100+ datasets found
  1. c

    Global Daily Death Statistics

    • creatormeter.com
    Updated Nov 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CreatorMeter (2025). Global Daily Death Statistics [Dataset]. https://www.creatormeter.com/deaths-per-day-worldwide
    Explore at:
    Dataset updated
    Nov 12, 2025
    Dataset authored and provided by
    CreatorMeter
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2024 - Present
    Area covered
    Global
    Description

    Real-time data on deaths per day worldwide

  2. Covid19 Global Excess Deaths (daily updates)

    • kaggle.com
    zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joakim Arvidsson (2025). Covid19 Global Excess Deaths (daily updates) [Dataset]. https://www.kaggle.com/datasets/joebeachcapital/covid19-global-excess-deaths-daily-updates
    Explore at:
    zip(2989004967 bytes)Available download formats
    Dataset updated
    Dec 2, 2025
    Authors
    Joakim Arvidsson
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Daily updates of Covid-19 Global Excess Deaths from the Economist's GitHub repository: https://github.com/TheEconomist/covid-19-the-economist-global-excess-deaths-model

    Interpreting estimates

    Estimating excess deaths for every country every day since the pandemic began is a complex and difficult task. Rather than being overly confident in a single number, limited data means that we can often only give a very very wide range of plausible values. Focusing on central estimates in such cases would be misleading: unless ranges are very narrow, the 95% range should be reported when possible. The ranges assume that the conditions for bootstrap confidence intervals are met. Please see our tracker page and methodology for more information.

    New variants

    The Omicron variant, first detected in southern Africa in November 2021, appears to have characteristics that are different to earlier versions of sars-cov-2. Where this variant is now dominant, this change makes estimates uncertain beyond the ranges indicated. Other new variants may do the same. As more data is incorporated from places where new variants are dominant, predictions improve.

    Non-reporting countries

    Turkmenistan and the Democratic People's Republic of Korea have not reported any covid-19 figures since the start of the pandemic. They also have not published all-cause mortality data. Exports of estimates for the Democratic People's Republic of Korea have been temporarily disabled as it now issues contradictory data: reporting a significant outbreak through its state media, but zero confirmed covid-19 cases/deaths to the WHO.

    Acknowledgements

    A special thanks to all our sources and to those who have made the data to create these estimates available. We list all our sources in our methodology. Within script 1, the source for each variable is also given as the data is loaded, with the exception of our sources for excess deaths data, which we detail in on our free-to-read excess deaths tracker as well as on GitHub. The gradient booster implementation used to fit the models is aGTBoost, detailed here.

    Calculating excess deaths for the entire world over multiple years is both complex and imprecise. We welcome any suggestions on how to improve the model, be it data, algorithm, or logic. If you have one, please open an issue.

    The Economist would also like to acknowledge the many people who have helped us refine the model so far, be it through discussions, facilitating data access, or offering coding assistance. A special thanks to Ariel Karlinsky, Philip Schellekens, Oliver Watson, Lukas Appelhans, Berent Å. S. Lunde, Gideon Wakefield, Johannes Hunger, Carol D'Souza, Yun Wei, Mehran Hosseini, Samantha Dolan, Mollie Van Gordon, Rahul Arora, Austin Teda Atmaja, Dirk Eddelbuettel and Tom Wenseleers.

    All coding and data collection to construct these models (and make them update dynamically) was done by Sondre Ulvund Solstad. Should you have any questions about them after reading the methodology, please open an issue or contact him at sondresolstad@economist.com.

    Suggested citation The Economist and Solstad, S. (corresponding author), 2021. The pandemic’s true death toll. [online] The Economist. Available at: https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates [Accessed ---]. First published in the article "Counting the dead", The Economist, issue 20, 2021.

