18 datasets found
  1. C

    Largest cities in Czechia 2025, by population

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Largest cities in Czechia 2025, by population [Dataset]. https://www.statista.com/statistics/369777/largest-cities-in-czechia/
    Explore at:
    Dataset authored and provided by
    Statista
    Area covered
    Czechia
    Description

    Prague was the most populous city in Czechia with nearly *** million inhabitants as of the beginning of 2025. Brno was the second largest city in population with over ******* inhabitants, followed by Ostrava with a population of around *******.

  2. C

    Czech Republic CZ: Population in Largest City

    • ceicdata.com
    Updated May 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Czech Republic CZ: Population in Largest City [Dataset]. https://www.ceicdata.com/en/czech-republic/population-and-urbanization-statistics/cz-population-in-largest-city
    Explore at:
    Dataset updated
    May 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Czechia
    Variables measured
    Population
    Description

    Czech Republic CZ: Population in Largest City data was reported at 1,327,947.000 Person in 2024. This records an increase from the previous number of 1,323,339.000 Person for 2023. Czech Republic CZ: Population in Largest City data is updated yearly, averaging 1,191,732.000 Person from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 1,327,947.000 Person in 2024 and a record low of 1,000,830.000 Person in 1960. Czech Republic CZ: Population in Largest City data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Czech Republic – Table CZ.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the urban population living in the country's largest metropolitan area.;United Nations, World Urbanization Prospects.;;

  3. Population of the largest cities of Czechia 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Population of the largest cities of Czechia 2023 [Dataset]. https://www.statista.com/statistics/1467033/czechia-largest-cities-by-population/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Czechia
    Description

    In 2023, the largest city in Czechia was its capital, Prague, with a population of more than 1.3 million. Together with Brno and Ostrava, these were the only three cities with more than 200,000 people.

  4. C

    Czech Republic CZ: Population in Largest City: as % of Urban Population

    • ceicdata.com
    Updated Sep 15, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2018). Czech Republic CZ: Population in Largest City: as % of Urban Population [Dataset]. https://www.ceicdata.com/en/czech-republic/population-and-urbanization-statistics/cz-population-in-largest-city-as--of-urban-population
    Explore at:
    Dataset updated
    Sep 15, 2018
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    Czechia
    Variables measured
    Population
    Description

    Czech Republic CZ: Population in Largest City: as % of Urban Population data was reported at 16.527 % in 2024. This records an increase from the previous number of 16.339 % for 2023. Czech Republic CZ: Population in Largest City: as % of Urban Population data is updated yearly, averaging 16.011 % from Dec 1960 (Median) to 2024, with 65 observations. The data reached an all-time high of 17.504 % in 1960 and a record low of 15.216 % in 1980. Czech Republic CZ: Population in Largest City: as % of Urban Population data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Czech Republic – Table CZ.World Bank.WDI: Population and Urbanization Statistics. Population in largest city is the percentage of a country's urban population living in that country's largest metropolitan area.;United Nations, World Urbanization Prospects.;Weighted average;

  5. T

    Czech Republic Population In Largest City

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Czech Republic Population In Largest City [Dataset]. https://tradingeconomics.com/czech-republic/population-in-largest-city-wb-data.html
    Explore at:
    excel, csv, xml, jsonAvailable download formats
    Dataset updated
    May 31, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Czechia
    Description

    Actual value and historical data chart for Czech Republic Population In Largest City

  6. T

    Czech Republic Population In The Largest City Percent Of Urban Population

    • tradingeconomics.com
    csv, excel, json, xml
    Updated May 29, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2017). Czech Republic Population In The Largest City Percent Of Urban Population [Dataset]. https://tradingeconomics.com/czech-republic/population-in-the-largest-city-percent-of-urban-population-wb-data.html
    Explore at:
    xml, json, excel, csvAvailable download formats
    Dataset updated
    May 29, 2017
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 1, 1976 - Dec 31, 2025
    Area covered
    Czechia
    Description

    Actual value and historical data chart for Czech Republic Population In The Largest City Percent Of Urban Population

  7. N

    Czech Population Distribution Data - Republic County, KS Cities (2019-2023)

    • neilsberg.com
    csv, json
    Updated Oct 1, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2025). Czech Population Distribution Data - Republic County, KS Cities (2019-2023) [Dataset]. https://www.neilsberg.com/insights/lists/czech-population-in-republic-county-ks-by-city/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Kansas, Republic County
    Variables measured
    Czech Population Count, Czech Population Percentage, Czech Population Share of Republic County
    Measurement technique
    To measure the rank and respective trends, we initially gathered data from the five most recent American Community Survey (ACS) 5-Year Estimates. We then analyzed and categorized the data for each of the origins / ancestries identified by the U.S. Census Bureau. It is possible that a small population exists but was not reported or captured due to limitations or variations in Census data collection and reporting. We ensured that the population estimates used in this dataset pertain exclusively to the identified origins / ancestries and do not rely on any ethnicity classification, unless explicitly required. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    This list ranks the 1 cities in the Republic County, KS by Czech population, as estimated by the United States Census Bureau. It also highlights population changes in each city over the past five years.

