Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From the foods we eat and the houses we construct, to our religious practices and political organization, to who we can marry and the types of games we teach our children, the diversity of cultural practices in the world is astounding. Yet, our ability to visualize and understand this diversity is limited by the ways it has been documented and shared: on a culture-by-culture basis, in locally-told stories or difficult-to-access repositories. In this paper we introduce D-PLACE, the Database of Places, Language, Culture, and Environment. This expandable and open-access database (accessible at https://d-place.org) brings together a dispersed corpus of information on the geography, language, culture, and environment of over 1400 human societies. We aim to enable researchers to investigate the extent to which patterns in cultural diversity are shaped by different forces, including shared history, demographics, migration/diffusion, cultural innovations, and environmental and ecological conditions. We detail how D-PLACE helps to overcome four common barriers to understanding these forces: i) location of relevant cultural data, (ii) linking data from distinct sources using diverse ethnonyms, (iii) variable time and place foci for data, and (iv) spatial and historical dependencies among cultural groups that present challenges for analysis. D-PLACE facilitates the visualisation of relationships among cultural groups and between people and their environments, with results downloadable as tables, on a map, or on a linguistic tree. We also describe how D-PLACE can be used for exploratory, predictive, and evolutionary analyses of cultural diversity by a range of users, from members of the worldwide public interested in contrasting their own cultural practices with those of other societies, to researchers using large-scale computational phylogenetic analyses to study cultural evolution. In summary, we hope that D-PLACE will enable new lines of investigation into the major drivers of cultural change and global patterns of cultural diversity.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Cite the source of the dataset as:
Kathryn R. Kirby, Russell D. Gray, Simon J. Greenhill, Fiona M. Jordan, Stephanie Gomes-Ng, Hans-Jörg Bibiko, Damián E. Blasi, Carlos A. Botero, Claire Bowern, Carol R. Ember, Dan Leehr, Bobbi S. Low, Joe McCarter, William Divale, and Michael C. Gavin. (2016). D-PLACE: A Global Database of Cultural, Linguistic and Environmental Diversity. PLoS ONE, 11(7): e0158391. doi:10.1371/journal.pone.0158391.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
List of the 14 basic food-sharing practices.
Attribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Cite the source of the dataset as:
Murdock, G. P., R. Textor, H. Barry, III, D. R. White, J. P. Gray, and W. T. Divale. 1999. Ethnographic Atlas. World Cultures 10:24-136 (codebook)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of data and tools relevant to the different types of analyses made possible by D-PLACE.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary of all the variables considered in this study.
Please refer to ReadMe file.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This article presents a cross-cultural study of the relationship among the subsistence strategies, the environmental setting and the food sharing practices of 22 modern small-scale societies located in America (n = 18) and Siberia (n = 4). Ecological, geographical and economic variables of these societies were extracted from specialized literature and the publicly available D-PLACE database. The approach proposed comprises a variety of quantitative methods, ranging from exploratory techniques aimed at capturing relationships of any type between variables, to network theory and supervised-learning predictive modelling. Results provided by all techniques consistently show that the differences observed in food sharing practices across the sampled populations cannot be explained just by the differential distribution of ecological, geographical and economic variables. Food sharing has to be interpreted as a more complex cultural phenomenon, whose variation over time and space cannot be ascribed only to local adaptation.
This dataset contains model-based census tract-level estimates for the PLACES 2022 release. PLACES covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 13 for health outcomes, 9 for preventive services use, 4 for chronic disease-related health risk behaviors, and 3 for health status. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2020 or 2019 data, Census Bureau 2010 population data, and American Community Survey 2015–2019 estimates. The 2022 release uses 2020 BRFSS data for 25 measures and 2019 BRFSS data for 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, and cholesterol screening) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.