  3. World: annual birth rate, death rate, and rate of natural population change...

    • statista.com
    Updated Nov 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). World: annual birth rate, death rate, and rate of natural population change 1950-2100 [Dataset]. https://www.statista.com/statistics/805069/death-rate-worldwide/
    Explore at:
    Dataset updated
    Nov 28, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    World
    Description

    The COVID-19 pandemic increased the global death rate, reaching *** in 2021, but had little to no significant impact on birth rates, causing population growth to dip slightly. On a global level, population growth is determined by the difference between the birth and death rates, known as the rate of natural change. On a national or regional level, migration also affects population change. Ongoing trends Since the middle of the 20th century, the global birth rate has been well above the global death rate; however, the gap between these figures has grown closer in recent years. The death rate is projected to overtake the birth rate in the 2080s, which means that the world's population will then go into decline. In the future, death rates will increase due to ageing populations across the world and a plateau in life expectancy. Why does this change? There are many reasons for the decline in death and birth rates in recent decades. Falling death rates have been driven by a reduction in infant and child mortality, as well as increased life expectancy. Falling birth rates were also driven by the reduction in child mortality, whereby mothers would have fewer children as survival rates rose - other factors include the drop in child marriage, improved contraception access and efficacy, and women choosing to have children later in life.

  4. G

    Death rate in Africa | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Feb 26, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2019). Death rate in Africa | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/rankings/Death_rate/Africa/
    Explore at:
    excel, csv, xmlAvailable download formats
    Dataset updated
    Feb 26, 2019
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    Africa, World
    Description

    The average for 2022 based on 53 countries was 8.33 deaths per 1000 people. The highest value was in the Central African Republic: 55.13 deaths per 1000 people and the lowest value was in Algeria: 4.6 deaths per 1000 people. The indicator is available from 1960 to 2023. Below is a chart for all countries where data are available.

  5. C

    Death Profiles by County

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Death Profiles by County [Dataset]. https://data.chhs.ca.gov/dataset/death-profiles-by-county
    Explore at:
    csv(74351424), csv(75015194), csv(11738570), csv(1128641), csv(15127221), csv(60517511), csv(73906266), csv(60201673), csv(60676655), csv(28125832), csv(60023260), csv(51592721), csv(74689382), csv(52019564), csv(5095), csv(74043128), csv(24235858), csv(74497014), zip, csv(29775349)Available download formats
    Dataset updated
    Nov 26, 2025
    Dataset authored and provided by
    California Department of Public Health
    Description

    This dataset contains counts of deaths for California counties based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in each California county regardless of the place of residence (by occurrence) and deaths to residents of each California county (by residence), whereas the provisional data table only includes deaths that occurred in each county regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  6. Provisional COVID-19 death counts, rates, and percent of total deaths, by...

    • catalog.data.gov
    • data.virginia.gov
    • +2more
    Updated Sep 26, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2025). Provisional COVID-19 death counts, rates, and percent of total deaths, by jurisdiction of residence [Dataset]. https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-percent-of-total-deaths-by-jurisdiction-of-res
    Explore at:
    Dataset updated
    Sep 26, 2025
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Description

