100+ datasets found
  1. T

    United States Stock Market Index Data

    • tradingeconomics.com
    • ar.tradingeconomics.com
    • +12more
    csv, excel, json, xml
    Updated Dec 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market
    Explore at:
    excel, xml, json, csvAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jan 3, 1928 - Dec 2, 2025
    Area covered
    United States
    Description

    The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

  2. Financial Market Forecasting Dataset

    • kaggle.com
    zip
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Financial Market Forecasting Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/financial-market-forecasting-dataset
    Explore at:
    zip(41874 bytes)Available download formats
    Dataset updated
    Jun 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed to support research and model development in financial market forecasting. It consists of daily stock market data for multiple companies, enriched with macroeconomic indicators and simulated market stress events to reflect real-world volatility.

    Key features include:

    Stock price details (Open, High, Low, Close) and Trading Volume

    Macroeconomic indicators such as GDP growth rate, inflation rate, interest rate, and unemployment rate

    A Market Stress Level (normalized between 0 and 1) indicating systemic volatility

    A binary Event Flag to simulate major financial shocks or critical economic events

    Data spans across multiple tickers (e.g., AAPL, GOOGL, TSLA) for 500+ trading days

  3. The Dow Jones U.S. Completion Total Stock Market Index (Forecast)

    • kappasignal.com
    Updated May 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). The Dow Jones U.S. Completion Total Stock Market Index (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/the-dow-jones-us-completion-total-stock.html
    Explore at:
    Dataset updated
    May 8, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    The Dow Jones U.S. Completion Total Stock Market Index

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  4. India Stock Market (daily updated)

    • kaggle.com
    zip
    Updated Jan 31, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Larxel (2022). India Stock Market (daily updated) [Dataset]. https://www.kaggle.com/datasets/andrewmvd/india-stock-market
    Explore at:
    zip(72359394 bytes)Available download formats
    Dataset updated
    Jan 31, 2022
    Authors
    Larxel
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    India
    Description

    About this dataset

    India's National Stock Exchange (NSE) has a total market capitalization of more than US$3.4 trillion, making it the world's 10th-largest stock exchange as of August 2021, with a trading volume of ₹8,998,811 crore (US$1.2 trillion) and more 2000 total listings.

    NSE's flagship index, the NIFTY 50, is a 50 stock index is used extensively by investors in India and around the world as a barometer of the Indian capital market.

    This dataset contains data of all company stocks listed in the NSE, allowing anyone to analyze and make educated choices about their investments, while also contributing to their countries economy.

    How to use this dataset

    • Create a time series regression model to predict NIFTY-50 value and/or stock prices.
    • Explore the most the returns, components and volatility of the stocks.
    • Identify high and low performance stocks among the list.

    Highlighted Notebooks

    Acknowledgements

    License

    CC0: Public Domain

    Splash banner

    Stonks by unknown memer.

  5. Can we predict stock market using machine learning? (WY Stock Forecast)...

    • kappasignal.com
    Updated Nov 17, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (WY Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-we-predict-stock-market-using_17.html
    Explore at:
    Dataset updated
    Nov 17, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (WY Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  6. FTSE 100: Where to Next? (Forecast)

    • kappasignal.com
    Updated Apr 7, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2024). FTSE 100: Where to Next? (Forecast) [Dataset]. https://www.kappasignal.com/2024/04/ftse-100-where-to-next.html
    Explore at:
    Dataset updated
    Apr 7, 2024
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    FTSE 100: Where to Next?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  7. Can we predict stock market using machine learning? (QRVO Stock Forecast)...