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 5-Year Estimates, including:

    • 2019-2023 American Community Survey 5-Year Estimates
    • 2014-2018 American Community Survey 5-Year Estimates
    • 2009-2013 American Community Survey 5-Year Estimates

    Variables / Data Columns

    • Rank by Czech Population: This column displays the rank of city in the Republic County, KS by their Czech population, using the most recent ACS data available.
    • City: The City for which the rank is shown in the previous column.
    • Czech Population: The Czech population of the city is shown in this column.
    • % of Total City Population: This shows what percentage of the total city population identifies as Czech. Please note that the sum of all percentages may not equal one due to rounding of values.
    • % of Total Republic County Czech Population: This tells us how much of the entire Republic County, KS Czech population lives in that city. Please note that the sum of all percentages may not equal one due to rounding of values.
    • 5 Year Rank Trend: This column displays the rank trend across the last 5 years.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

  8. Data from: Geoparticipation in the Czech municipalities: index based...

    • tandf.figshare.com
    docx
    Updated Dec 15, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jaroslav Burian; Radek Barvíř; Daniel Pavlačka; Jiří Pánek; Jiří Chovaneček; Vít Pászto (2023). Geoparticipation in the Czech municipalities: index based quantitative approach [Dataset]. http://doi.org/10.6084/m9.figshare.23617564.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Dec 15, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Jaroslav Burian; Radek Barvíř; Daniel Pavlačka; Jiří Pánek; Jiří Chovaneček; Vít Pászto
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Participation is becoming not only a theoretical framework of EU and UN documents, but also a practical approach that many municipalities explore in order to build resilient, sustainable and smart cities. The paper presents a weighted Index of Geoparticipation for all municipalities in the Czech Republic (n = 6258). The index is an indicator-based value divided into three dimensions (communication, participation, transparency) that helps to evaluate the state of geoparticipation among Czech municipalities. The size of the municipality (measured by population) and the significance of the municipality are both highly related to the values of the Index of Geoparticipation. Regional capitals, major cities, and big towns that are part of the Healthy Cities Network all have higher values for the Index of Geoparticipation.

  9. Business Data Czech Republic / Company B2B Data Czech Republic ( Full...

    • datarade.ai
    Updated Feb 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Techsalerator (2024). Business Data Czech Republic / Company B2B Data Czech Republic ( Full Coverage) [Dataset]. https://datarade.ai/data-products/3-0-million-companies-in-czech-republic-full-coverage-techsalerator
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Feb 1, 2024
    Dataset provided by
    Techsalerator LLC
    Authors
    Techsalerator
    Area covered
    Czechia
    Description

    With 3.0 Million Businesses in Czech Republic , Techsalerator has access to the highest B2B count of Data/Business data in the country. .

    Thanks to our unique tools and large data specialist team, we are able to select the ideal targeted dataset based on the unique elements such as sales volume of a company, the company's location, no. of employees etc...

    Whether you are looking for an entire fill install, access to our API's or if you are just looking for a one-time targeted purchase, get in touch with our company and we will fulfill your international data need.

    Techsalerator covers all regions, cities and provinces in the country. A few examples :

    Regions :

    Karlovy Vary Region, Liberec Region, Moravian- Silesian Region, The Pardubice Region, The Ústí Region, Vysočina Region, Zlín Region, South Bohemian Region, Hradec Králové Region, The Olomouc Region, The Pilsen Region, Central Bohemia Region and Southern Moravia Region.

    Cities: Prague, Czech Republic Brno, Czech Republic Ostrava, Czech Republic Plzen, Czech Republic Olomouc, Czech Republic Liberec, Czech Republic Ceske Budejovice, Czech Republic Hradec Kralove, Czech Republic Usti, Czech Republic Pardubice, Czech Republic Havirov, Czech Republic Zlin, Czech Republic Kladno, Czech Republic Most, Czech Republic Karvina, Czech Republic Frydek-mistek, Czech Republic Opava, Czech Republic Karlovy Vary, Czech Republic Decin, Czech Republic Chomutov, Czech Republic Teplice, Czech Republic Jihlava, Czech Republic Prerov, Czech Republic Prostejov, Czech Republic Jablonec, Czech Republic Jablonec nad Nisou, Czech Republic Mlada Boleslav, Czech Republic Ceska Lipa, Czech Republic Trinec, Czech Republic Trebic, Czech Republic Tabor, Czech Republic Pribram, Czech Republic Znojmo, Czech Republic Orlova, Czech Republic Cheb, Czech Republic

  10. c

    Europe Classic Map

    • cacgeoportal.com
    Updated May 28, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Geographic (2014). Europe Classic Map [Dataset]. https://www.cacgeoportal.com/maps/639f31f045074979ab5fcc2a93997939
    Explore at:
    Dataset updated
    May 28, 2014
    Dataset authored and provided by
    National Geographic
    Area covered
    Europe,
    Description