This dataset contains model-based census tract-level estimates for the PLACES 2021 release. PLACES is the expansion of the original 500 Cities project and covers the entire United States—50 states and the District of Columbia (DC)—at county, place, census tract, and ZIP Code Tabulation Area (ZCTA) levels. It represents a first-of-its kind effort to release information uniformly on this large scale for local areas at 4 geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. The dataset includes estimates for 29 measures: 4 chronic disease-related health risk behaviors, 13 health outcomes, 3 health status, and 9 on use of preventive services. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates include Behavioral Risk Factor Surveillance System (BRFSS) 2019 or 2018 data, Census Bureau 2010 population data, and American Community Survey (ACS) 2015–019 or 2014–2018 estimates. The 2021 release uses 2019 BRFSS data for 22 measures and 2018 BRFSS data for 7 measures (all teeth lost, dental visits, mammograms, cervical cancer screening, colorectal cancer screening, core preventive services among older adults, and sleeping less than 7 hours a night). Seven measures are based on the 2018 BRFSS because the relevant questions are only asked every other year in the BRFSS. More information about the methodology can be found at www.cdc.gov/places.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MCGD_Data_V2 contains all the data that we have collected on locations in modern China. Altogether there are 466,162 entries. The data include the name of locations and their variants in Chinese, pinyin, and any recorded transliteration; the name of the province in Chinese and in pinyin; Province ID; the latitude and longitude; the Name ID and Location ID. The Name IDs all start with N followed by seven digits, except for locations in Taiwan that start with "T" (data from Geonames). This is the internal ID system of MCGD. Locations IDs that start with "DH" are data points extracted from China Historical GIS (Harvard University); those that start with "D" are locations extracted from the data points in Geonames; those that have only digits (8 digits) are data points we have added from various map sources.
One of the main features of the MCGD Main Dataset is the systematic collection and compilation of place names from non-Chinese language historical sources. Locations were designated in transliteration systems that are hardly comprehensible today, which makes it very difficult to find the actual locations they correspond to. This dataset allows for the conversion from these obsolete transliterations to the current names and geocoordinates.
This dataset was collected from accounts of witchcraft accusations that took place in 44 Bantu societies from sub-Saharan Africa. The accusations are historic. Source materials were originally identified from societies listed in the Ethnographic Atlas (Murdock 1967), a large cross-cultural database. These were acquired from the website d-place.org (Kirby et al. 2016).The dataset includes information on the sex of the accused witch and their relationship to their accusers and purported victims. There are also variables taken from the Ethnographic Atlas that were amended for the analysis by combining categories. These include information on post-marital residence patterns (where couples live after marriage) and levels of polygamous marriage.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset contains model-based census tract estimates. PLACES covers the entire United States—50 states and the District of Columbia—at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. The dataset includes estimates for 40 measures: 12 for health outcomes, 7 for preventive services use, 4 for chronic disease-related health risk behaviors, 7 for disabilities, 3 for health status, and 7 for health-related social needs. These estimates can be used to identify emerging health problems and to help develop and carry out effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population data, and American Community Survey 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. More information about the methodology can be found at www.cdc.gov/places.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
From the foods we eat and the houses we construct, to our religious practices and political organization, to who we can marry and the types of games we teach our children, the diversity of cultural practices in the world is astounding. Yet, our ability to visualize and understand this diversity is limited by the ways it has been documented and shared: on a culture-by-culture basis, in locally-told stories or difficult-to-access repositories. In this paper we introduce D-PLACE, the Database of Places, Language, Culture, and Environment. This expandable and open-access database (accessible at https://d-place.org) brings together a dispersed corpus of information on the geography, language, culture, and environment of over 1400 human societies. We aim to enable researchers to investigate the extent to which patterns in cultural diversity are shaped by different forces, including shared history, demographics, migration/diffusion, cultural innovations, and environmental and ecological conditions. We detail how D-PLACE helps to overcome four common barriers to understanding these forces: i) location of relevant cultural data, (ii) linking data from distinct sources using diverse ethnonyms, (iii) variable time and place foci for data, and (iv) spatial and historical dependencies among cultural groups that present challenges for analysis. D-PLACE facilitates the visualisation of relationships among cultural groups and between people and their environments, with results downloadable as tables, on a map, or on a linguistic tree. We also describe how D-PLACE can be used for exploratory, predictive, and evolutionary analyses of cultural diversity by a range of users, from members of the worldwide public interested in contrasting their own cultural practices with those of other societies, to researchers using large-scale computational phylogenetic analyses to study cultural evolution. In summary, we hope that D-PLACE will enable new lines of investigation into the major drivers of cultural change and global patterns of cultural diversity.