On March 4, 2020, the first death as a result of coronavirus (COVID-19) was recorded in the United Kingdom (UK). The number of deaths in the UK has increased significantly since then. As of January 13, 2023, the number of confirmed deaths due to coronavirus in the UK amounted to 202,157. On January 21, 2021, 1,370 deaths were recorded, which was the highest total in single day in the UK since the outbreak began.
Number of deaths among highest in Europe
The UK has had the highest number of deaths from coronavirus in western Europe. In terms of rate of coronavirus deaths, the UK has recorded 297.8 deaths per 100,000 population.
Cases in the UK The number of confirmed cases of coronavirus in the UK was 24,243,393 as of January 13, 2023. The South East has the highest number of first-episode confirmed cases of the virus in the UK with 3,123,050 cases, while London and the North West have 2,912,859 and 2,580,090 confirmed cases respectively. As of January 16, the UK has had 50 new cases per 100,000 in the last seven days.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United Kingdom recorded 225324 Coronavirus Deaths since the epidemic began, according to the World Health Organization (WHO). In addition, United Kingdom reported 24603076 Coronavirus Cases. This dataset includes a chart with historical data for the United Kingdom Coronavirus Deaths.
Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.
The difficulties of death figures
This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.
Where are these numbers coming from?
The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional counts of the number of deaths registered in England and Wales, including deaths involving coronavirus (COVID-19), by local authority, health board and place of death in the latest weeks for which data are available. The occurrence tabs in the 2021 edition of this dataset were updated for the last time on 25 October 2022.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Provisional data on excess mortality (excluding COVID-19) during heat-periods in the 65 years and over age group estimates in England, including the estimated number of deaths where the death occurred within 28 days of a positive COVID-19 result and the mean central England temperature.
As of January 12, 2023, COVID-19 has been responsible for 202,157 deaths in the UK overall. The North West of England has been the most affected area in terms of deaths at 28,116, followed by the South East of England with 26,221 coronavirus deaths. Furthermore, there have been 22,264 mortalities in London as a result of COVID-19.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
Within the current response of a pandemic caused by the SARS-CoV-2 coronavirus, which in turn causes the disease, called COVID-19. It is necessary to join forces to minimize the effects of this disease.
Therefore, the intention of this dataset is to save data scientists time:
This dataset is not intended to be static, so suggestions for expanding it are welcome. If someone considers it important to add information, please let me know.
The data contained in this dataset comes mainly from the following sources:
Source: Center for Systems Science and Engineering (CSSE) at Johns Hopkins University https://github.com/CSSEGISandData/COVID-19 Provided by Johns Hopkins University Center for Systems Science and Engineering (JHU CSSE): https://systems.jhu.edu/
Source: OXFORD COVID-19 GOVERNMENT RESPONSE TRACKER https://www.bsg.ox.ac.uk/research/research-projects/oxford-covid-19-government-response-tracker Hale, Thomas and Samuel Webster (2020). Oxford COVID-19 Government Response Tracker. Data use policy: Creative Commons Attribution CC BY standard.
The original data is updated daily.
The features it includes are:
Country Name
Country Code ISO 3166 Alpha 3
Date
Incidence data:
Daily increments:
Empirical Contagion Rate - ECR
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F3508582%2F3e90ecbcdf76dfbbee54a21800f5e0d6%2FECR.jpg?generation=1586861653126435&alt=media" alt="">
GOVERNMENT RESPONSE TRACKER - GRTStringencyIndex
OXFORD COVID-19 GOVERNMENT RESPONSE TRACKER - Stringency Index
Indices from Start Contagion
Percentages over the country's population:
The method of obtaining the data and its transformations can be seen in the notebook:
Notebook COVID-19 Data by country with Government Response
Photo by Markus Spiske on Unsplash
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Age-standardised mortality rates for deaths involving coronavirus (COVID-19), non-COVID-19 deaths and all deaths by vaccination status, broken down by age group.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The number of deaths, based on a 7-day rolling sum of deaths recorded where a diagnosis of Covid-19 within 28 days of the date of death has been recorded.Please note automatic updates to this dataset was discontinued on 3rd July 2023.
These reports summarise the surveillance of influenza, COVID-19 and other seasonal respiratory illnesses.
Weekly findings from community, primary care, secondary care and mortality surveillance systems are included in the reports.
This page includes reports published from 14 July 2022 to 6 July 2023.
