Facebook
TwitterIn 2023, the number of deaths per 1,000 inhabitants in India was ****. Between 1960 and 2023, the figure dropped by *****, though the decline followed an uneven course rather than a steady trajectory.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Andhra Pradesh: Urban data was reported at 4.900 NA in 2020. This records an increase from the previous number of 4.800 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Andhra Pradesh: Urban data is updated yearly, averaging 5.400 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 6.100 NA in 1998 and a record low of 4.800 NA in 2019. Vital Statistics: Death Rate: per 1000 Population: Andhra Pradesh: Urban data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data was reported at 5.300 NA in 2020. This records an increase from the previous number of 5.200 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data is updated yearly, averaging 6.200 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 7.700 NA in 1998 and a record low of 5.200 NA in 2019. Vital Statistics: Death Rate: per 1000 Population: West Bengal: Rural data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data was reported at 4.200 NA in 2020. This records a decrease from the previous number of 4.300 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data is updated yearly, averaging 4.500 NA from Dec 2014 (Median) to 2020, with 7 observations. The data reached an all-time high of 4.900 NA in 2015 and a record low of 4.200 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
From World Health Organization - On 31 December 2019, WHO was alerted to several cases of pneumonia in Wuhan City, Hubei Province of China. The virus did not match any other known virus. This raised concern because when a virus is new, we do not know how it affects people.
So daily level information on the affected people can give some interesting insights when it is made available to the broader data science community.
Johns Hopkins University has made an excellent dashboard using the affected cases data. Data is extracted from the google sheets associated and made available here.
Now data is available as csv files in the Johns Hopkins Github repository. Please refer to the github repository for the Terms of Use details. Uploading it here for using it in Kaggle kernels and getting insights from the broader DS community.
2019 Novel Coronavirus (2019-nCoV) is a virus (more specifically, a coronavirus) identified as the cause of an outbreak of respiratory illness first detected in Wuhan, China. Early on, many of the patients in the outbreak in Wuhan, China reportedly had some link to a large seafood and animal market, suggesting animal-to-person spread. However, a growing number of patients reportedly have not had exposure to animal markets, indicating person-to-person spread is occurring. At this time, it’s unclear how easily or sustainably this virus is spreading between people - CDC
This dataset has daily level information on the number of affected cases, deaths and recovery from 2019 novel coronavirus. Please note that this is a time series data and so the number of cases on any given day is the cumulative number.
The data is available from 22 Jan, 2020.
Here’s a polished version suitable for a professional Kaggle dataset description:
This dataset contains time-series and case-level records of the COVID-19 pandemic. The primary file is covid_19_data.csv, with supporting files for earlier records and individual-level line list data.
This is the primary dataset and contains aggregated COVID-19 statistics by location and date.
This file contains earlier COVID-19 records. It is no longer updated and is provided only for historical reference. For current analysis, please use covid_19_data.csv.
This file provides individual-level case information, obtained from an open data source. It includes patient demographics, travel history, and case outcomes.
Another individual-level case dataset, also obtained from public sources, with detailed patient-level information useful for micro-level epidemiological analysis.
✅ Use covid_19_data.csv for up-to-date aggregated global trends.
✅ Use the line list datasets for detailed, individual-level case analysis.
If you are interested in knowing country level data, please refer to the following Kaggle datasets:
India - https://www.kaggle.com/sudalairajkumar/covid19-in-india
South Korea - https://www.kaggle.com/kimjihoo/coronavirusdataset
Italy - https://www.kaggle.com/sudalairajkumar/covid19-in-italy
Brazil - https://www.kaggle.com/unanimad/corona-virus-brazil
USA - https://www.kaggle.com/sudalairajkumar/covid19-in-usa
Switzerland - https://www.kaggle.com/daenuprobst/covid19-cases-switzerland
Indonesia - https://www.kaggle.com/ardisragen/indonesia-coronavirus-cases
Johns Hopkins University for making the data available for educational and academic research purposes
MoBS lab - https://www.mobs-lab.org/2019ncov.html
World Health Organization (WHO): https://www.who.int/
DXY.cn. Pneumonia. 2020. http://3g.dxy.cn/newh5/view/pneumonia.
