Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context:This synthetic healthcare dataset has been created to serve as a valuable resource for data science, machine learning, and data analysis enthusiasts. It is designed to mimic real-world healthcare data, enabling users to practice, develop, and showcase their data manipulation and analysis skills in the context of the healthcare industry.
Inspiration:The inspiration behind this dataset is rooted in the need for practical and diverse healthcare data for educational and research purposes. Healthcare data is often sensitive and subject to privacy regulations, making it challenging to access for learning and experimentation. To address this gap, I have leveraged Python's Faker library to generate a dataset that mirrors the structure and attributes commonly found in healthcare records. By providing this synthetic data, I hope to foster innovation, learning, and knowledge sharing in the healthcare analytics domain.
Dataset Information:Each column provides specific information about the patient, their admission, and the healthcare services provided, making this dataset suitable for various data analysis and modeling tasks in the healthcare domain. Here's a brief explanation of each column in the dataset - - Name: This column represents the name of the patient associated with the healthcare record. - Age: The age of the patient at the time of admission, expressed in years. - Gender: Indicates the gender of the patient, either "Male" or "Female." - Blood Type: The patient's blood type, which can be one of the common blood types (e.g., "A+", "O-", etc.). - Medical Condition: This column specifies the primary medical condition or diagnosis associated with the patient, such as "Diabetes," "Hypertension," "Asthma," and more. - Date of Admission: The date on which the patient was admitted to the healthcare facility. - Doctor: The name of the doctor responsible for the patient's care during their admission. - Hospital: Identifies the healthcare facility or hospital where the patient was admitted. - Insurance Provider: This column indicates the patient's insurance provider, which can be one of several options, including "Aetna," "Blue Cross," "Cigna," "UnitedHealthcare," and "Medicare." - Billing Amount: The amount of money billed for the patient's healthcare services during their admission. This is expressed as a floating-point number. - Room Number: The room number where the patient was accommodated during their admission. - Admission Type: Specifies the type of admission, which can be "Emergency," "Elective," or "Urgent," reflecting the circumstances of the admission. - Discharge Date: The date on which the patient was discharged from the healthcare facility, based on the admission date and a random number of days within a realistic range. - Medication: Identifies a medication prescribed or administered to the patient during their admission. Examples include "Aspirin," "Ibuprofen," "Penicillin," "Paracetamol," and "Lipitor." - Test Results: Describes the results of a medical test conducted during the patient's admission. Possible values include "Normal," "Abnormal," or "Inconclusive," indicating the outcome of the test.
Usage Scenarios:This dataset can be utilized for a wide range of purposes, including: - Developing and testing healthcare predictive models. - Practicing data cleaning, transformation, and analysis techniques. - Creating data visualizations to gain insights into healthcare trends. - Learning and teaching data science and machine learning concepts in a healthcare context. - You can treat it as a Multi-Class Classification Problem and solve it for Test Results which contains 3 categories(Normal, Abnormal, and Inconclusive).
Acknowledgments:Image Credit:Image by BC Y from Pixabay
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developing data-driven solutions that address real-world problems requires understanding of these problems’ causes and how their interaction affects the outcome–often with only observational data. Causal Bayesian Networks (BN) have been proposed as a powerful method for discovering and representing the causal relationships from observational data as a Directed Acyclic Graph (DAG). BNs could be especially useful for research in global health in Lower and Middle Income Countries, where there is an increasing abundance of observational data that could be harnessed for policy making, program evaluation, and intervention design. However, BNs have not been widely adopted by global health professionals, and in real-world applications, confidence in the results of BNs generally remains inadequate. This is partially due to the inability to validate against some ground truth, as the true DAG is not available. This is especially problematic if a learned DAG conflicts with pre-existing domain doctrine. Here we conceptualize and demonstrate an idea of a “Causal Datasheet” that could approximate and document BN performance expectations for a given dataset, aiming to provide confidence and sample size requirements to practitioners. To generate results for such a Causal Datasheet, a tool was developed which can generate synthetic Bayesian networks and their associated synthetic datasets to mimic real-world datasets. The results given by well-known structure learning algorithms and a novel implementation of the OrderMCMC method using the Quotient Normalized Maximum Likelihood score were recorded. These results were used to populate the Causal Datasheet, and recommendations could be made dependent on whether expected performance met user-defined thresholds. We present our experience in the creation of Causal Datasheets to aid analysis decisions at different stages of the research process. First, one was deployed to help determine the appropriate sample size of a planned study of sexual and reproductive health in Madhya Pradesh, India. Second, a datasheet was created to estimate the performance of an existing maternal health survey we conducted in Uttar Pradesh, India. Third, we validated generated performance estimates and investigated current limitations on the well-known ALARM dataset. Our experience demonstrates the utility of the Causal Datasheet, which can help global health practitioners gain more confidence when applying BNs.