    National Geographic's classic political map of Europe features country boundaries, thousands of place names, waterbodies, airports, major highways and roads, national parks, and much more. Includes the countries and major cities of Albania, Armenia, Austria, Azerbaijan, Belarus, Belgium, Bosnia & Herzegovina, Bulgaria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Georgia, Germany, Greece, Hungary, Iceland, Ireland, Italy, Kosovo, Latvia, Liechtenstein, Lithuania, Luxembourg, Macedonia, Moldova, Montenegro, The Netherlands, Norway, Poland, Portugal, Romania, Russia, Serbia, Slovakia, Slovenia, Spain, Sweden, Switzerland, Turkey, Ukraine, and the United Kingdom.>> Order print map <<

  11. Scenarios simulations of Prague (TURBAN-D05)

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jan Geletič; Jan Geletič; Petra Bauerová; Petra Bauerová; Jaroslav Resler; Jaroslav Resler; Martin Bureš; Martin Bureš; Kryštof Eben; Kryštof Eben; Vladimír Fuka; Vladimír Fuka; Jan Karel; Josef Keder; Josef Keder; Pavel Krč; Pavel Krč; Radek Jareš; William Patiño; Jelena Radović; Jelena Radović; Hynek Řezníček; Hynek Řezníček; Adriana Šindelářová; Ondřej Vlček; Ondřej Vlček; Jan Karel; Radek Jareš; William Patiño; Adriana Šindelářová (2025). Scenarios simulations of Prague (TURBAN-D05) [Dataset]. http://doi.org/10.5281/zenodo.10848971
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Jan Geletič; Jan Geletič; Petra Bauerová; Petra Bauerová; Jaroslav Resler; Jaroslav Resler; Martin Bureš; Martin Bureš; Kryštof Eben; Kryštof Eben; Vladimír Fuka; Vladimír Fuka; Jan Karel; Josef Keder; Josef Keder; Pavel Krč; Pavel Krč; Radek Jareš; William Patiño; Jelena Radović; Jelena Radović; Hynek Řezníček; Hynek Řezníček; Adriana Šindelářová; Ondřej Vlček; Ondřej Vlček; Jan Karel; Radek Jareš; William Patiño; Adriana Šindelářová
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Prague
    Description

    Basic information

    This dataset contains simulation results for the so-called Holešovičky domain, an area in the city of Prague, Czech Republic, expected to undergo major traffic infrastructure changes in the near future. Three scenarios were modelled: current infrastructure with traffic intensity projections for 2023 (C1), future outlook with a finished part of city inner ring-road in 2030 (C2) and effect of finishing the northern part of the Prague outer ring-road (C3), which will decrease heavy traffic in the domain. Note that all scenarios have slightly different landcover (trees, buildings, bridges, tunnels etc.), so there could be small areas containing NA values in the maps and GIS files. All times are in UTC (local time, CEST is UTC +02:00).

    For more detailed description of the experiments see the TURBAN project website at https://www.project-turban.eu/">https://www.project-turban.eu/.

    General organisation

    Each scenario has two folders; post-processed results from the PALM model as averaged ASCII files that can be viewed in many GIS applications (output-gis) and maps in the PNG format (output-png). Each variable was averaged from original 10min values to 1, 3 and 24-hour averages. The C1 scenario was used as a baseline. In addition to that, also differences for all variables were calculated for the scenarios C2 and C3. In total, the C1 scenario has 3 subfolders with absolute values (prefix abs), the scenarios C2 and C3 have 6 (3 with absolute values and 3 with differences; prefix diff).

    Modelled variables

    Each subfolder includes 7 subfolders with variables. Variable bio_mrt is the Mean Radiant Temperature (MRT), bio_pet is the Physiological Equivalent Temperature (PET), bio_utci is the Universal Thermal Climate Index (UTCI), kc_PM10_02m is the concentration of PM10 at 2m above ground, theta_2m is the potential temperature at 2m above ground, tsurf is the surface temperature and wspeed_10m is the wind speed at 10m above ground.

    File nomenclature

    Each file (PRJ or ASC, PNG) has the same nomenclature. An example (bio_utci_abs-01h_20190724_1200-1300.png) could be parsed as: variable name (bio_utci), processed output (abs-01h), date (20190724) and averaged period (1200-1300). So, the result is a map with hourly averaged UTCI for 24 Jul 2019 between 12:00 and 13:00 UTC.

    Important note

    During the processing phase a few potentially important problems were identified and need to be analysed in detail. One of them are extremely overestimated concentrations due to stable conditions from boundary condition inputs. In certain situations it can happen that the best regional meteorological model can provide inappropriate input conditions for some episode. This needs to be checked in detail before any following interpretation.