    • kappasignal.com
    Updated Sep 4, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can we predict stock market using machine learning? (QRVO Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/can-we-predict-stock-market-using_18.html
    Explore at:
    Dataset updated
    Sep 4, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can we predict stock market using machine learning? (QRVO Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  8. H

    Stock Market Next Day Forecast Data

    • dataverse.harvard.edu
    • search.dataone.org
    Updated Oct 6, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryan Dipura (2025). Stock Market Next Day Forecast Data [Dataset]. http://doi.org/10.7910/DVN/UM5UGX
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 6, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Ryan Dipura
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Stock market forecasting remains a complex and challenging task to forecast, traditional technical analysis methods like RSI, EMA, and Candlestick Patterns often fail to analyze the stock market time series pattern with many recent studies have now explored forecasting using machine learning or neural networks, other studies have improved the increase in accuracy or decrease in regression loss by applying technical indicator and sentiment analysis. This paper aims to analyze the performance of the combined reinforcement learning and machine learning models in predicting the stock market’s next day trend by incorporating both technical and sentiment-based features. Technical indicators were derived from historical price data focused on multi-timeframe trend and swing trend in the market, then sentiment features were extracted using FinBERT from Benzinga Pro as a reliable financial news source. The reinforcement learning model used is the Proximal Policy Optimization model, while a variety of machine learning models, such as XGBoost, Gradient Boosting, Random Forest, Decision Tree, K-Nearest Neighbor, Support Vector Machine, and Logistic Regression were trained to assess its predictive performance. Results indicate that the ensemble model outperformed the other tested machine learning models with an accuracy score of 69.97%. These reports highlight the effectiveness of the ensemble model combining sentiment and technical features to enhance stock market predictions accuracy. However, limitations such as news data availability and the small training time, remain a key challenge that could potentially increase the performance. Future research could experiment with alternative models, more training time, advance technical patterns, and more news datasets.

  9. Amazon Daily Stock Prices Dataset

    • kaggle.com
    zip
    Updated Sep 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Muhammad Atif Latif (2025). Amazon Daily Stock Prices Dataset [Dataset]. https://www.kaggle.com/datasets/muhammadatiflatif/amzn-daily-stock-prices-dataset
    Explore at:
    zip(506428 bytes)Available download formats
    Dataset updated
    Sep 14, 2025
    Authors
    Muhammad Atif Latif
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Amazon (AMZN) Stock Price Time-Series Dataset: May 2012 - November 2012

    Dataset Overview

    This dataset provides a detailed, intraday view of Amazon's stock (AMZN) price movements from May 21, 2012, to November 14, 2012. Meticulously compiled, it offers a granular perspective on market dynamics, enabling robust quantitative analysis and modeling.

    Content

    The dataset encompasses the following key financial metrics for each trading day:

    • Date: The specific date of the trading session.
    • Open: The initial price at the commencement of trading.
    • High: The maximum price attained during the trading day.
    • Low: The minimum price recorded during the trading day.
    • Close: The final trading price at the market's close.
    • Adj Close: The closing price adjusted for corporate actions like dividends and stock splits, providing a true return on investment.
    • Volume: The number of shares exchanged throughout the trading day, indicating market activity and liquidity.

    Intended Use Cases

    This dataset is tailored for sophisticated financial analysis, model development, and academic research. Potential applications include:

    • Algorithmic Trading Strategy Development: Design and back-test trading algorithms using historical price movements and volume data.
    • Volatility Modeling: Analyze and forecast stock price volatility using time-series analysis techniques (e.g., GARCH models).
    • Financial Forecasting: Implement machine learning models to predict future stock prices based on historical patterns.
    • Event Study Analysis: Examine the impact of specific events or news announcements on Amazon's stock price.
    • Risk Management: Evaluate potential risks associated with investing in Amazon stock during this period.
    • Academic Research: Conduct studies on market efficiency, price discovery, and the impact of market microstructure on stock behavior.

    Data Considerations

    • Time Zone: Data is timestamped with Eastern Time (ET).
    • Data Cleaning: The dataset has been verified for accuracy, but users are encouraged to perform their own data quality checks.

    Contect info:

    You can contect me for more data sets if you want any type of data to scrape

    -E_mail

    -Linkdin

    -Kaggle

    -X

    -Github

  10. Stock Market Historical Dataset

    • kaggle.com
    zip
    Updated Nov 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Devops (2025). Stock Market Historical Dataset [Dataset]. https://www.kaggle.com/datasets/freshersstaff/stock-market-historical-dataset
    Explore at:
    zip(219150 bytes)Available download formats
    Dataset updated
    Nov 26, 2025
    Authors
    Devops
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset contains 2000 daily stock market records including price movements, trading volume, market trends, indices, economic scores, and market sentiment information. It covers multiple sectors with a general category column and includes a target column for the next-day closing price. Additional text columns capture market sentiment and news tags for each record. The dataset is designed to provide comprehensive insights into stock market behavior and trends.