Previous reports on influenza surveillance are also available for:
View previous COVID-19 surveillance reports.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset contains a daily situation update on COVID-19, the epidemiological curve and the global geographical distribution (EU/EEA and the UK, worldwide).
On 12 February 2020, the novel coronavirus was named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) while the disease associated with it is now referred to as COVID-19. Since the beginning of the coronavirus pandemic, ECDC’s Epidemic Intelligence team has been collecting on daily basis the number of COVID-19 cases and deaths, based on reports from health authorities worldwide. To insure the accuracy and reliability of the data, this process is being constantly refined. This helps to monitor and interpret the dynamics of the COVID-19 pandemic not only in the European Union (EU), the European Economic Area (EEA), but also worldwide. Every day between 6.00 and 10.00 CET, a team of epidemiologists screens up to 500 relevant sources to collect the latest figures. The data screening is followed by ECDC’s standard epidemic intelligence process for which every single data entry is validated and documented in an ECDC database. An extract of this database, complete with up-to-date figures and data visualisations, is then shared on the ECDC website, ensuring a maximum level of transparency.
ECDC switched to a weekly reporting schedule for the COVID-19 situation worldwide and in the EU/EEA and the UK on 17 December 2020. Hence, all daily updates have been discontinued from 14 December. The weekly data can be found in the dataset COVID-19 Coronavirus data - weekly (from 17 December 2020).
If you reuse or enrich this dataset, please share it with us.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Notes:
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
Estimates of the risk of hospital admission for coronavirus (COVID-19) and death involving COVID-19 by vaccination status, overall and by age group, using anonymised linked data from Census 2021. Experimental Statistics.
Outcome definitions
For this analysis, we define a death as involving COVID-19 if either of the ICD-10 codes U07.1 (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified) is mentioned on the death certificate. Information on cause of death coding is available in the User Guide to Mortality Statistics. We use date of occurrance rather than date of registration to give the date of the death.
We define COVID-109 hospitalisation as an inpatient episode in Hospital Episode Statistics where the primary diagnosis was COVID-19, identified by the ICD-19 codes (COVID-19, virus identified) or U07.2 (COVID-19, virus not identified). Where an individual had experienced more than one COVID-19 hospitalisation, the earliest that occurred within the study period was used. We define the date of COVID-19 hospitalisation as the start of the hospital episode.
ICD-10 code
U07.1 :
COVID-19, virus identified
U07.2:
COVID-19, virus not identified
Vaccination status is defined by the dose and the time since the last dose received
Unvaccinated:
no vaccination to less than 21 days post first dose
First dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post first dose or less than 21 days post second dose
First dose 3+ months:
more than or equal to 91 days post first dose to less than 21 days post second dose
Second dose 21 days to 3 months:
more than or equal to 21 days post second dose to earliest of less than 91 days post second dose or less than 21 days post third dose
Second dose 3-6 months:
more than or equal to 91 days post second dose to earliest of less than 182 days post second dose or less than 21 days post third dose
Second dose 6+ months:
more than or equal to 182 days post second dose to less than 21 days post third dose
Third dose 21 days to 3 months:
more than or equal to 21 days post third dose to less than 91 days post third dose
Third dose 3+ months:
more than or equal to 91 days post third dose
Model adjustments
Three sets of model adjustments were used
Age adjusted:
age (as a natural spline)
Age, socio-demographics adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status)
Fully adjusted:
age (as a natural spline), plus socio-demographic characteristics (sex, region, ethnicity, religion, IMD decile, NSSEC category, highest qualification, English language proficiency, key worker status), plus health-related characteristics (disability, self-reported health, care home residency, number of QCovid comorbidities (grouped), BMI category, frailty flag and hospitalisation within the last 21 days.
Age
Age in years is defined on the Census day 2021 (21 March 2021). Age is included in the model as a natural spline with boundary knots at the 10th and 90th centiles and internal knots at the 25th, 50th and 75th centiles. The positions of the knots are calculated separately for the overall model and for each age group for the stratified model.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Virgin Islands (British) WHO: COVID-2019: Number of Patients: Death: New: British Virgin Islands data was reported at 0.000 Person in 24 Dec 2023. This stayed constant from the previous number of 0.000 Person for 23 Dec 2023. Virgin Islands (British) WHO: COVID-2019: Number of Patients: Death: New: British Virgin Islands data is updated daily, averaging 0.000 Person from Mar 2020 (Median) to 24 Dec 2023, with 1369 observations. The data reached an all-time high of 7.000 Person in 09 Feb 2022 and a record low of 0.000 Person in 24 Dec 2023. Virgin Islands (British) WHO: COVID-2019: Number of Patients: Death: New: British Virgin Islands data remains active status in CEIC and is reported by World Health Organization. The data is categorized under High Frequency Database’s Disease Outbreaks – Table WHO.D002: World Health Organization: Coronavirus Disease 2019 (COVID-2019): by Country and Region (Discontinued).