    This file contains COVID-19 death counts, death rates, and percent of total deaths by jurisdiction of residence. The data is grouped by different time periods including 3-month period, weekly, and total (cumulative since January 1, 2020). United States death counts and rates include the 50 states, plus the District of Columbia and New York City. New York state estimates exclude New York City. Puerto Rico is included in HHS Region 2 estimates. Deaths with confirmed or presumed COVID-19, coded to ICD–10 code U07.1. Number of deaths reported in this file are the total number of COVID-19 deaths received and coded as of the date of analysis and may not represent all deaths that occurred in that period. Counts of deaths occurring before or after the reporting period are not included in the file. Data during recent periods are incomplete because of the lag in time between when the death occurred and when the death certificate is completed, submitted to NCHS and processed for reporting purposes. This delay can range from 1 week to 8 weeks or more, depending on the jurisdiction and cause of death. Death counts should not be compared across states. Data timeliness varies by state. Some states report deaths on a daily basis, while other states report deaths weekly or monthly. The ten (10) United States Department of Health and Human Services (HHS) regions include the following jurisdictions. Region 1: Connecticut, Maine, Massachusetts, New Hampshire, Rhode Island, Vermont; Region 2: New Jersey, New York, New York City, Puerto Rico; Region 3: Delaware, District of Columbia, Maryland, Pennsylvania, Virginia, West Virginia; Region 4: Alabama, Florida, Georgia, Kentucky, Mississippi, North Carolina, South Carolina, Tennessee; Region 5: Illinois, Indiana, Michigan, Minnesota, Ohio, Wisconsin; Region 6: Arkansas, Louisiana, New Mexico, Oklahoma, Texas; Region 7: Iowa, Kansas, Missouri, Nebraska; Region 8: Colorado, Montana, North Dakota, South Dakota, Utah, Wyoming; Region 9: Arizona, California, Hawaii, Nevada; Region 10: Alaska, Idaho, Oregon, Washington. Rates were calculated using the population estimates for 2021, which are estimated as of July 1, 2021 based on the Blended Base produced by the US Census Bureau in lieu of the April 1, 2020 decennial population count. The Blended Base consists of the blend of Vintage 2020 postcensal population estimates, 2020 Demographic Analysis Estimates, and 2020 Census PL 94-171 Redistricting File (see https://www2.census.gov/programs-surveys/popest/technical-documentation/methodology/2020-2021/methods-statement-v2021.pdf). Rates are based on deaths occurring in the specified week/month and are age-adjusted to the 2000 standard population using the direct method (see https://www.cdc.gov/nchs/data/nvsr/nvsr70/nvsr70-08-508.pdf). These rates differ from annual age-adjusted rates, typically presented in NCHS publications based on a full year of data and annualized weekly/monthly age-adjusted rates which have been adjusted to allow comparison with annual rates. Annualization rates presents deaths per year per 100,000 population that would be expected in a year if the observed period specific (weekly/monthly) rate prevailed for a full year. Sub-national death counts between 1-9 are suppressed in accordance with NCHS data confidentiality standards. Rates based on death counts less than 20 are suppressed in accordance with NCHS standards of reliability as specified in NCHS Data Presentation Standards for Proportions (available from: https://www.cdc.gov/nchs/data/series/sr_02/sr02_175.pdf.).

  7. British deaths per day in the Somme department during the First World War...

    • statista.com
    Updated Jan 1, 2007
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2007). British deaths per day in the Somme department during the First World War 1915-1918 [Dataset]. https://www.statista.com/statistics/1223578/british-deaths-per-day-somme-department-wwi/
    Explore at:
    Dataset updated
    Jan 1, 2007
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    France
    Description

    In the Somme department of France during the First World War, British forces suffered the highest number of fatalities per day during the period of the First Battle of the Somme in 1916. Over this period, which lasted for almost four months and three weeks, British forces suffered almost 128 thousand fatalities; which translates into an average of 893 deaths per day. In total, the British army suffered almost 207 thousand fatalities, with an average of 177 deaths per day; although the most intense periods came in the second half of 1916 and between March and September 1918 (which also included the Second Battle of the Somme)

  8. y

    World Coronavirus Deaths Per Day

    • ycharts.com
    html
    Updated Nov 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Johns Hopkins Center for Systems Science and Engineering (2025). World Coronavirus Deaths Per Day [Dataset]. https://ycharts.com/indicators/world_coronavirus_deaths_per_day
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Nov 9, 2025
    Dataset provided by
    YCharts
    Authors
    Johns Hopkins Center for Systems Science and Engineering
    License

    https://www.ycharts.com/termshttps://www.ycharts.com/terms

    Time period covered
    Jan 23, 2020 - Mar 9, 2023
    Area covered
    World
    Variables measured
    World Coronavirus Deaths Per Day
    Description

    View daily updates and historical trends for World Coronavirus Deaths Per Day. Source: Johns Hopkins Center for Systems Science and Engineering. Track eco…

  9. COVID-19 data from World

    • kaggle.com
    zip
    Updated Oct 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arslan Ali (2022). COVID-19 data from World [Dataset]. https://www.kaggle.com/datasets/arslanali4343/covid19-data-from-world
    Explore at:
    zip(11526460 bytes)Available download formats
    Dataset updated
    Oct 2, 2022
    Authors
    Arslan Ali
    License

    https://www.worldbank.org/en/about/legal/terms-of-use-for-datasetshttps://www.worldbank.org/en/about/legal/terms-of-use-for-datasets

    Area covered
    World
    Description

    I need a small help, if you vist and subscribe my website codetechguru

    Covid-19 complete dataset updated daily from Our World in Data

    SUMMARY👇

    Source and more information: https://github.com/owid/covid-19-data/tree/master/public/data