Facebook
TwitterThis archive contains code and data for reproducing the analysis for “Replication Data for Revisiting ‘The Rise and Decline’ in a Population of Peer Production Projects”. Depending on what you hope to do with the data you probabbly do not want to download all of the files. Depending on your computation resources you may not be able to run all stages of the analysis. The code for all stages of the analysis, including typesetting the manuscript and running the analysis, is in code.tar. If you only want to run the final analysis or to play with datasets used in the analysis of the paper, you want intermediate_data.7z or the uncompressed tab and csv files. The data files are created in a four-stage process. The first stage uses the program “wikiq” to parse mediawiki xml dumps and create tsv files that have edit data for each wiki. The second stage generates all.edits.RDS file which combines these tsvs into a dataset of edits from all the wikis. This file is expensive to generate and at 1.5GB is pretty big. The third stage builds smaller intermediate files that contain the analytical variables from these tsv files. The fourth stage uses the intermediate files to generate smaller RDS files that contain the results. Finally, knitr and latex typeset the manuscript. A stage will only run if the outputs from the previous stages do not exist. So if the intermediate files exist they will not be regenerated. Only the final analysis will run. The exception is that stage 4, fitting models and generating plots, always runs. If you only want to replicate from the second stage onward, you want wikiq_tsvs.7z. If you want to replicate everything, you want wikia_mediawiki_xml_dumps.7z.001 wikia_mediawiki_xml_dumps.7z.002, and wikia_mediawiki_xml_dumps.7z.003. These instructions work backwards from building the manuscript using knitr, loading the datasets, running the analysis, to building the intermediate datasets. Building the manuscript using knitr This requires working latex, latexmk, and knitr installations. Depending on your operating system you might install these packages in different ways. On Debian Linux you can run apt install r-cran-knitr latexmk texlive-latex-extra. Alternatively, you can upload the necessary files to a project on Overleaf.com. Download code.tar. This has everything you need to typeset the manuscript. Unpack the tar archive. On a unix system this can be done by running tar xf code.tar. Navigate to code/paper_source. Install R dependencies. In R. run install.packages(c("data.table","scales","ggplot2","lubridate","texreg")) On a unix system you should be able to run make to build the manuscript generalizable_wiki.pdf. Otherwise you should try uploading all of the files (including the tables, figure, and knitr folders) to a new project on Overleaf.com. Loading intermediate datasets The intermediate datasets are found in the intermediate_data.7z archive. They can be extracted on a unix system using the command 7z x intermediate_data.7z. The files are 95MB uncompressed. These are RDS (R data set) files and can be loaded in R using the readRDS. For example newcomer.ds <- readRDS("newcomers.RDS"). If you wish to work with these datasets using a tool other than R, you might prefer to work with the .tab files. Running the analysis Fitting the models may not work on machines with less than 32GB of RAM. If you have trouble, you may find the functions in lib-01-sample-datasets.R useful to create stratified samples of data for fitting models. See line 89 of 02_model_newcomer_survival.R for an example. Download code.tar and intermediate_data.7z to your working folder and extract both archives. On a unix system this can be done with the command tar xf code.tar && 7z x intermediate_data.7z. Install R dependencies. install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). On a unix system you can simply run regen.all.sh to fit the models, build the plots and create the RDS files. Generating datasets Building the intermediate files The intermediate files are generated from all.edits.RDS. This process requires about 20GB of memory. Download all.edits.RDS, userroles_data.7z,selected.wikis.csv, and code.tar. Unpack code.tar and userroles_data.7z. On a unix system this can be done using tar xf code.tar && 7z x userroles_data.7z. Install R dependencies. In R run install.packages(c("data.table","ggplot2","urltools","texreg","optimx","lme4","bootstrap","scales","effects","lubridate","devtools","roxygen2")). Run 01_build_datasets.R. Building all.edits.RDS The intermediate RDS files used in the analysis are created from all.edits.RDS. To replicate building all.edits.RDS, you only need to run 01_build_datasets.R when the int... Visit https://dataone.org/datasets/sha256%3Acfa4980c107154267d8eb6dc0753ed0fde655a73a062c0c2f5af33f237da3437 for complete metadata about this dataset.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