    Acknowledgements

    The PALM simulations, and pre- and postprocessing were performed partially on the HPC infrastructure of the Institute of Computer Science of the Czech Academy of Sciences (ICS), supported by the long-term strategic development financing of the ICS (RVO:67985807) and partially on the IT4I HPC infrastructure supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90254). The work was performed within the project TURBAN (TO01000219; TURBAN – Turbulent-resolving urban modelling of air quality and thermal comfort) supported by Norway Grants and Technology Agency of the Czech Republic.

  12. b

    Brno očima obyvatel ČR 2017 / Brno in the eyes of people in the Czech...

    • data.brno.cz
    • datahub.brno.cz
    Updated Jan 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statutární město Brno (2022). Brno očima obyvatel ČR 2017 / Brno in the eyes of people in the Czech republic 2017 [Dataset]. https://data.brno.cz/documents/1eb679c8af9e4007b600817ab81c2dbf
    Explore at:
    Dataset updated
    Jan 17, 2022
    Dataset authored and provided by
    Statutární město Brno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brno, Czechia
    Description

    English description below. Reprezentativní sociologický průzkum na cílové populaci osob ve věku 18 a více let ČR je opakované, tzv. omnibusové šetření, jehož cílem je postihnout obraz města Brna v očích obyvatel ČR (tzv. vnější image). První vlna se uskutečnila v roce 2009, druhá vlna v roce 2013 a třetí vlna, která je předmětem této datové sady, v roce 2017. Hlavní výzkumné okruhy jsou: 1. Identifikace intenzity znalosti města Brna v dospělé populaci ČR, 2. Zjištění úrovně sympatií k městu Brnu, 3. Analýza image města Brna, 4. Analýza asociací obyvatel ČR spojených s městem Brnem. Výzkum byl realizován jako terénní dotazníkové šetření na reprezentativním vzorku populace Česka ve věku 18 a více let. Sběr byl realizován na základě kvótního výběru. Stanovenými kvótními znaky byly pohlaví, věk, nejvyšší dosažené vzdělání, velikost sídla a kraj bydliště respondenta. Velikost výběrového souboru: 1013 dotazníků. Datovou matici a dotazník najdete zde.A representative sociological survey of the target population of adults aged 18 and over in the Czech Republic is a repeated, so-called omnibus survey, the aim of which is to capture the image of the city of Brno in the eyes of the Czech population (the so-called external image). The first wave took place in 2009, the second wave in 2013 and the third wave, which is the subject of this data set, in 2017. The main research areas are: 1. Identification of the intensity of knowledge of the city of Brno in the adult population of the Czech Republic, 2. Determination of sympathy to the city of Brno, 3. Analysis of the image of the city of Brno. 4. Analysis of associations of the population of the Czech Republic conected with the city of Brno. The research was carried out as a field questionnaire survey on a representative sample of the Czech population aged 18 and over. The collection was carried out on the basis of quota selection. The set quota characteristics were gender, age, highest education, size of residence and region of residence of the respondent. Method: CAPI standardized F2F interviews (electronic questionnaire), • interviews took place in respondents' households • Data collection tool: questionnaire containing closed and open questions • Data collection deadline: 11 - 24 May 2017 • Sample size: 1013 questionnaires • Completion time: average 14 minutes. Data matrix and questionnaire used for the survey can be downloaded here.

  13. w

    Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt (2023). Air Pollution in World Cities 2000 - Afghanistan, Angola, Albania...and 158 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/424
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset authored and provided by
    Kiran D. Pandey, David R. Wheeler, Uwe Deichmann, Kirk E. Hamilton, Bart Ostro and Katie Bolt
    Time period covered
    1999 - 2000
    Area covered
    Afghanistan, Angola, Albania
    Description

    Abstract

    Polluted air is a major health hazard in developing countries. Improvements in pollution monitoring and statistical techniques during the last several decades have steadily enhanced the ability to measure the health effects of air pollution. Current methods can detect significant increases in the incidence of cardiopulmonary and respiratory diseases, coughing, bronchitis, and lung cancer, as well as premature deaths from these diseases resulting from elevated concentrations of ambient Particulate Matter (Holgate 1999).

    Scarce public resources have limited the monitoring of atmospheric particulate matter (PM) concentrations in developing countries, despite their large potential health effects. As a result, policymakers in many developing countries remain uncertain about the exposure of their residents to PM air pollution. The Global Model of Ambient Particulates (GMAPS) is an attempt to bridge this information gap through an econometrically estimated model for predicting PM levels in world cities (Pandey et al. forthcoming).

    The estimation model is based on the latest available monitored PM pollution data from the World Health Organization, supplemented by data from other reliable sources. The current model can be used to estimate PM levels in urban residential areas and non-residential pollution hotspots. The results of the model are used to project annual average ambient PM concentrations for residential and non-residential areas in 3,226 world cities with populations larger than 100,000, as well as national capitals.