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This publication of the SHMI relates to discharges in the reporting period October 2022 - September 2023 The SHMI is the ratio between the actual number of patients who die following hospitalisation at the trust and the number that would be expected to die on the basis of average England figures, given the characteristics of the patients treated there. The SHMI covers patients admitted to hospitals in England who died either while in hospital or within 30 days of being discharged. Deaths related to COVID-19 are excluded from the SHMI. To help users of the data understand the SHMI, trusts have been categorised into bandings indicating whether a trust's SHMI is 'higher than expected', 'as expected' or 'lower than expected'. For any given number of expected deaths, a range of observed deaths is considered to be 'as expected'. If the observed number of deaths falls outside of this range, the trust in question is considered to have a higher or lower SHMI than expected. The expected number of deaths is a statistical construct and is not a count of patients. The difference between the number of observed deaths and the number of expected deaths cannot be interpreted as the number of avoidable deaths or excess deaths for the trust. The SHMI is not a measure of quality of care. A higher than expected number of deaths should not immediately be interpreted as indicating poor performance and instead should be viewed as a 'smoke alarm' which requires further investigation. Similarly, an 'as expected' or 'lower than expected' SHMI should not immediately be interpreted as indicating satisfactory or good performance. Trusts may be located at multiple sites and may be responsible for 1 or more hospitals. A breakdown of the data by site of treatment is also provided, as well as a breakdown of the data by diagnosis group. Further background information and supporting documents, including information on how to interpret the SHMI, are available on the SHMI homepage (see Related Links). Information about the exclusion of COVID-19 from the SHMI can also be found on the same page. A link to the methodological changes statement which details the exclusion is also available in the Related Links section
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Notes:
According to a survey conducted in the United Kingdom (UK) in April 2022, 4.13 percent of all people aged between 35 and 49 years reported to be suffering from long COVID symptoms, the highest share across all age groups. Furthermore, around 3.7 percent of the population aged 50 to 69 years were estimated to suffer from long COVID. Overall, around 863 thousand people in the UK reported their ability to undertake daily activities and routines was affected a little by long COVID symptoms.
Present state of COVID-19 As of May 2022, over 22 million COVID-19 cases had been reported in the UK. The largest surge of cases was noted over the winter period 2021/22. The incidence of cases in the county since the pandemic began stood at around 32,624 per 100,000 population. Cyprus had the highest incidence of COVID-19 cases among its population in Europe at 75,798 per 100,000 people, followed by a rate of 51,573 in Iceland. Over 175 thousand COVID-19 deaths have been reported in the UK. The deadliest day on record was January 20, 2021, when 1,820 deaths were recorded. In the UK, a COVID-19 death is defined as a person who died within 28 days of a positive test.
Preventing long COVID through vaccination According to the WHO, being fully vaccinated alongside a significant proportion of the population also vaccinated is the best way to avoid the spread of COVID-19 or serious symptoms associated with the virus. It is therefore regarded that receiving a vaccine course as well as subsequent booster vaccines limits the chance of developing long COVID symptoms. As of April 27, 2022, around 53.2 million first doses, 49.7 million second doses, and 39.2 booster doses had been administered in the UK.