BNO News: https://bnonews.com/index.php/2020/02/the-latest-coronavirus-cases/
National Health Commission of the People’s Republic of China (NHC): http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml
China CDC (CCDC): http://weekly.chinacdc.cn/news/TrackingtheEpidemic.htm
Hong Kong Department of Health: https://www.chp.gov.hk/en/features/102465.html
Macau Government: https://www.ssm.gov.mo/portal/
Taiwan CDC: https://sites.google....
Facebook
TwitterCoronavirus is a family of viruses that can cause illness, which can vary from common cold and cough to sometimes more severe disease. SARS-CoV-2 (n-coronavirus) is the new virus of the coronavirus family, which first discovered in 2019, which has not been identified in humans before. It is a contiguous virus which started from Wuhan in December 2019. Which later declared as Pandemic by WHO due to high rate spreads throughout the world. Currently (on date 27 March 2020), this leads to a total of 24K+ Deaths across the globe, including 16K+ deaths alone in Europe.Pandemic is spreading all over the world; it becomes more important to understand about this spread.
The number of new cases are increasing day by day around the world. This dataset has information from the states and union territories of India at daily level.
State Wise data fetched from Ministry of Health & Family Welfare ICMR Testing Data comes from Indian Council of Medical Research
COVID-19 cases at daily level is present in covid_19_india.csv file
COVID-19 State and Union Territory data with latitude and longitude is present in state_wise_data.csv file
COVID-19 cases at daily level is present in data_wise_data.csv and perday_new_cases.csv file
Number of COVID-19 tests and positive cases at daily level in ICMR_Testing_Data.csv file
Thanks to Ministry of Health & Family Welfare for making the data available to general public.
This work is highly inspired from few other kaggle kernels , github sources and other data science resources. Any traces of replications, which may appear , is purely co-incidental. Due respect & credit to all my fellow kagglers.
Together we can do this. Help the world to make a better place and with this fight against COVID-19.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Karnataka data was reported at 6.200 NA in 2020. This stayed constant from the previous number of 6.200 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Karnataka data is updated yearly, averaging 7.100 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 7.900 NA in 1998 and a record low of 6.200 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Karnataka data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterIn 2023, the infant mortality rate in India was at about 24.5 deaths per 1,000 live births, a significant decrease from previous years. Infant mortality as an indicatorThe infant mortality rate is the number of deaths of children under one year of age per 1,000 live births. This rate is an important key indicator for a country’s health and standard of living; a low infant mortality rate indicates a high standard of healthcare. Causes of infant mortality include premature birth, sepsis or meningitis, sudden infant death syndrome, and pneumonia. Globally, the infant mortality rate has shrunk from 63 infant deaths per 1,000 live births to 27 since 1990 and is forecast to drop to 8 infant deaths per 1,000 live births by the year 2100. India’s rural problemWith 32 infant deaths per 1,000 live births, India is neither among the countries with the highest nor among those with the lowest infant mortality rate. Its decrease indicates an increase in medical care and hygiene, as well as a decrease in female infanticide. Increasing life expectancy at birth is another indicator that shows that the living conditions of the Indian population are improving. Still, India’s inhabitants predominantly live in rural areas, where standards of living as well as access to medical care and hygiene are traditionally lower and more complicated than in cities. Public health programs are thus put in place by the government to ensure further improvement.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Covid-19 Data collected from various sources on the internet. This dataset has daily level information on the number of affected cases, deaths, and recovery from the 2019 novel coronavirus. Please note that this is time-series data and so the number of cases on any given day is the cumulative number.
The dataset includes 28 files scrapped from various data sources mainly the John Hopkins GitHub repository, the ministry of health affairs India, worldometer, and Our World in Data website. The details of the files are as follows
countries-aggregated.csv
A simple and cleaned data with 5 columns with self-explanatory names.
-covid-19-daily-tests-vs-daily-new-confirmed-cases-per-million.csv
A time-series data of daily test conducted v/s daily new confirmed case per million. Entity column represents Country name while code represents ISO code of the country.
-covid-contact-tracing.csv
Data depicting government policies adopted in case of contact tracing. 0 -> No tracing, 1-> limited tracing, 2-> Comprehensive tracing.
-covid-stringency-index.csv
The nine metrics used to calculate the Stringency Index are school closures; workplace closures; cancellation of public events; restrictions on public gatherings; closures of public transport; stay-at-home requirements; public information campaigns; restrictions on internal movements; and international travel controls. The index on any given day is calculated as the mean score of the nine metrics, each taking a value between 0 and 100. A higher score indicates a stricter response (i.e. 100 = strictest response).