    Number of Records: 2000

    Number of Columns: 18

    Column Descriptions:

    Category – General text representing the sector or type of stock (e.g., Tech, Finance, Health).

    Date – The calendar date of the stock record.

    Open – The opening price of the stock on that day.

    High – The highest price of the stock during the day.

    Low – The lowest price of the stock during the day.

    Close – The closing price of the stock on that day.

    Volume – The total number of shares traded during the day.

    SMA_10 – The 10-day simple moving average of the closing price, showing short-term trend.

    EMA_10 – The 10-day exponential moving average of the closing price, giving more weight to recent prices.

    Volatility – The standard deviation of the closing price over a 10-day window, representing price fluctuation.

    Wavelet_Trend – Trend component of the closing price over a 10-day period.

    Wavelet_Noise – Difference between the actual closing price and the trend component, capturing minor fluctuations.

    Wavelet_HighFreq – Daily price changes in closing price, showing high-frequency movement.

    General_Index – A numeric indicator representing general market performance.

    Economic_Score – A numeric score representing overall economic factors impacting the stock.

    Market_Sentiment – Text describing the sentiment of the market for that day (Positive, Neutral, Negative).

    News_Tag – Text describing the main type of news impacting the stock on that day (e.g., Earnings, Merger).

    Close_Next – The closing price of the stock for the next day, serving as the target variable.

  11. F

    S&P 500

    • fred.stlouisfed.org
    json
    Updated Dec 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). S&P 500 [Dataset]. https://fred.stlouisfed.org/series/SP500
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Dec 1, 2025
    License

    https://fred.stlouisfed.org/legal/#copyright-pre-approvalhttps://fred.stlouisfed.org/legal/#copyright-pre-approval

    Description

    View data of the S&P 500, an index of the stocks of 500 leading companies in the US economy, which provides a gauge of the U.S. equity market.

  12. Stock Market Dataset

    • kaggle.com
    zip
    Updated Jan 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ziya (2025). Stock Market Dataset [Dataset]. https://www.kaggle.com/datasets/ziya07/stock-market-dataset
    Explore at:
    zip(1075471 bytes)Available download formats
    Dataset updated
    Jan 25, 2025
    Authors
    Ziya
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    The "Stock Market Dataset for AI-Driven Prediction and Trading Strategy Optimization" is designed to simulate real-world stock market data for training and evaluating machine learning models. This dataset includes a combination of technical indicators, market metrics, sentiment scores, and macroeconomic factors, providing a comprehensive foundation for developing and testing AI models for stock price prediction and trading strategy optimization.

    Key Features Market Metrics:

    Open, High, Low, Close Prices: Daily stock price movement. Volume: Represents the trading activity during the day. Technical Indicators:

    RSI (Relative Strength Index): A momentum oscillator to measure the speed and change of price movements. MACD (Moving Average Convergence Divergence): An indicator to reveal changes in strength, direction, momentum, and duration of a trend. Bollinger Bands: Upper and lower bands around a stock price to measure volatility. Sentiment Analysis:

    Sentiment Score: Simulated sentiment derived from financial news and social media, ranging from -1 (negative) to 1 (positive). Macroeconomic Factors:

    GDP Growth: Indicates the overall health and growth of the economy. Inflation Rate: Reflects changes in purchasing power and economic stability. Target Variable:

    Buy/Sell Signal: Binary classification (1 = Buy, 0 = Sell) based on price movement thresholds, simulating actionable trading decisions. Use Cases AI Model Training: Ideal for building stock prediction models using LSTM, Gradient Boosting, Random Forest, etc. Trading Strategy Optimization: Enables testing of trading algorithms and strategies in a simulated environment. Sentiment Analysis Research: Useful for understanding how sentiment influences stock movements. Feature Engineering and Selection: Provides a diverse set of features for experimentation with advanced techniques like PCA and LDA. Dataset Highlights Synthetic Yet Realistic: Carefully designed to mimic real-world financial data trends and relationships. Comprehensive Coverage: Includes key indicators and metrics used by traders and analysts. Scalable: Suitable for use in both small-scale academic projects and larger AI-driven trading platforms. Accessible for All Levels: The intuitive structure ensures that even beginners can utilize this dataset for financial machine learning applications. File Format The dataset is provided in CSV format, where:

    Rows represent individual trading days. Columns represent features (technical indicators, market metrics, etc.) and the target variable. Acknowledgments This dataset is synthetically generated and is intended for research and educational purposes. It is not based on real market data and should not be used for actual trading.