    The study finds wide, systematic variations in ambient PM concentrations, both across world cities and over time. PM concentrations have risen at a slower rate than total emissions. Overall emission levels have been rising, especially for poorer countries, at nearly 6 percent per year. PM concentrations have not increased by as much, due to improvements in technology and structural shifts in the world economy. Additionally, within-country variations in PM levels can diverge greatly (by a factor of 5 in some cases), because of the direct and indirect effects of geo-climatic factors.

    The primary determinants of PM concentrations are the scale and composition of economic activity, population, the energy mix, the strength of local pollution regulation, and geographic and atmospheric conditions that affect pollutant dispersion in the atmosphere.

    Geographic coverage

    The database covers the following countries: Afghanistan Albania Algeria Andorra Angola
    Antigua and Barbuda Argentina
    Armenia Australia
    Austria Azerbaijan
    Bahamas, The
    Bahrain Bangladesh
    Barbados
    Belarus Belgium Belize
    Benin
    Bhutan
    Bolivia Bosnia and Herzegovina
    Brazil
    Brunei
    Bulgaria
    Burkina Faso
    Burundi Cambodia
    Cameroon
    Canada
    Cayman Islands
    Central African Republic
    Chad
    Chile
    China
    Colombia
    Comoros Congo, Dem. Rep.
    Congo, Rep. Costa Rica
    Cote d'Ivoire
    Croatia Cuba
    Cyprus
    Czech Republic
    Denmark Dominica
    Dominican Republic
    Ecuador Egypt, Arab Rep.
    El Salvador Eritrea Estonia Ethiopia
    Faeroe Islands
    Fiji
    Finland France
    Gabon
    Gambia, The Georgia Germany Ghana
    Greece
    Grenada Guatemala
    Guinea
    Guinea-Bissau
    Guyana
    Haiti
    Honduras
    Hong Kong, China
    Hungary Iceland India
    Indonesia
    Iran, Islamic Rep.
    Iraq
    Ireland Israel
    Italy
    Jamaica Japan
    Jordan
    Kazakhstan
    Kenya
    Korea, Dem. Rep.
    Korea, Rep. Kuwait
    Kyrgyz Republic Lao PDR Latvia
    Lebanon Lesotho Liberia Liechtenstein
    Lithuania
    Luxembourg
    Macao, China
    Macedonia, FYR
    Madagascar
    Malawi
    Malaysia
    Maldives
    Mali
    Mauritania
    Mexico
    Moldova Mongolia
    Morocco Mozambique
    Myanmar Namibia Nepal
    Netherlands Netherlands Antilles
    New Caledonia
    New Zealand Nicaragua
    Niger
    Nigeria Norway
    Oman
    Pakistan
    Panama
    Papua New Guinea
    Paraguay
    Peru
    Philippines Poland
    Portugal
    Puerto Rico Qatar
    Romania Russian Federation
    Rwanda
    Sao Tome and Principe
    Saudi Arabia
    Senegal Sierra Leone
    Singapore
    Slovak Republic Slovenia
    Solomon Islands Somalia South Africa
    Spain
    Sri Lanka
    St. Kitts and Nevis St. Lucia
    St. Vincent and the Grenadines
    Sudan
    Suriname
    Swaziland
    Sweden
    Switzerland Syrian Arab Republic
    Tajikistan
    Tanzania
    Thailand
    Togo
    Trinidad and Tobago Tunisia Turkey
    Turkmenistan
    Uganda
    Ukraine United Arab Emirates
    United Kingdom
    United States
    Uruguay Uzbekistan
    Vanuatu Venezuela, RB
    Vietnam Virgin Islands (U.S.)
    Yemen, Rep. Yugoslavia, FR (Serbia/Montenegro)
    Zambia
    Zimbabwe

    Kind of data

    Observation data/ratings [obs]

    Mode of data collection

    Other [oth]

  14. 捷克 最大城市人口

    • ceicdata.com
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, 捷克 最大城市人口 [Dataset]. https://www.ceicdata.com/zh-hans/czech-republic/population-and-urbanization-statistics/cz-population-in-largest-city
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2012 - Dec 1, 2023
    Area covered
    捷克
    Variables measured
    Population
    Description

    最大城市人口在12-01-2024达1,327,947.000人,相较于12-01-2023的1,323,339.000人有所增长。最大城市人口数据按年更新,12-01-1960至12-01-2024期间平均值为1,191,732.000人,共65份观测结果。该数据的历史最高值出现于12-01-2024,达1,327,947.000人,而历史最低值则出现于12-01-1960,为1,000,830.000人。CEIC提供的最大城市人口数据处于定期更新的状态,数据来源于World Bank,数据归类于全球数据库的捷克共和国 – Table CZ.World Bank.WDI: Population and Urbanization Statistics。

  15. 100m climate and heat stress information up to 2100 for 142 cities around...