    💯**Data is synced hourly**

    Metrics:

    ✔️ Vaccinations ✔️ Tests & positivity ✔️ Hospital & ICU ✔️ Confirmed cases ✔️ Confirmed deaths ✔️ Reproduction rate ✔️ Policy responses ✔️ Other variables of interest

  10. H

    Annual District Death Daily (ADDD)

    • dtechtive.com
    • find.data.gov.scot
    • +1more
    Updated Aug 17, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SAIL (2023). Annual District Death Daily (ADDD) [Dataset]. https://dtechtive.com/datasets/25734
    Explore at:
    Dataset updated
    Aug 17, 2023
    Dataset provided by
    SAIL
    Area covered
    United Kingdom, Wales
    Description

    Daily version of Annual District Death Dataset.

  11. Leading causes of death, total population, by age group

    • www150.statcan.gc.ca
    • ouvert.canada.ca
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Government of Canada, Statistics Canada (2025). Leading causes of death, total population, by age group [Dataset]. http://doi.org/10.25318/1310039401-eng
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    Statistics Canadahttps://statcan.gc.ca/en
    Area covered
    Canada
    Description

    Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.

  12. COVID-19 cases and deaths per million in 210 countries as of July 13, 2022

    • statista.com
    Updated Jul 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). COVID-19 cases and deaths per million in 210 countries as of July 13, 2022 [Dataset]. https://www.statista.com/statistics/1104709/coronavirus-deaths-worldwide-per-million-inhabitants/
    Explore at:
    Dataset updated
    Jul 13, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    Based on a comparison of coronavirus deaths in 210 countries relative to their population, Peru had the most losses to COVID-19 up until July 13, 2022. As of the same date, the virus had infected over 557.8 million people worldwide, and the number of deaths had totaled more than 6.3 million. Note, however, that COVID-19 test rates can vary per country. Additionally, big differences show up between countries when combining the number of deaths against confirmed COVID-19 cases. The source seemingly does not differentiate between "the Wuhan strain" (2019-nCOV) of COVID-19, "the Kent mutation" (B.1.1.7) that appeared in the UK in late 2020, the 2021 Delta variant (B.1.617.2) from India or the Omicron variant (B.1.1.529) from South Africa.

    The difficulties of death figures

    This table aims to provide a complete picture on the topic, but it very much relies on data that has become more difficult to compare. As the coronavirus pandemic developed across the world, countries already used different methods to count fatalities, and they sometimes changed them during the course of the pandemic. On April 16, for example, the Chinese city of Wuhan added a 50 percent increase in their death figures to account for community deaths. These deaths occurred outside of hospitals and went unaccounted for so far. The state of New York did something similar two days before, revising their figures with 3,700 new deaths as they started to include “assumed” coronavirus victims. The United Kingdom started counting deaths in care homes and private households on April 29, adjusting their number with about 5,000 new deaths (which were corrected lowered again by the same amount on August 18). This makes an already difficult comparison even more difficult. Belgium, for example, counts suspected coronavirus deaths in their figures, whereas other countries have not done that (yet). This means two things. First, it could have a big impact on both current as well as future figures. On April 16 already, UK health experts stated that if their numbers were corrected for community deaths like in Wuhan, the UK number would change from 205 to “above 300”. This is exactly what happened two weeks later. Second, it is difficult to pinpoint exactly which countries already have “revised” numbers (like Belgium, Wuhan or New York) and which ones do not. One work-around could be to look at (freely accessible) timelines that track the reported daily increase of deaths in certain countries. Several of these are available on our platform, such as for Belgium, Italy and Sweden. A sudden large increase might be an indicator that the domestic sources changed their methodology.

    Where are these numbers coming from?

    The numbers shown here were collected by Johns Hopkins University, a source that manually checks the data with domestic health authorities. For the majority of countries, this is from national authorities. In some cases, like China, the United States, Canada or Australia, city reports or other various state authorities were consulted. In this statistic, these separately reported numbers were put together. For more information or other freely accessible content, please visit our dedicated Facts and Figures page.