  13. Can neural networks predict stock market? (NSE DEN Stock Forecast)...

    • kappasignal.com
    Updated Sep 28, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can neural networks predict stock market? (NSE DEN Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/09/can-neural-networks-predict-stock_37.html
    Explore at:
    Dataset updated
    Sep 28, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can neural networks predict stock market? (NSE DEN Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  14. T

    Germany Stock Market Index (DE40) Data

    • tradingeconomics.com
    • zh.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Germany Stock Market Index (DE40) Data [Dataset]. https://tradingeconomics.com/germany/stock-market
    Explore at:
    xml, csv, json, excelAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 30, 1987 - Dec 2, 2025
    Area covered
    Germany
    Description

    Germany's main stock market index, the DE40, rose to 23722 points on December 2, 2025, gaining 0.56% from the previous session. Over the past month, the index has declined 1.70%, though it remains 18.51% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Germany. Germany Stock Market Index (DE40) - values, historical data, forecasts and news - updated on December of 2025.

  15. What is the stock market doing today? (Forecast)

    • kappasignal.com
    Updated May 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2023). What is the stock market doing today? (Forecast) [Dataset]. https://www.kappasignal.com/2023/05/what-is-stock-market-doing-today.html
    Explore at:
    Dataset updated
    May 22, 2023
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    What is the stock market doing today?

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

  16. 9000+ Tickers of Stock Market Data (Full History)

    • kaggle.com
    zip
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jake wright (2024). 9000+ Tickers of Stock Market Data (Full History) [Dataset]. https://www.kaggle.com/datasets/jakewright/9000-tickers-of-stock-market-data-full-history
    Explore at:
    zip(1918054636 bytes)Available download formats
    Dataset updated
    Nov 13, 2024
    Authors
    jake wright
    Description

    Stock Market Data: 9,000+ Tickers (1962 - Present)

    Dataset Overview

    This dataset offers comprehensive historical stock market data covering over 9,000 tickers from 1962 to the present day. It includes essential daily trading information, making it suitable for various financial analyses, trend studies, and algorithmic trading model development.

    Columns

    • Date: The date of the recorded trading data.
    • Ticker: The stock symbol of the company.
    • Open: Opening price of the stock on the trading day.
    • High: Highest price reached during the trading day.
    • Low: Lowest price reached during the trading day.
    • Close: Closing price of the stock on the trading day.
    • Volume: The total number of shares traded during the day.
    • Dividends: Cash dividends issued on the date, if applicable.
    • Stock Splits: Stock split factor for the date, if any split occurred.

    Usage

    This dataset is ideal for: - Time-Series Analysis: Track stock price trends over time, examining daily, monthly, and yearly patterns across sectors. - Algorithmic Trading: Develop and backtest trading strategies using historical price movements and volume data. - Machine Learning Applications: Train models for stock price prediction, volatility forecasting, or portfolio optimization. - Quantitative Research: Perform event studies, analyze the impact of dividends and stock splits, and assess long-term investment strategies. - Comparative Analysis: Evaluate performance across industries or against broader market trends by analyzing multiple tickers in one dataset.

    This dataset serves as a robust resource for academic research, quantitative finance studies, and financial technology development.