    • zenodo.org
    png, zip
    Updated Sep 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Niels Souverijns; Niels Souverijns; Dirk Lauwaet; Dirk Lauwaet; Quentin Lejeune; Chahan M Kropf; Kam L Yeung; Shruti Nath; Carl F. Schleussner; Quentin Lejeune; Chahan M Kropf; Kam L Yeung; Shruti Nath; Carl F. Schleussner (2025). 100m climate and heat stress information up to 2100 for 142 cities around the globe [Dataset]. http://doi.org/10.5281/zenodo.13361538
    Explore at:
    zip, pngAvailable download formats
    Dataset updated
    Sep 24, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Niels Souverijns; Niels Souverijns; Dirk Lauwaet; Dirk Lauwaet; Quentin Lejeune; Chahan M Kropf; Kam L Yeung; Shruti Nath; Carl F. Schleussner; Quentin Lejeune; Chahan M Kropf; Kam L Yeung; Shruti Nath; Carl F. Schleussner
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Related publication: Souverijns, N. et al. (in review). 100m climate and heat stress information up to 2100 for 142 cities around the globe. Scientific Data.

    Related dashboard: https://climate-risk-dashboard.climateanalytics.org/

    A zip archive of decadal climate, heat stress and impact indicators for 142 cities around the world obtained using the UrbClim model. Information is available at 100m resolution for each decade up to 2100 for three future clilmate scenarios (including climate model uncertainty):

    • Current Policies
    • Shifting Pathways
    • Delayed Action / Gradual Strengthening

    The cities are listed in the table below and are offered in separate zip archives per country.

    The scripts to process the model data can be found in python_scripts.zip

    CountryCityCountryCityCountryCityCountryCity
    AlbaniaTiranaFranceNantesJapanTokyoSingaporeSingapore
    ArgentinaBuenos Aires NiceJordanAmmanSlovakiaBratislava
    AustraliaMelbourne ParisKenyaNairobi Kosice
    Sydney StrasbourgLatviaRigaSloveniaLjubljana
    AustriaGraz ToulouseLithuaniaKlaipedaSomaliaMogadishu
    ViennaGermanyBerlin VilniusSouth AfricaCape Town
    BangladeshDhaka CologneLuxembourgLuxembourg Tschwane
    BelgiumAntwerp DusseldorfMexicoMexico CitySpainAlicante
    Brussels Frankfurt am MainMontenegroPodgorica Barcelona
    Charleroi HamburgMoroccoMarrakesh Bilbao
    Ghent Leipzig Rabat Madrid
    Liege MunichNetherlandsAmsterdam Malaga
    Bosnia & HerzegovinaSarajevoGhanaAccra Rotterdam Murcia
    BrazilCuritibaGreeceAthens Utrecht Palma de Mallorca
    Salvador ThessalonikiNew ZealandAuckland Sevilla
    BulgariaSofiaHungaryBudapestNigeriaLagos Valencia
    Varna DebrecenNorth MacedoniaSkopjeSwedenGoteborg
    CanadaToronto GyorNorwayOslo Stockholm
    ChileSantiago MiskolcPakistanIslamabadSwitzerlandBasel
    ChinaHong Kong Pecs Karachi Geneva
    Nanjing SzegedPeruLima Zurich
    ColumbiaBogotaIcelandReykjavikPolandGdanskTurkeyIstanbul
    CroatiaSplitIndiaChennai KrakowUnited Arab EmiratesDubai
    ZagrebIndonesiaJakarta LodzUnited KingdomBirmingham
    Czech RepublicPragueIranTeheran Warsaw Edinbugh
    DenmarkCopenhagenIrelandDublin Wroclaw Glasgow
    EgyptCairoItalyBariPortugalLisbon Leeds
    EstoniaTallinn Bologna Porto London
    Tartu GenoaRomaniaBrasov Newcastle
    EthiopiaAddis Abeba Milan BucharestUnited StatesHouston
    FinlandHelsinki Naples Cluj Napoca Los Angeles
    FranceBordeaux PaduaRussiaMoscow New York
    Lille PalermoSaudi ArabiaMedina Phoenix
    Lyon RomeSenegalDakarVietnamHo Chi Minh
    Marseille TriesteSerbiaBelgrado
    Montpellier Turin Novi Sad

    The data is provided in both Geotiff and NetCDF format. A zip archive for each city is generated. Each zip file contains two folder:

    • Geotiffs
    • Netcdfs

    Each file has the following file structure: [indicator_filename]_[decade]_[climate_scenario]_[uncertainty]_[projection].[format]

    Indicator name (a defintion for each indicator can be found in the publication above):