  13. Statewide Death Profiles

    • data.chhs.ca.gov
    • data.ca.gov
    • +3more
    csv, zip
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Public Health (2025). Statewide Death Profiles [Dataset]. https://data.chhs.ca.gov/dataset/statewide-death-profiles
    Explore at:
    csv(4689434), csv(164006), csv(5034), csv(476576), csv(2026589), csv(5401561), csv(463460), csv(419332), csv(200270), csv(16301), zipAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    California Department of Public Healthhttps://www.cdph.ca.gov/
    Description

    This dataset contains counts of deaths for California as a whole based on information entered on death certificates. Final counts are derived from static data and include out-of-state deaths to California residents, whereas provisional counts are derived from incomplete and dynamic data. Provisional counts are based on the records available when the data was retrieved and may not represent all deaths that occurred during the time period. Deaths involving injuries from external or environmental forces, such as accidents, homicide and suicide, often require additional investigation that tends to delay certification of the cause and manner of death. This can result in significant under-reporting of these deaths in provisional data.

    The final data tables include both deaths that occurred in California regardless of the place of residence (by occurrence) and deaths to California residents (by residence), whereas the provisional data table only includes deaths that occurred in California regardless of the place of residence (by occurrence). The data are reported as totals, as well as stratified by age, gender, race-ethnicity, and death place type. Deaths due to all causes (ALL) and selected underlying cause of death categories are provided. See temporal coverage for more information on which combinations are available for which years.

    The cause of death categories are based solely on the underlying cause of death as coded by the International Classification of Diseases. The underlying cause of death is defined by the World Health Organization (WHO) as "the disease or injury which initiated the train of events leading directly to death, or the circumstances of the accident or violence which produced the fatal injury." It is a single value assigned to each death based on the details as entered on the death certificate. When more than one cause is listed, the order in which they are listed can affect which cause is coded as the underlying cause. This means that similar events could be coded with different underlying causes of death depending on variations in how they were entered. Consequently, while underlying cause of death provides a convenient comparison between cause of death categories, it may not capture the full impact of each cause of death as it does not always take into account all conditions contributing to the death.

  14. d

    Johns Hopkins COVID-19 Case Tracker

    • data.world
    • kaggle.com
    csv, zip
    Updated Dec 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Associated Press (2025). Johns Hopkins COVID-19 Case Tracker [Dataset]. https://data.world/associatedpress/johns-hopkins-coronavirus-case-tracker
    Explore at:
    zip, csvAvailable download formats
    Dataset updated
    Dec 3, 2025
    Authors
    The Associated Press
    Time period covered
    Jan 22, 2020 - Mar 9, 2023
    Area covered
    Description

    Updates

    • Notice of data discontinuation: Since the start of the pandemic, AP has reported case and death counts from data provided by Johns Hopkins University. Johns Hopkins University has announced that they will stop their daily data collection efforts after March 10. As Johns Hopkins stops providing data, the AP will also stop collecting daily numbers for COVID cases and deaths. The HHS and CDC now collect and visualize key metrics for the pandemic. AP advises using those resources when reporting on the pandemic going forward.

    • April 9, 2020

      • The population estimate data for New York County, NY has been updated to include all five New York City counties (Kings County, Queens County, Bronx County, Richmond County and New York County). This has been done to match the Johns Hopkins COVID-19 data, which aggregates counts for the five New York City counties to New York County.
    • April 20, 2020

      • Johns Hopkins death totals in the US now include confirmed and probable deaths in accordance with CDC guidelines as of April 14. One significant result of this change was an increase of more than 3,700 deaths in the New York City count. This change will likely result in increases for death counts elsewhere as well. The AP does not alter the Johns Hopkins source data, so probable deaths are included in this dataset as well.
    • April 29, 2020

      • The AP is now providing timeseries data for counts of COVID-19 cases and deaths. The raw counts are provided here unaltered, along with a population column with Census ACS-5 estimates and calculated daily case and death rates per 100,000 people. Please read the updated caveats section for more information.
    • September 1st, 2020

      • Johns Hopkins is now providing counts for the five New York City counties individually.
    • February 12, 2021

      • The Ohio Department of Health recently announced that as many as 4,000 COVID-19 deaths may have been underreported through the state’s reporting system, and that the "daily reported death counts will be high for a two to three-day period."
      • Because deaths data will be anomalous for consecutive days, we have chosen to freeze Ohio's rolling average for daily deaths at the last valid measure until Johns Hopkins is able to back-distribute the data. The raw daily death counts, as reported by Johns Hopkins and including the backlogged death data, will still be present in the new_deaths column.
    • February 16, 2021

      - Johns Hopkins has reconciled Ohio's historical deaths data with the state.

