you want to compare brands, do deep-dives by survey items of your choice, filter by total online population or users of a certain brand, or drill down on your very own hand-tailored target groups, our Consumer Insights Brand KPI survey has you covered.

  18. d

    ACS 5-Year Demographic Characteristics DC

    • catalog.data.gov
    • datalumos.org
    • +6more
    Updated May 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Washington, DC (2025). ACS 5-Year Demographic Characteristics DC [Dataset]. https://catalog.data.gov/dataset/acs-5-year-demographic-characteristics-dc
    Explore at:
    Dataset updated
    May 7, 2025
    Dataset provided by
    City of Washington, DC
    Area covered
    Washington
    Description

    Age, Sex, Race, Ethnicity, Total Housing Units, and Voting Age Population. This service is updated annually with American Community Survey (ACS) 5-year data. Contact: District of Columbia, Office of Planning. Email: planning@dc.gov. Geography: District-wide. Current Vintage: 2019-2023. ACS Table(s): DP05. Data downloaded from: Census Bureau's API for American Community Survey. Date of API call: January 2, 2025. National Figures: data.census.gov. Please cite the Census and ACS when using this data. Data Note from the Census: Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables. Data Processing Notes: This layer is updated automatically when the most current vintage of ACS data is released each year, usually in December. The layer always contains the latest available ACS 5-year estimates. It is updated annually within days of the Census Bureau's release schedule. Boundaries come from the US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates (annually), and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For census tracts, the water cutouts are derived from a subset of the 2020 AWATER (Area Water) boundaries offered by TIGER. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). Field alias names were created based on the Table Shells file available from the American Community Survey Summary File Documentation page. Data processed using R statistical package and ArcGIS Desktop. Margin of Error was not included in this layer but is available from the Census Bureau. Contact the Office of Planning for more information about obtaining Margin of Error values.

  19. Customer Satisfaction Scores and Behavior Data

    • kaggle.com
    zip
    Updated Apr 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Salahuddin Ahmed (2025). Customer Satisfaction Scores and Behavior Data [Dataset]. https://www.kaggle.com/datasets/salahuddinahmedshuvo/customer-satisfaction-scores-and-behavior-data/discussion
    Explore at:
    zip(2456 bytes)Available download formats
    Dataset updated
    Apr 6, 2025
    Authors
    Salahuddin Ahmed
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains customer satisfaction scores collected from a survey, alongside key demographic and behavioral data. It includes variables such as customer age, gender, location, purchase history, support contact status, loyalty level, and satisfaction factors. The dataset is designed to help analyze customer satisfaction, identify trends, and develop insights that can drive business decisions.

    File Information: File Name: customer_satisfaction_data.csv (or your specific file name)

    File Type: CSV (or the actual file format you are using)

    Number of Rows: 120

    Number of Columns: 10

    Column Names:

    Customer_ID – Unique identifier for each customer (e.g., 81-237-4704)

    Group – The group to which the customer belongs (A or B)

    Satisfaction_Score – Customer's satisfaction score on a scale of 1-10

    Age – Age of the customer

    Gender – Gender of the customer (Male, Female)

    Location – Customer's location (e.g., Phoenix.AZ, Los Angeles.CA)

    Purchase_History – Whether the customer has made a purchase (Yes or No)

    Support_Contacted – Whether the customer has contacted support (Yes or No)

    Loyalty_Level – Customer's loyalty level (Low, Medium, High)

    Satisfaction_Factor – Primary factor contributing to customer satisfaction (e.g., Price, Product Quality)

    Statistical Analyses:

    Descriptive Statistics:

    Calculate mean, median, mode, standard deviation, and range for key numerical variables (e.g., Satisfaction Score, Age).

    Summarize categorical variables (e.g., Gender, Loyalty Level, Purchase History) with frequency distributions and percentages.

    Two-Sample t-Test (Independent t-test):

    Compare the mean satisfaction scores between two independent groups (e.g., Group A vs. Group B) to determine if there is a significant difference in their average satisfaction scores.

    Paired t-Test:

    If there are two related measurements (e.g., satisfaction scores before and after a certain event), you can compare the means using a paired t-test.

    One-Way ANOVA (Analysis of Variance):

    Test if there are significant differences in mean satisfaction scores across more than two groups (e.g., comparing the mean satisfaction score across different Loyalty Levels).

    Chi-Square Test for Independence:

    Examine the relationship between two categorical variables (e.g., Gender vs. Purchase History or Loyalty Level vs. Support Contacted) to determine if there’s a significant association.