Welcome to the CIC PDF-Malware 2022 dataset! This dataset is meticulously cleaned and curated to support research and development in the field of malware detection within PDF files. The dataset offers a valuable resource for machine learning practitioners, researchers, and data scientists working on cybersecurity projects.
Dataset Overview: The CIC PDF-Malware 2022 dataset comprises a comprehensive collection of features extracted from PDF files, both benign and malicious. It has been thoroughly cleaned to ensure high quality and consistency. Each entry in the dataset includes detailed attributes that can be leveraged for training and testing machine learning models aimed at detecting malware embedded in PDFs.
Key Features:
Feature-Rich Data: Includes various attributes related to PDF files, making it suitable for in-depth analysis and model training. Cleaned and Curated: The dataset has been meticulously cleaned to remove inconsistencies and errors, ensuring reliability and accuracy. Visualizations: We provide insightful visualizations to help understand the dataset's characteristics and distribution. Usage: To facilitate easy utilization of the dataset, we have included example code and tutorials demonstrating how to load and analyze the data. These resources will help you get started quickly and effectively.
Why This Dataset is Valuable:
Research and Development: Ideal for researchers and practitioners focused on enhancing malware detection mechanisms. Benchmarking: Useful for benchmarking new algorithms and models in the context of PDF malware detection. Community Engagement: Engage with the dataset through discussions and collaborative projects to advance cybersecurity research. Getting Started:
Download the dataset and explore the included examples and tutorials. Use the provided visualizations to gain insights into the dataset’s structure and attributes. Share your findings, contribute to discussions, and collaborate with other Kaggle users to maximize the impact of this dataset. Feel free to reach out with any questions or feedback. We look forward to seeing how you utilize this dataset to advance the field of malware detection!
Facebook
TwitterThe R Manual for QCA entails a PDF file that describes all the steps and code needed to prepare and conduct a Qualitative Comparative Analysis (QCA) study in R. This is complemented by an R Script that can be customized as needed. The dataset further includes two files with sample data, for the set-theoretic analysis and the visualization of QCA results. The R Manual for QCA is the online appendix to "Qualitative Comparative Analysis: An Introduction to Research Design and Application", Georgetown University Press, 2021.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GENERAL INFORMATION
Title of Dataset: A dataset from a survey investigating disciplinary differences in data citation
Date of data collection: January to March 2022
Collection instrument: SurveyMonkey
Funding: Alfred P. Sloan Foundation
SHARING/ACCESS INFORMATION
Licenses/restrictions placed on the data: These data are available under a CC BY 4.0 license
Links to publications that cite or use the data:
Gregory, K., Ninkov, A., Ripp, C., Peters, I., & Haustein, S. (2022). Surveying practices of data citation and reuse across disciplines. Proceedings of the 26th International Conference on Science and Technology Indicators. International Conference on Science and Technology Indicators, Granada, Spain. https://doi.org/10.5281/ZENODO.6951437
Gregory, K., Ninkov, A., Ripp, C., Roblin, E., Peters, I., & Haustein, S. (2023). Tracing data:
A survey investigating disciplinary differences in data citation. Zenodo. https://doi.org/10.5281/zenodo.7555266
DATA & FILE OVERVIEW
File List
Additional related data collected that was not included in the current data package: Open ended questions asked to respondents
METHODOLOGICAL INFORMATION
Description of methods used for collection/generation of data:
The development of the questionnaire (Gregory et al., 2022) was centered around the creation of two main branches of questions for the primary groups of interest in our study: researchers that reuse data (33 questions in total) and researchers that do not reuse data (16 questions in total). The population of interest for this survey consists of researchers from all disciplines and countries, sampled from the corresponding authors of papers indexed in the Web of Science (WoS) between 2016 and 2020.