  17. T

    Canada Stock Market Index (TSX) Data

    • tradingeconomics.com
    • de.tradingeconomics.com
    • +13more
    csv, excel, json, xml
    Updated Dec 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    TRADING ECONOMICS (2025). Canada Stock Market Index (TSX) Data [Dataset]. https://tradingeconomics.com/canada/stock-market
    Explore at:
    csv, xml, excel, jsonAvailable download formats
    Dataset updated
    Dec 2, 2025
    Dataset authored and provided by
    TRADING ECONOMICS
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Jun 29, 1979 - Dec 2, 2025
    Area covered
    Canada
    Description

    Canada's main stock market index, the TSX, fell to 30943 points on December 2, 2025, losing 0.51% from the previous session. Over the past month, the index has climbed 2.21% and is up 20.70% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks this benchmark index from Canada. Canada Stock Market Index (TSX) - values, historical data, forecasts and news - updated on December of 2025.

  18. Stock Market Sensex & Nifty All-time Dataset

    • kaggle.com
    zip
    Updated Nov 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rocky (2025). Stock Market Sensex & Nifty All-time Dataset [Dataset]. https://www.kaggle.com/datasets/rockyt07/stock-market-sensex-nifty-all-time-dataset
    Explore at:
    zip(59549439 bytes)Available download formats
    Dataset updated
    Nov 13, 2025
    Authors
    Rocky
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Comprehensive 27+ years of daily stock market data for Indian indices (SENSEX & NIFTY 50) and all their constituent companies. This dataset includes OHLCV data along with pre-calculated technical indicators, making it perfect for time series analysis, algorithmic trading strategies, and machine learning applications.

    Total Records: 400,000+
    Companies: 80 stocks (30 SENSEX + 50 NIFTY 50)
    Features: 21 columns per record

    Use Cases:

    Machine Learning & Prediction:

    • Stock price forecasting using LSTM, GRU, or Transformers
    • Next-day close price prediction
    • Multi-stock portfolio prediction
    • Market regime detection (bull/bear markets)

    Technical Analysis:

    • Backtest trading strategies (RSI, MACD, Moving Average crossovers)
    • Identify support/resistance levels
    • Bollinger Band squeeze patterns
    • Golden Cross / Death Cross detection

    Statistical Analysis:

    -Correlation analysis between stocks - Volatility clustering analysis - Market crash impact studies (2008 financial crisis, 2020 COVID) - Sectoral performance comparison

    Portfolio Optimization:

    • Modern Portfolio Theory implementation
    • Risk-return optimization
    • Diversification analysis
    • Sharpe ratio calculations

    Education:

    • Financial markets course projects
    • Time series analysis tutorials
    • Data science portfolio projects
    • Algorithmic trading education

    Company List:

    SENSEX 30 Companies:

    Adani Enterprises, Asian Paints, Axis Bank, Bajaj Finance, Bajaj Finserv, Bharti Airtel, HDFC Bank, HCL Technologies, Hindustan Unilever, ICICI Bank, IndusInd Bank, Infosys, ITC, Kotak Mahindra Bank, Larsen & Toubro, Mahindra & Mahindra, Maruti Suzuki, Nestle India, NTPC, ONGC, Power Grid Corporation, Reliance Industries, State Bank of India, Sun Pharmaceutical, Tata Consultancy Services, Tata Motors, Tata Steel, Tech Mahindra, Titan Company, UltraTech Cement, Wipro

    NIFTY 50 Companies:

    All SENSEX 30 companies plus: Adani Ports, Apollo Hospitals, Bajaj Auto, Bharat Petroleum, Britannia Industries, Cipla, Coal India, Divi's Laboratories, Dr. Reddy's Laboratories, Eicher Motors, Grasim Industries, Hero MotoCorp, Hindalco Industries, Hindustan Zinc, JSW Steel, LTIMindtree, Shriram Finance, Tata Consumer Products, Trent

    Ticker Conventions: - .BO suffix = Bombay Stock Exchange (BSE) - .NS suffix = National Stock Exchange (NSE)

    Citation Policy:

    If you use this dataset in your research, please cite:

    Indian Stock Market Historical Data - SENSEX & NIFTY 50 (1997-2024)
    Kaggle Dataset, November 2024
    URL: https://www.kaggle.com/datasets/rockyt07/stock-market-sensex-nifty-all-time-dataset
    
  19. Multisource Stock Market Trends Dataset

    • kaggle.com
    zip
    Updated Sep 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    zara2099 (2025). Multisource Stock Market Trends Dataset [Dataset]. https://www.kaggle.com/datasets/zara2099/multisource-stock-market-trends-dataset
    Explore at:
    zip(67022 bytes)Available download formats
    Dataset updated
    Sep 3, 2025
    Authors
    zara2099
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset integrates multiple financial data sources to enable detailed stock market trend analysis and decision-making.