    Mann-Whitney U Test:

    For non-normally distributed data, use this test to compare satisfaction scores between two independent groups (e.g., Group A vs. Group B) to see if their distributions differ significantly.

    Kruskal-Wallis Test:

    Similar to ANOVA, but used for non-normally distributed data. This test can compare the median satisfaction scores across multiple groups (e.g., comparing satisfaction scores across Loyalty Levels or Satisfaction Factors).

    Spearman’s Rank Correlation:

    Test for a monotonic relationship between two ordinal or continuous variables (e.g., Age vs. Satisfaction Score or Satisfaction Score vs. Loyalty Level).

    Regression Analysis:

    Linear Regression: Model the relationship between a continuous dependent variable (e.g., Satisfaction Score) and independent variables (e.g., Age, Gender, Loyalty Level).

    Logistic Regression: If analyzing binary outcomes (e.g., Purchase History or Support Contacted), you could model the probability of an outcome based on predictors.

    Factor Analysis:

    To identify underlying patterns or groups in customer behavior or satisfaction factors, you can apply Factor Analysis to reduce the dimensionality of the dataset and group similar variables.

    Cluster Analysis:

    Use K-Means Clustering or Hierarchical Clustering to group customers based on similarity in their satisfaction scores and other features (e.g., Loyalty Level, Purchase History).

    Confidence Intervals:

    Calculate confidence intervals for the mean of satisfaction scores or any other metric to estimate the range in which the true population mean might lie.

  20. a

    Population by Sex and Age (by Dekalb Sustainable Neighborhood Initiative)...

    • hub.arcgis.com
    • opendata.atlantaregional.com
    Updated Feb 25, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Georgia Association of Regional Commissions (2021). Population by Sex and Age (by Dekalb Sustainable Neighborhood Initiative) 2019 [Dataset]. https://hub.arcgis.com/datasets/1d2955ba08b14a69bb27afe6cc31bcdb
    Explore at:
    Dataset updated
    Feb 25, 2021
    Dataset authored and provided by
    Georgia Association of Regional Commissions
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    This dataset was developed by the Research & Analytics Group at the Atlanta Regional Commission using data from the U.S. Census Bureau.For a deep dive into the data model including every specific metric, see the Infrastructure Manifest. The manifest details ARC-defined naming conventions, field names/descriptions and topics, summary levels; source tables; notes and so forth for all metrics.Naming conventions:Prefixes: None Countp Percentr Ratem Mediana Mean (average)t Aggregate (total)ch Change in absolute terms (value in t2 - value in t1)pch Percent change ((value in t2 - value in t1) / value in t1)chp Change in percent (percent in t2 - percent in t1)s Significance flag for change: 1 = statistically significant with a 90% CI, 0 = not statistically significant, blank = cannot be computed Suffixes: _e19 Estimate from 2014-19 ACS_m19 Margin of Error from 2014-19 ACS_00_v19 Decennial 2000, re-estimated to 2019 geography_00_19 Change, 2000-19_e10_v19 2006-10 ACS, re-estimated to 2019 geography_m10_v19 Margin of Error from 2006-10 ACS, re-estimated to 2019 geography_e10_19 Change, 2010-19The user should note that American Community Survey data represent estimates derived from a surveyed sample of the population, which creates some level of uncertainty, as opposed to an exact measure of the entire population (the full census count is only conducted once every 10 years and does not cover as many detailed characteristics of the population). Therefore, any measure reported by ACS should not be taken as an exact number – this is why a corresponding margin of error (MOE) is also given for ACS measures. The size of the MOE relative to its corresponding estimate value provides an indication of confidence in the accuracy of each estimate. Each MOE is expressed in the same units as its corresponding measure; for example, if the estimate value is expressed as a number, then its MOE will also be a number; if the estimate value is expressed as a percent, then its MOE will also be a percent. The user should also note that for relatively small geographic areas, such as census tracts shown here, ACS only releases combined 5-year estimates, meaning these estimates represent rolling averages of survey results that were collected over a 5-year span (in this case 2015-2019). Therefore, these data do not represent any one specific point in time or even one specific year. For geographic areas with larger populations, 3-year and 1-year estimates are also available. For further explanation of ACS estimates and margin of error, visit Census ACS website.Source: U.S. Census Bureau, Atlanta Regional CommissionDate: 2015-2019Data License: Creative Commons Attribution 4.0 International (CC by 4.0)Link to the manifest: https://www.arcgis.com/sharing/rest/content/items/3d489c725bb24f52a987b302147c46ee/data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Factori (2022). Factori USA People Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services [Dataset]. https://datarade.ai/data-products/factori-usa-consumer-graph-data-socio-demographic-location-factori

Factori USA People Data | socio-demographic, location, interest and intent data | E-Commere |Mobile Apps | Online Services

Explore at:
.json, .csvAvailable download formats
Dataset updated
Jul 23, 2022
Dataset authored and provided by
Factori
Area covered
United States of America
Description

Our People data is gathered and aggregated via surveys, digital services, and public data sources. We use powerful profiling algorithms to collect and ingest only fresh and reliable data points.