Received 3,632 responses, 2,509 of which were completed, representing a completion rate of 68.6%. Incomplete responses were excluded from the dataset. The final total contains 2,492 complete responses and an uncorrected response rate of 1.57%. Controlling for invalid emails, bounced emails and opt-outs (n=5,201) produced a response rate of 1.62%, similar to surveys using comparable recruitment methods (Gregory et al., 2020).
Methods for processing the data:
Results were downloaded from SurveyMonkey in CSV format and were prepared for analysis using Excel and SPSS by recoding ordinal and multiple choice questions and by removing missing values.
Instrument- or software-specific information needed to interpret the data:
The dataset is provided in SPSS format, which requires IBM SPSS Statistics. The dataset is also available in a coded format in CSV. The Codebook is required to interpret to values.
DATA-SPECIFIC INFORMATION FOR: MDCDataCitationReuse2021surveydata
Number of variables: 94
Number of cases/rows: 2,492
Missing data codes: 999 Not asked
Refer to MDCDatacitationReuse2021Codebook.pdf for detailed variable information.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The dataset has been obtained by web scraping a Wikipedia page for which code is linked below: https://www.kaggle.com/amruthayenikonda/simple-web-scraping-using-pandas
This dataset can be used to practice data cleaning and manipulation for example dropping of unwanted columns, null vales, removing symbols etc
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
General descriptionThis dataset contains some markers of Open Science in the publications of the Chemical Biology Consortium Sweden (CBCS) between 2010 and July 2023. The sample of CBCS publications during this period consists of 188 articles. Every publication was visited manually at its DOI URL to answer the following questions.1. Is the research article an Open Access publication?2. Does the research article have a Creative Common license or a similar license?3. Does the research article contain a data availability statement?4. Did the authors submit data of their study to a repository such as EMBL, Genbank, Protein Data Bank PDB, Cambridge Crystallographic Data Centre CCDC, Dryad or a similar repository?5. Does the research article contain supplementary data?6. Do the supplementary data have a persistent identifier that makes them citable as a defined research output?VariablesThe data were compiled in a Microsoft Excel 365 document that includes the following variables.1. DOI URL of research article2. Year of publication3. Research article published with Open Access4. License for research article5. Data availability statement in article6. Supplementary data added to article7. Persistent identifier for supplementary data8. Authors submitted data to NCBI or EMBL or PDB or Dryad or CCDCVisualizationParts of the data were visualized in two figures as bar diagrams using Microsoft Excel 365. The first figure displays the number of publications during a year, the number of publications that is published with open access and the number of publications that contain a data availability statement (Figure 1). The second figure shows the number of publication sper year and how many publications contain supplementary data. This figure also shows how many of the supplementary datasets have a persistent identifier (Figure 2).File formats and softwareThe file formats used in this dataset are:.csv (Text file).docx (Microsoft Word 365 file).jpg (JPEG image file).pdf/A (Portable Document Format for archiving).png (Portable Network Graphics image file).pptx (Microsoft