For the week ending March 7, 2025, weekly deaths in England and Wales were 124 below the number expected, compared with 460 fewer than expected in the previous week. In late 2022, and through early 2023, excess deaths were elevated for a number of weeks, with the excess deaths figure for the week ending January 13, 2023, the highest since February 2021. In the middle of April 2020, at the height of the Coronavirus (COVID-19) pandemic, there were almost 12,000 excess deaths a week recorded in England and Wales. It was not until two months later, in the week ending June 19, 2020, that the number of deaths began to be lower than the five-year average for the corresponding week. Most deaths since 1918 in 2020 In 2020, there were 689,629 deaths in the United Kingdom, making that year the deadliest since 1918, at the height of the Spanish influenza pandemic. As seen in the excess death figures, April 2020 was by far the worst month in terms of deaths during the pandemic. The weekly number of deaths for weeks 16 and 17 of that year were 22,351, and 21,997 respectively. Although the number of deaths fell to more usual levels for the rest of that year, a winter wave of the disease led to a high number of deaths in January 2021, with 18,676 deaths recorded in the fourth week of that year. For the whole of 2021, there were 667,479 deaths in the UK, 22,150 fewer than in 2020. Life expectancy in the UK goes into reverse In 2022, life expectancy at birth for women in the UK was 82.6 years, while for men it was 78.6 years. This was the lowest life expectancy in the country for ten years, and came after life expectancy improvements stalled throughout the 2010s, and then declined from 2020 onwards. There is also quite a significant regional difference in life expectancy in the UK. In the London borough of Kensington and Chelsea, for example, the life expectancy for men was 81.5 years, and 86.5 years for women. By contrast, in Blackpool, in North West England, male life expectancy was just 73.1 years, while for women life expectancy was lowest in Glasgow, at 78 years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Coronavirus (COVID-19) Press Briefings Corpus is a work in progress to collect and present in a machine readable text dataset of the daily briefings from around the world by government authorities. During the peak of the pandemic, most countries around the world informed their citizens of the status of the pandemic (usually involving an update on the number of infection cases, number of deaths) and other policy-oriented decisions about dealing with the health crisis, such as advice about what to do to reduce the spread of the epidemic.
Usually daily briefings did not occur on a Sunday.
At the moment the dataset includes:
More countries will be added in due course, and we will be keeping this updated to cover the latest daily briefings available.
The corpus is compiled to allow for further automated political discourse analysis (classification).
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
This indicator is designed to accompany the SHMI publication. The SHMI includes all deaths reported of patients who were admitted to non-specialist acute trusts in England and either died while in hospital or within 30 days of discharge. Deaths related to COVID-19 are excluded from the SHMI. A contextual indicator on the percentage of deaths reported in the SHMI which occurred in hospital and the percentage which occurred outside of hospital is produced to support the interpretation of the SHMI. Notes: 1. For discharges in the reporting period April 2024 - May 2024, almost all of the records for Wirral University Teaching Hospital NHS Foundation Trust (trust code RBL) have been submitted without an NHS number. This will have affected the linkage of the HES data to the ONS death registrations data and may have resulted in a smaller number of deaths occurring outside hospital within 30 days of discharge being identified for this trust than would have otherwise been the case. The results for this trust should therefore be interpreted with caution. 2. There is a shortfall in the number of records for North Middlesex University Hospital NHS Trust (trust code RAP), Northumbria Healthcare NHS Foundation Trust (trust code RTF), The Rotherham NHS Foundation Trust (trust code RFR), and The Shrewsbury and Telford Hospital NHS Trust (trust code RXW). Values for these trusts are based on incomplete data and should therefore be interpreted with caution. 3. A number of trusts are now submitting Same Day Emergency Care (SDEC) data to the Emergency Care Data Set (ECDS) rather than the Admitted Patient Care (APC) dataset. The SHMI is calculated using APC data. Removal of SDEC activity from the APC data may impact a trust’s SHMI value and may increase it. More information about this is available in the Background Quality Report. 4. Further information on data quality can be found in the SHMI background quality report, which can be downloaded from the 'Resources' section of this page.
On March 4, 2020, the first death as a result of coronavirus (COVID-19) was recorded in the United Kingdom (UK). The number of deaths in the UK has increased significantly since then. As of January 13, 2023, the number of confirmed deaths due to coronavirus in the UK amounted to 202,157. On January 21, 2021, 1,370 deaths were recorded, which was the highest total in single day in the UK since the outbreak began.
Number of deaths among highest in Europe
The UK has had the highest number of deaths from coronavirus in western Europe. In terms of rate of coronavirus deaths, the UK has recorded 297.8 deaths per 100,000 population.
Cases in the UK The number of confirmed cases of coronavirus in the UK was 24,243,393 as of January 13, 2023. The South East has the highest number of first-episode confirmed cases of the virus in the UK with 3,123,050 cases, while London and the North West have 2,912,859 and 2,580,090 confirmed cases respectively. As of January 16, the UK has had 50 new cases per 100,000 in the last seven days.
For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.