      Overview

    The AP is using data collected by the Johns Hopkins University Center for Systems Science and Engineering as our source for outbreak caseloads and death counts for the United States and globally.

    The Hopkins data is available at the county level in the United States. The AP has paired this data with population figures and county rural/urban designations, and has calculated caseload and death rates per 100,000 people. Be aware that caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.

    This data is from the Hopkins dashboard that is updated regularly throughout the day. Like all organizations dealing with data, Hopkins is constantly refining and cleaning up their feed, so there may be brief moments where data does not appear correctly. At this link, you’ll find the Hopkins daily data reports, and a clean version of their feed.

    The AP is updating this dataset hourly at 45 minutes past the hour.

    To learn more about AP's data journalism capabilities for publishers, corporations and financial institutions, go here or email kromano@ap.org.

    Queries

    Use AP's queries to filter the data or to join to other datasets we've made available to help cover the coronavirus pandemic

    Interactive

    The AP has designed an interactive map to track COVID-19 cases reported by Johns Hopkins.

    @(https://datawrapper.dwcdn.net/nRyaf/15/)

    Interactive Embed Code

    <iframe title="USA counties (2018) choropleth map Mapping COVID-19 cases by county" aria-describedby="" id="datawrapper-chart-nRyaf" src="https://datawrapper.dwcdn.net/nRyaf/10/" scrolling="no" frameborder="0" style="width: 0; min-width: 100% !important;" height="400"></iframe><script type="text/javascript">(function() {'use strict';window.addEventListener('message', function(event) {if (typeof event.data['datawrapper-height'] !== 'undefined') {for (var chartId in event.data['datawrapper-height']) {var iframe = document.getElementById('datawrapper-chart-' + chartId) || document.querySelector("iframe[src*='" + chartId + "']");if (!iframe) {continue;}iframe.style.height = event.data['datawrapper-height'][chartId] + 'px';}}});})();</script>
    

    Caveats

    • This data represents the number of cases and deaths reported by each state and has been collected by Johns Hopkins from a number of sources cited on their website.
    • In some cases, deaths or cases of people who've crossed state lines -- either to receive treatment or because they became sick and couldn't return home while traveling -- are reported in a state they aren't currently in, because of state reporting rules.
    • In some states, there are a number of cases not assigned to a specific county -- for those cases, the county name is "unassigned to a single county"
    • This data should be credited to Johns Hopkins University's COVID-19 tracking project. The AP is simply making it available here for ease of use for reporters and members.
    • Caseloads may reflect the availability of tests -- and the ability to turn around test results quickly -- rather than actual disease spread or true infection rates.
    • Population estimates at the county level are drawn from 2014-18 5-year estimates from the American Community Survey.
    • The Urban/Rural classification scheme is from the Center for Disease Control and Preventions's National Center for Health Statistics. It puts each county into one of six categories -- from Large Central Metro to Non-Core -- according to population and other characteristics. More details about the classifications can be found here.

    Johns Hopkins timeseries data - Johns Hopkins pulls data regularly to update their dashboard. Once a day, around 8pm EDT, Johns Hopkins adds the counts for all areas they cover to the timeseries file. These counts are snapshots of the latest cumulative counts provided by the source on that day. This can lead to inconsistencies if a source updates their historical data for accuracy, either increasing or decreasing the latest cumulative count. - Johns Hopkins periodically edits their historical timeseries data for accuracy. They provide a file documenting all errors in their timeseries files that they have identified and fixed here

    Attribution

    This data should be credited to Johns Hopkins University COVID-19 tracking project

  15. COVID-19 global daily cases & deaths [UPDATED]

    • kaggle.com
    zip
    Updated Sep 11, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaa Triki (2020). COVID-19 global daily cases & deaths [UPDATED] [Dataset]. https://www.kaggle.com/trikialaaa/covid19-global-daily-cases-deaths-updated
    Explore at:
    zip(326298 bytes)Available download formats
    Dataset updated
    Sep 11, 2020
    Authors
    Alaa Triki
    Description

    Context

    The WHO coronavirus disease (COVID-19) dashboard presents official daily counts of COVID-19 cases and deaths reported by countries, territories and areas. Through this dataset, we aim to provide a frequently updated data visualization, data dissemination and data exploration resource, while linking users to other useful and informative resources.