    Indicator (full definition in Souverijns et al. (in review)Indicator filename
    Average daily maximum temperatureT2M_daily_mean_max
    Average daily minimum temperatureT2M_daily_mean_min
    Average daily temperatureT2M_mean
    Maximum temperature of the warmest monthMTWM
    Maximum temperature of the coolest monthMTCM
    Daytime Urban Heat IslandT2M_daily_mean_max_topography
    Nighttime Urban Heat IslandT2M_daily_mean_min_topography
    Annual heatwave daysheatwave_days
    Annual heat-wave magnitude index daily (HWMId)HWMI
    Annual number of days exceeding [25°C; 30°C; 35°C]T2M_dayover25; T2M_dayover30; T2M_dayover35
    Annual number of nights exceeding [20°C; 25°C; 28°C]T2M_nightover20; T2M_nightover25; T2M_nightover28
    Annual cooling degree hourscooling_degree_hours
    Annual number of days WBGT > [25°C; 28°C; 29.5°C; 31°C]WBGT_dayover25; WBGT_dayover28; WBGT_dayover295; WBGT_dayover31
    Annual number of nights WBGT > [25°C; 28°C]WBGT_nightover25; WBGT_nightover28
    Annual number of hours WBGT > [25°C; 28°C; 29.5°C; 31°C]WBGT_hourover25; WBGT_hourover28; WBGT_hourover295; WBGT_hourover31
    Annual lost working hours for intense activitiesLWH_int
    Annual lost working hours for moderate activitiesLWH_mod
    Annual lost working hours for light activitiesLWH_light
    Population exposed to heatwave warning dayspopulation_exposed_heatwave
    Population exposed to heat stress days (WBGT > [25°C; 28°C; 29.5°C; 31°C])population-exposed-WBGTover25; population-exposed-WBGTover28;
    population-exposed-WBGTover295; population-exposed-WBGTover31

    Decade:

    2011-2020; 2021-2030;...;2091-2100

    Climate scenario:

    Climate scenarioClimate scenario in filename
    Current PoliciesCurPol
    Delayed Action / Gradual Strengthening GS
    Shifting PathwaysSP

    Uncertainty:

    UncertaintyUncertainty filename
    Median of the climate scenario ensembleensmean
    5th percentile of the climate scenario ensembleenspctl05
    95th percentile of the climate scenario ensembleenspctl95

    Projection:

    The Geotiffs and NetCDFs are always provided in a local projection depending on the country / continent (This can be retrieved from the metadata of the files). Furthermore, the Geotiffs are also provided in EPSG:4326 which is then denoted in the

  16. a

    Obraz Brna v názorech obyvatel České republiky 2025 / The image of Brno in...

    • hub.arcgis.com
    • datahub.brno.cz
    • +1more
    Updated Apr 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statutární město Brno (2025). Obraz Brna v názorech obyvatel České republiky 2025 / The image of Brno in the opinions of the inhabitants of the Czech Republic 2025 [Dataset]. https://hub.arcgis.com/documents/2d8fe663aaf64e70aacd779fe56e7cc1
    Explore at:
    Dataset updated
    Apr 8, 2025
    Dataset authored and provided by
    Statutární město Brno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brno, Česko
    Description

    English description below. Reprezentativní sociologický průzkum na cílové populaci osob ve věku 18 a více let ČR je opakované, tzv. omnibusové šetření, jehož cílem je postihnout obraz města Brna v očích obyvatel ČR (tzv. vnější image). Vlny výzkumu se uskutečnily v letech 2009, 2013, 2017, 2022 a 2025. Hlavní výzkumné okruhy jsou: 1. Identifikace intenzity znalosti města Brna v dospělé populaci ČR, 2. Zjištění úrovně sympatií k městu Brnu, 3. Analýza image města Brna, 4. Analýza asociací obyvatel ČR spojených s městem Brnem. Sběr byl realizován na základě kvótního výběru. Stanovenými kvótními znaky byly pohlaví, věk, nejvyšší dosažené vzdělání, velikost sídla a kraj bydliště respondenta. Velikost výběrového souboru: 1033 dotazníků. Datovou matici a dotazník najdete zde.A representative sociological survey of the target population of people aged 18 and over in the Czech Republic is a repeated, so-called omnibus survey, the aim of which is to capture the image of the city of Brno in the eyes of the inhabitants of the Czech Republic (the so-called external image). The waves of the research took place in the years 2009, 2013, 2017, 2022 and 2025. The main research areas are: 1. Identification of the intensity of knowledge of the city of Brno in the adult population of the Czech Republic, 2. Determination of the level of sympathy for the city of Brno, 3. Analysis of the image of the city of Brno, 4. Analysis of associations of the inhabitants of the Czech Republic associated with the city of Brno. The data collection was carried out on the basis of quota selection. The quota characteristics set were gender, age, highest education achieved, size of the settlement and region of residence of the respondent. Size of the sample: 1033 questionnaires. The data matrix and questionnaire can be found here.

  17. b

    Obraz Brna v názorech obyvatel České republiky 2022 / Brno in the eyes of...