-covid-vaccination-doses-per-capita.csv
A total number of vaccination doses administered per 100 people in the total population. This is counted as a single dose, and may not equal the total number of people vaccinated, depending on the specific dose regime (e.g. people receive multiple doses).
-covid-vaccine-willingness-and-people-vaccinated-by-country.csv
Survey who have not received a COVID vaccine and who are willing vs. unwilling vs. uncertain if they would get a vaccine this week if it was available to them.
-covid_india.csv
India specific data containing the total number of active cases, recovered and deaths statewide.
-cumulative-deaths-and-cases-covid-19.csv
A cumulative data containing death and daily confirmed cases in the world.
-current-covid-patients-hospital.csv
Time series data containing a count of covid patients hospitalized in a country
-daily-tests-per-thousand-people-smoothed-7-day.csv
Daily test conducted per 1000 people in a running week average.
-face-covering-policies-covid.csv
Countries are grouped into five categories:
1->No policy
2->Recommended
3->Required in some specified shared/public spaces outside the home with other people present, or some situations when social distancing not possible
4->Required in all shared/public spaces outside the home with other people present or all situations when social distancing not possible
5->Required outside the home at all times regardless of location or presence of other people
-full-list-cumulative-total-tests-per-thousand-map.csv
Full list of total tests conducted per 1000 people.
-income-support-covid.csv
Income support captures if the government is covering the salaries or providing direct cash payments, universal basic income, or similar, of people who lose their jobs or cannot work. 0->No income support, 1->covers less than 50% of lost salary, 2-> covers more than 50% of the lost salary.
-internal-movement-covid.csv
Showing government policies in restricting internal movements. Ranges from 0 to 2 where 2 represents the strictest.
-international-travel-covid.csv
Showing government policies in restricting international movements. Ranges from 0 to 2 where 2 represents the strictest.
-people-fully-vaccinated-covid.csv
Contains the count of fully vaccinated people in different countries.
-people-vaccinated-covid.csv
Contains the total count of vaccinated people in different countries.
-positive-rate-daily-smoothed.csv
Contains the positivity rate of various countries in a week running average.
-public-gathering-rules-covid.csv
Restrictions are given based on the size of public gatherings as follows:
0->No restrictions
1 ->Restrictions on very large gatherings (the limit is above 1000 people)
2 -> gatherings between 100-1000 people
3 -> gatherings between 10-100 people
4 -> gatherings of less than 10 people
-school-closures-covid.csv
School closure during Covid.
-share-people-fully-vaccinated-covid.csv
Share of people that are fully vaccinated.
-stay-at-home-covid.csv
Countries are grouped into four categories:
0->No measures
1->Recommended not to leave the house
2->Required to not leave the house with exceptions for daily exercise, grocery shopping, and ‘essent...
Facebook
TwitterNumber and percentage of deaths, by month and place of residence, 1991 to most recent year.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Odisha data was reported at 7.300 NA in 2020. This records an increase from the previous number of 7.100 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Odisha data is updated yearly, averaging 8.800 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 11.100 NA in 1998 and a record low of 7.100 NA in 2019. Vital Statistics: Death Rate: per 1000 Population: Odisha data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data was reported at 6.500 NA in 2020. This stayed constant from the previous number of 6.500 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data is updated yearly, averaging 8.200 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 10.500 NA in 1999 and a record low of 6.500 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Uttar Pradesh data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterLatin America became an epicenter of the coronavirus pandemic in May, driven by Brazil’s ballooning caseload. Ten months after its first known case, Brazil has had more than 7.9 million cases and over 200,000 deaths.
In early June, Brazil began averaging about 1,000 deaths per day from Covid-19, joining the United States — and later India — as the countries with the world’s largest death tolls.
This dataset contains information about COVID-19 in Brazil extracted on the date 16/06/2021. It is the most updated dataset available about Covid in Brazil
🔍 date: date that the data was collected. format YYYY-MM-DD.
🔍 state: Abbreviation for States. Example: SP
🔍 city: Name of the city (if the value is NaN, they are referring to the State, not the city)
🔍 place_type: Can be City or State
🔍 order_for_place: Number that identifies the registering order for this location. The line that refers to the first log is going to be shown as 1, and the following information will start the count as an index.