    Content

    This dataset contains 8 columns: - Date_reported - Country_code - Country - WHO_region - New_cases - Cumulative_cases - New_deaths - Cumulative_deaths

    Source

    WHO Coronavirus Disease (COVID-19) Dashboard: https://covid19.who.int/

  16. h

    Annual District Death Daily (ADDD) - Legacy

    • healthdatagateway.org
    unknown
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Digital Health and Care Wales, Annual District Death Daily (ADDD) - Legacy [Dataset]. https://healthdatagateway.org/en/dataset/323
    Explore at:
    unknownAvailable download formats
    Dataset authored and provided by
    Digital Health and Care Wales
    License

    https://saildatabank.com/data/apply-to-work-with-the-data/https://saildatabank.com/data/apply-to-work-with-the-data/

    Description

    ADDD is a project specific dataset which was for specific COVID-19 related projects only. Data relating to deaths are available from the ADDE dataset.

    Daily version of Annual District Deaths Datasets. Office for National Statistics (ONS) register of all deaths relating to Welsh residents, including those that died outside of Wales.

    The data are collected from death registrations.

    Legacy dataset - no longer available, however the Annual District Death Extract (ADDE) is a separate dataset and is still available.

  17. N

    Nigeria Death rate - data, chart | TheGlobalEconomy.com

    • theglobaleconomy.com
    csv, excel, xml
    Updated Jan 18, 2015
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Globalen LLC (2015). Nigeria Death rate - data, chart | TheGlobalEconomy.com [Dataset]. www.theglobaleconomy.com/Nigeria/Death_rate/
    Explore at:
    excel, xml, csvAvailable download formats
    Dataset updated
    Jan 18, 2015
    Dataset authored and provided by
    Globalen LLC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 31, 1960 - Dec 31, 2023
    Area covered
    Nigeria
    Description

    Nigeria: Death rate, per 1000 people: The latest value from 2023 is 11.74 deaths per 1000 people, a decline from 11.95 deaths per 1000 people in 2022. In comparison, the world average is 7.70 deaths per 1000 people, based on data from 196 countries. Historically, the average for Nigeria from 1960 to 2023 is 18.72 deaths per 1000 people. The minimum value, 11.74 deaths per 1000 people, was reached in 2023 while the maximum of 26.46 deaths per 1000 people was recorded in 1960.

  18. Death rates in the Arab world countries 2023

    • statista.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista, Death rates in the Arab world countries 2023 [Dataset]. https://www.statista.com/statistics/806311/death-rate-in-the-arab-world-countries/
    Explore at:
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2023
    Area covered
    Arab world, Worldwide
    Description

    The statistic shows the death rate in the Arab world (Arab League) countries in 2023. In 2023, there were about 9.84 deaths per 1,000 inhabitants in Somalia.

  19. I

    India Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban

    • ceicdata.com
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com, India Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban [Dataset]. https://www.ceicdata.com/en/india/vital-statistics-death-rate-by-states/vital-statistics-death-rate-per-1000-population-telangana-urban
    Explore at:
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 1, 2014 - Dec 1, 2020
    Area covered
    India
    Variables measured
    Vital Statistics
    Description

    Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data was reported at 4.200 NA in 2020. This records a decrease from the previous number of 4.300 NA for 2019. Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data is updated yearly, averaging 4.500 NA from Dec 2014 (Median) to 2020, with 7 observations. The data reached an all-time high of 4.900 NA in 2015 and a record low of 4.200 NA in 2020. Vital Statistics: Death Rate: per 1000 Population: Telangana: Urban data remains active status in CEIC and is reported by Office of the Registrar General & Census Commissioner, India. The data is categorized under India Premium Database’s Demographic – Table IN.GAH003: Vital Statistics: Death Rate: by States.