    • datahub.brno.cz
    • data.brno.cz
    • +1more
    Updated May 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statutární město Brno (2022). Obraz Brna v názorech obyvatel České republiky 2022 / Brno in the eyes of people in the Czech republic 2022 [Dataset]. https://datahub.brno.cz/documents/c5c884ef23d64536886a02fe479bd203
    Explore at:
    Dataset updated
    May 25, 2022
    Dataset authored and provided by
    Statutární město Brno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brno, Česko
    Description

    English description below. Reprezentativní sociologický průzkum na cílové populaci osob ve věku 18 a více let ČR je opakované, tzv. omnibusové šetření, jehož cílem je postihnout obraz města Brna v očích obyvatel ČR (tzv. vnější image). První vlna se uskutečnila v roce 2009, druhá vlna v roce 2013, třetí vlna v roce 2017 a čtvrtá vlna, která je předmětem této datové sady, v roce 2022. Hlavní výzkumné okruhy jsou: 1. Identifikace intenzity znalosti města Brna v dospělé populaci ČR, 2. Zjištění úrovně sympatií k městu Brnu, 3. Analýza image města Brna, 4. Analýza asociací obyvatel ČR spojených s městem Brnem. Výzkum byl realizován jako terénní dotazníkové šetření na reprezentativním vzorku populace Česka ve věku 18 a více let. Sběr byl realizován na základě kvótního výběru. Stanovenými kvótními znaky byly pohlaví, věk, nejvyšší dosažené vzdělání, velikost sídla a kraj bydliště respondenta. Velikost výběrového souboru: 1023 dotazníků. Datovou matici (ve formátu .sav) najdete zde.A representative sociological survey of the target population of adults aged 18 and over in the Czech Republic is a repeated, so-called omnibus survey, the aim of which is to capture the image of the city of Brno in the eyes of the Czech population (the so-called external image). The first wave took place in 2009, the second wave in 2013, the third wave in 2017, and the forth wave, which is the subject of this data set, in 2022. The main research areas are: 1. Identification of the intensity of knowledge of the city of Brno in the adult population of the Czech Republic, 2. Determination of sympathy to the city of Brno, 3. Analysis of the image of the city of Brno. 4. Analysis of associations of the population of the Czech Republic conected with the city of Brno. The research was carried out as a field questionnaire survey on a representative sample of the Czech population aged 18 and over. The collection was carried out on the basis of quota selection. The set quota characteristics were gender, age, highest education, size of residence and region of residence of the respondent. Method: CAPI standardized F2F interviews (electronic questionnaire), • interviews took place in respondents' households • Data collection tool: questionnaire containing closed and open questions • Data collection deadline: Spring of the year 2022 • Sample size: 1023 questionnaires • Data matrix (.sav) can be downloaded here.

  18. a

    Vnímání města Brna v zahraničí 2017 / The perception of the city of Brno...

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • datahub.brno.cz
    • +2more
    Updated Jan 17, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statutární město Brno (2022). Vnímání města Brna v zahraničí 2017 / The perception of the city of Brno abroad 2017 [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/documents/2b959cd614374f8fbbfd1432c4b30010
    Explore at:
    Dataset updated
    Jan 17, 2022
    Dataset authored and provided by
    Statutární město Brno
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Brno-město, Brno
    Description

    English description below. Cílem výzkumu Vnímání image města Brna v zahraničí bylo popsat aktuální stav znalosti a vnímání Brna v okolních zemích, vyhodnotit asociace spojované s městem Brnem v zahraničí a porovnat je s asociacemi ostatních českých měst, a definovat zdroje informací o městě. Výzkum byl realizován ve čtyřech státech (Slovensko, Polsko, Německo a Rakousko) na vzorku 1 500 respondentů prostřednictvím on-line dotazování na reprezentativním panelu. Cílovou skupinou šetření byli zahraniční turisté všech věkových kategorií (ve věku 15+), kteří alespoň jednou v posledních 3 letech navštívili ČR, a to na 1 nebo více dní anebo uvažují nad návštěvou v příštích 12 měsících. Datovou matici, tabulky a dotazník najdete zde.Main goals of the research on the perception of the image of the city of Brno abroad - describe the current state of knowledge and perception of Brno in neighboring countries, analyze the current perception of the image of the city abroad, evaluate associations with the city of Brno and compare them with associations of other Czech cities. The research was conducted in four countries (Slovakia, Poland, Germany and Austria) on a sample of 1,500 respondents through online surveys on a representative panel. The target group of the survey were foreign tourists of all ages (aged 15+) who visited the Czech Republic at least once in the last 3 years, for 1 or more days or are considering a visit in the next 12 months. Data matrix, questionnaire and tables can be found here.

  19. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista, Largest cities in Czechia 2025, by population [Dataset]. https://www.statista.com/statistics/369777/largest-cities-in-czechia/

Largest cities in Czechia 2025, by population

Explore at:
Dataset authored and provided by
Statista
Area covered
Czechia
Description

Prague was the most populous city in Czechia with nearly *** million inhabitants as of the beginning of 2025. Brno was the second largest city in population with over ******* inhabitants, followed by Ostrava with a population of around *******.

Search
Clear search
Close search
Google apps
Main menu