    Key Features:

    Daily Stock Trading Metrics – Includes open, high, low, close prices, and trading volume.

    Macroeconomic Indicators – Covers GDP growth, inflation rates, and interest rates.

    Sentiment-Labeled News – Financial news articles with positive, negative, or neutral sentiment tags.

    Multisource Integration – Combines structured and unstructured financial data for deeper insights.

    Comprehensive Market Coverage – Designed for stock trend analysis, investment strategies, and risk assessment.

    Supports Predictive Modeling – Enables better understanding of market dynamics and investor sentiment.

  20. Can neural networks predict stock market? (PLD Stock Forecast) (Forecast)

    • kappasignal.com
    Updated Nov 8, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KappaSignal (2022). Can neural networks predict stock market? (PLD Stock Forecast) (Forecast) [Dataset]. https://www.kappasignal.com/2022/11/can-neural-networks-predict-stock_8.html
    Explore at:
    Dataset updated
    Nov 8, 2022
    Dataset authored and provided by
    KappaSignal
    License

    https://www.kappasignal.com/p/legal-disclaimer.htmlhttps://www.kappasignal.com/p/legal-disclaimer.html

    Description

    This analysis presents a rigorous exploration of financial data, incorporating a diverse range of statistical features. By providing a robust foundation, it facilitates advanced research and innovative modeling techniques within the field of finance.

    Can neural networks predict stock market? (PLD Stock Forecast)

    Financial data:

    • Historical daily stock prices (open, high, low, close, volume)

    • Fundamental data (e.g., market capitalization, price to earnings P/E ratio, dividend yield, earnings per share EPS, price to earnings growth, debt-to-equity ratio, price-to-book ratio, current ratio, free cash flow, projected earnings growth, return on equity, dividend payout ratio, price to sales ratio, credit rating)

    • Technical indicators (e.g., moving averages, RSI, MACD, average directional index, aroon oscillator, stochastic oscillator, on-balance volume, accumulation/distribution A/D line, parabolic SAR indicator, bollinger bands indicators, fibonacci, williams percent range, commodity channel index)

    Machine learning features:

    • Feature engineering based on financial data and technical indicators

    • Sentiment analysis data from social media and news articles

    • Macroeconomic data (e.g., GDP, unemployment rate, interest rates, consumer spending, building permits, consumer confidence, inflation, producer price index, money supply, home sales, retail sales, bond yields)

    Potential Applications:

    • Stock price prediction

    • Portfolio optimization

    • Algorithmic trading

    • Market sentiment analysis

    • Risk management

    Use Cases:

    • Researchers investigating the effectiveness of machine learning in stock market prediction

    • Analysts developing quantitative trading Buy/Sell strategies

    • Individuals interested in building their own stock market prediction models

    • Students learning about machine learning and financial applications

    Additional Notes:

    • The dataset may include different levels of granularity (e.g., daily, hourly)

    • Data cleaning and preprocessing are essential before model training

    • Regular updates are recommended to maintain the accuracy and relevance of the data

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
TRADING ECONOMICS (2025). United States Stock Market Index Data [Dataset]. https://tradingeconomics.com/united-states/stock-market

United States Stock Market Index Data

United States Stock Market Index - Historical Dataset (1928-01-03/2025-12-02)

Explore at:
21 scholarly articles cite this dataset (View in Google Scholar)
excel, xml, json, csvAvailable download formats
Dataset updated
Dec 2, 2025
Dataset authored and provided by
TRADING ECONOMICS
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Time period covered
Jan 3, 1928 - Dec 2, 2025
Area covered
United States
Description

The main stock market index of United States, the US500, rose to 6818 points on December 2, 2025, gaining 0.08% from the previous session. Over the past month, the index has declined 0.50%, though it remains 12.70% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from United States. United States Stock Market Index - values, historical data, forecasts and news - updated on December of 2025.

Search
Clear search
Close search
Google apps
Main menu