  20. Covid-19 Global Dataset

    • kaggle.com
    zip
    Updated May 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Joseph Assaker (2022). Covid-19 Global Dataset [Dataset]. https://www.kaggle.com/josephassaker/covid19-global-dataset
    Explore at:
    zip(2032435 bytes)Available download formats
    Dataset updated
    May 15, 2022
    Authors
    Joseph Assaker
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    For the latest analysis and visualizations of the COVID-19 pandemic, check out my constantly updated EDA notebook here 📈.

    Context

    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes coronavirus disease 2019 (COVID-19), the respiratory illness responsible for the COVID-19 pandemic.

    Since its first identification in December 2019 in Wuhan, China, this virus has taken the world by storm. Some people prefer to look at the positive side of things and how this pandemic has brought forward several positive changes. However, the collateral damages produced by this pandemic cannot be overlooked. From the Economic impact to Mental Health impacts, this pandemic period will arguably be one of the hardest periods we'll encounter in our lives. That being said, we always have to arm ourselves with hope. With the new advancements in the vaccine studies, let's hope to wake up from this nightmare as soon as possible.

    “Hope is being able to see that there is light despite all of the darkness.” – Desmond Tutu

    As for the reason for me building this dataset, it's because I couldn't get my hands on an easily digestible and up-to-date dataset of Covid-19, so, I decided to build my own using Python and web scraping techniques. I will also update this dataset as frequently as possible!

    Content

    This data was scraped from woldometers.info on 2022-05-14 by Joseph Assaker.

    225 countries are represented in this data.

    All of countries have records dating from 2020-2-15 until 2022-05-14 (820 days per country). That's with the exception of China, which has records dating from 2020-1-22 until 2022-05-14 (844 days per country), and Palau which has records dating from 2021-8-25 until 2022-05-14 (263 days per country)..

    Summary Data Columns Description:

    • country: designates the Country in which the the row's data was observed.
    • continent: designates the Continent of the observed country.
    • total_confirmed: designates the total number of confirmed cases in the observed country.
    • total_deaths: designates the total number of confirmed deaths in the observed country.
    • total_recovered: designates the total number of confirmed recoveries in the observed country.
    • active_cases: designates the number of active cases in the observed country.
    • serious_or_critical: designates the estimated number of cases in serious or critical conditions in the observed country.
    • total_cases_per_1m_population: designates the number of total cases per 1 million population in the observed country.
    • total_deaths_per_1m_population: designates the number of total deaths per 1 million population in the observed country.
    • total_tests: designates the number of total tests done in the observed country.
    • total_tests_per_1m_population: designates the number of total test done per 1 million population in the observed country.
    • population: designates the population count in the observed country.

    Daily Data Columns Description:

    • date: designates the date of observation of the row's data in YYYY-MM-DD format.
    • country: designates the Country in which the the row's data was observed.
    • cumulative_total_cases: designates the cumulative number of confirmed cases as of the row's date, for the row's country.
    • daily_new_cases: designates the daily new number of confirmed cases on the row's date, for the row's country.
    • active_cases: designates the number of active cases (i.e., confirmed cases that still didn't recover nor die) on the row's date, for the row's country.
    • cumulative_total_deaths: designates the cumulative number of confirmed deaths as of the row's date, for the row's country.
    • daily_new_deaths: designates the daily new number of confirmed deaths on the row's date, for the row's country.

    Acknowledgements

    As previously mentioned, all the data present in this dataset is scraped from worldometers.info.

    Inspiration

    Going through this data, Kagglers can visualize various trends in their own country, or compare several countries. One can also combine this dataset with other news and key points in time (lockdowns, new UK mutation, Holidays, etc.) in order to study the effects of these events on the progression of Covid-19 in a multitude of countries. Implementing time series analysis on this dataset would also be an amazing idea! Getting a deep learning algorithm to learn from this sea of data and try to predict the future turn of events could be quite interesting!

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
CreatorMeter (2025). Global Daily Death Statistics [Dataset]. https://www.creatormeter.com/deaths-per-day-worldwide

Global Daily Death Statistics

Explore at:
Dataset updated
Nov 12, 2025
Dataset authored and provided by
CreatorMeter
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
2024 - Present
Area covered
Global
Description

Real-time data on deaths per day worldwide

Search
Clear search
Close search
Google apps
Main menu