Our comprehensive data enrichment solution includes a variety of data sets that can help you address gaps in your customer data, gain a deeper understanding of your customers, and power superior client experiences.

  1. Geography - City, State, ZIP, County, CBSA, Census Tract, etc.
  2. Demographics - Gender, Age Group, Marital Status, Language etc.
  3. Financial - Income Range, Credit Rating Range, Credit Type, Net worth Range, etc
  4. Persona - Consumer type, Communication preferences, Family type, etc
  5. Interests - Content, Brands, Shopping, Hobbies, Lifestyle etc.
  6. Household - Number of Children, Number of Adults, IP Address, etc.
  7. Behaviours - Brand Affinity, App Usage, Web Browsing etc.
  8. Firmographics - Industry, Company, Occupation, Revenue, etc
  9. Retail Purchase - Store, Category, Brand, SKU, Quantity, Price etc.
  10. Auto - Car Make, Model, Type, Year, etc.
  11. Housing - Home type, Home value, Renter/Owner, Year Built etc.

People Data Schema & Reach: Our data reach represents the total number of counts available within various categories and comprises attributes such as country location, MAU, DAU & Monthly Location Pings:

Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method on a suitable interval (daily/weekly/monthly).

People Data Use Cases:

360-Degree Customer View: Get a comprehensive image of customers by the means of internal and external data aggregation.

Data Enrichment: Leverage Online to offline consumer profiles to build holistic audience segments to improve campaign targeting using user data enrichment

Fraud Detection: Use multiple digital (web and mobile) identities to verify real users and detect anomalies or fraudulent activity.

Advertising & Marketing: Understand audience demographics, interests, lifestyle, hobbies, and behaviors to build targeted marketing campaigns.

Using Factori People Data you can solve use cases like:

Acquisition Marketing Expand your reach to new users and customers using lookalike modeling with your first party audiences to extend to other potential consumers with similar traits and attributes.

Lookalike Modeling

Build lookalike audience segments using your first party audiences as a seed to extend your reach for running marketing campaigns to acquire new users or customers

And also, CRM Data Enrichment, Consumer Data Enrichment B2B Data Enrichment B2C Data Enrichment Customer Acquisition Audience Segmentation 360-Degree Customer View Consumer Profiling Consumer Behaviour Data

Here's the schema of People Data: person_id first_name last_name age gender linkedin_url twitter_url facebook_url city state address zip zip4 country delivery_point_bar_code carrier_route walk_seuqence_code fips_state_code fips_country_code country_name latitude longtiude address_type metropolitan_statistical_area core_based+statistical_area census_tract census_block_group census_block primary_address pre_address streer post_address address_suffix address_secondline address_abrev census_median_home_value home_market_value property_build+year property_with_ac property_with_pool property_with_water property_with_sewer general_home_value property_fuel_type year month household_id Census_median_household_income household_size marital_status length+of_residence number_of_kids pre_school_kids single_parents working_women_in_house_hold homeowner children adults generations net_worth education_level occupation education_history credit_lines credit_card_user newly_issued_credit_card_user credit_range_new
credit_cards loan_to_value mortgage_loan2_amount mortgage_loan_type
mortgage_loan2_type mortgage_lender_code
mortgage_loan2_render_code
mortgage_lender mortgage_loan2_lender
mortgage_loan2_ratetype mortgage_rate
mortgage_loan2_rate donor investor interest buyer hobby personal_email work_email devices phone employee_title employee_department employee_job_function skills recent_job_change company_id company_name company_description technologies_used office_address office_city office_country office_state office_zip5 office_zip4 office_carrier_route office_latitude office_longitude office_cbsa_code
office_census_block_group
office_census_tract office_county_code
company_phone
company_credit_score
company_csa_code
company_dpbc
company_franchiseflag
company_facebookurl company_linkedinurl company_twitterurl
company_website company_fortune_rank
company_government_type company_headquarters_branch company_home_business
company_industry
company_num_pcs_used
company_num_employees
company_firm_individual company_msa company_msa_name
company_naics_code
company_naics_description
company_naics_code2 company_naics_description2
company_sic_code2
company_sic_code2_description
company_sic...

Search
Clear search
Close search
Google apps
Main menu