🔍 is_last: Show if the line was the last update from that place, can be True or False
🔍 city_ibge_code: IBGE Code from the location
🔍confirmed: Number of confirmed cases.
🔍deaths: Number of deaths.
🔍estimated_population: Estimated population for this city/state in 2020. Data from IBGE
🔍estimated_population_2019: Estimated population for this city/state in 2019. Data from IBGE.
🔍confirmed_per_100k_inhabitants: Number of confirmed cases per 100.000 habitants (based on estimated_population).
🔍death_rate: Death rate (deaths / confirmed cases).
This dataset was downloaded from the URL bello. Thanks, Brasil.IO! Their main goal is to make all Brazilian data available to the public DATASET URL: https://brasil.io/dataset/covid19/files/ Cities map file https://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2020/Brasil/BR/
COVID-19 - https://www.kaggle.com/rafaelherrero/covid19-brazil-full-cases-17062021 COVID-19 - https://www.kaggle.com/imdevskp/corona-virus-report MERS - https://www.kaggle.com/imdevskp/mers-outbreak-dataset-20122019 Ebola Western Africa 2014 Outbreak - https://www.kaggle.com/imdevskp/ebola-outbreak-20142016-complete-dataset H1N1 | Swine Flu 2009 Pandemic Dataset - https://www.kaggle.com/imdevskp/h1n1-swine-flu-2009-pandemic-dataset SARS 2003 Pandemic - https://www.kaggle.com/imdevskp/sars-outbreak-2003-complete-dataset HIV AIDS - https://www.kaggle.com/imdevskp/hiv-aids-dataset
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Punjab: Rural data was reported at 8.300 NA in 2020. This records an increase from the previous number of 8.000 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Punjab: Rural data is updated yearly, averaging 7.700 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 8.300 NA in 2020 and a record low of 6.600 NA in 2016. Vital Statistics: Death Rate: per 1000 Population: Punjab: Rural data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterThe statistic shows the total population of India from 2020 to 2030. In 2024, the estimated total population in India amounted to approximately 1.44 billion people. Total population in India India currently has the second-largest population in the world and is projected to overtake top-ranking China within forty years. Its residents comprise more than one-seventh of the entire world’s population, and despite a slowly decreasing fertility rate (which still exceeds the replacement rate and keeps the median age of the population relatively low), an increasing life expectancy adds to an expanding population. In comparison with other countries whose populations are decreasing, such as Japan, India has a relatively small share of aged population, which indicates the probability of lower death rates and higher retention of the existing population. With a land mass of less than half that of the United States and a population almost four times greater, India has recognized potential problems of its growing population. Government attempts to implement family planning programs have achieved varying degrees of success. Initiatives such as sterilization programs in the 1970s have been blamed for creating general antipathy to family planning, but the combined efforts of various family planning and contraception programs have helped halve fertility rates since the 1960s. The population growth rate has correspondingly shrunk as well, but has not yet reached less than one percent growth per year. As home to thousands of ethnic groups, hundreds of languages, and numerous religions, a cohesive and broadly-supported effort to reduce population growth is difficult to create. Despite that, India is one country to watch in coming years. It is also a growing economic power; among other measures, its GDP per capita was expected to triple between 2003 and 2013 and was listed as the third-ranked country for its share of the global gross domestic product.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Gujarat: Urban data was reported at 5.000 NA in 2020. This records a decrease from the previous number of 5.200 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Gujarat: Urban data is updated yearly, averaging 5.600 NA from Dec 1997 (Median) to 2020, with 23 observations. The data reached an all-time high of 6.400 NA in 1998 and a record low of 5.000 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Gujarat: Urban data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Vital Statistics: Death Rate: per 1000 Population: Jammu and Kashmir data was reported at 4.600 NA in 2020. This stayed constant from the previous number of 4.600 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Jammu and Kashmir data is updated yearly, averaging 5.450 NA from Dec 1997 (Median) to 2020, with 22 observations. The data reached an all-time high of 6.200 NA in 2000 and a record low of 4.600 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Jammu and Kashmir data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterIn 2023, the number of deaths per 1,000 inhabitants in India was ****. Between 1960 and 2023, the figure dropped by *****, though the decline followed an uneven course rather than a steady trajectory.