Power Point 365 file).txt (Text file).xlsx (Microsoft Excel 365 file)All files can be opened with Microsoft Office 365 and work likely also with the older versions Office 2019 and 2016. MD5 checksumsHere is a list of all files of this dataset and of their MD5 checksums.1. Readme.txt (MD5: 795f171be340c13d78ba8608dafb3e76)2. Manifest.txt (MD5: 46787888019a87bb9d897effdf719b71)3. Materials_and_methods.docx (MD5: 0eedaebf5c88982896bd1e0fe57849c2),4. Materials_and_methods.pdf (MD5: d314bf2bdff866f827741d7a746f063b),5. Materials_and_methods.txt (MD5: 26e7319de89285fc5c1a503d0b01d08a),6. CBCS_publications_until_date_2023_07_05.xlsx (MD5: 532fec0bd177844ac0410b98de13ca7c),7. CBCS_publications_until_date_2023_07_05.csv (MD5: 2580410623f79959c488fdfefe8b4c7b),8. Data_from_CBCS_publications_until_date_2023_07_05_obtained_by_manual_collection.xlsx (MD5: 9c67dd84a6b56a45e1f50a28419930e5),9. Data_from_CBCS_publications_until_date_2023_07_05_obtained_by_manual_collection.csv (MD5: fb3ac69476bfc57a8adc734b4d48ea2b),10. Aggregated_data_from_CBCS_publications_until_2023_07_05.xlsx (MD5: 6b6cbf3b9617fa8960ff15834869f793),11. Aggregated_data_from_CBCS_publications_until_2023_07_05.csv (MD5: b2b8dd36ba86629ed455ae5ad2489d6e),12. Figure_1_CBCS_publications_until_2023_07_05_Open_Access_and_data_availablitiy_statement.xlsx (MD5: 9c0422cf1bbd63ac0709324cb128410e),13. Figure_1.pptx (MD5: 55a1d12b2a9a81dca4bb7f333002f7fe),14. Image_of_figure_1.jpg (MD5: 5179f69297fbbf2eaaf7b641784617d7),15. Image_of_figure_1.png (MD5: 8ec94efc07417d69115200529b359698),16. Figure_2_CBCS_publications_until_2023_07_05_supplementary_data_and_PID_for_supplementary_data.xlsx (MD5: f5f0d6e4218e390169c7409870227a0a),17. Figure_2.pptx (MD5: 0fd4c622dc0474549df88cf37d0e9d72),18. Image_of_figure_2.jpg (MD5: c6c68b63b7320597b239316a1c15e00d),19. Image_of_figure_2.png (MD5: 24413cc7d292f468bec0ac60cbaa7809)
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Facebook
TwitterThis is a repository for a UKRI Economic and Social Research Council (ESRC) funded project to understand the software used to analyse social sciences data. Any software produced has been made available under a BSD 2-Clause license and any data and other non-software derivative is made available under a CC-BY 4.0 International License. Note that the software that analysed the survey is provided for illustrative purposes - it will not work on the decoupled anonymised data set. Exceptions to this are: Data from the UKRI ESRC is mostly made available under a CC BY-NC-SA 4.0 Licence. Data from Gateway to Research is made available under an Open Government Licence (Version 3.0). Contents Survey data & analysis: esrc_data-survey-analysis-data.zip Other data: esrc_data-other-data.zip Transcripts: esrc_data-transcripts.zip Data Management Plan: esrc_data-dmp.zip Survey data & analysis The survey ran from 3rd February 2022 to 6th March 2023 during which 168 responses were received. Of these responses, three were removed because they were supplied by people from outside the UK without a clear indication of involvement with the UK or associated infrastructure. A fourth response was removed as both came from the same person which leaves us with 164 responses in the data. The survey responses, Question (Q) Q1-Q16, have been decoupled from the demographic data, Q17-Q23. Questions Q24-Q28 are for follow-up and have been removed from the data. The institutions (Q17) and funding sources (Q18) have been provided in a separate file as this could be used to identify respondents. Q17, Q18 and Q19-Q23 have all been independently shuffled. The data has been made available as Comma Separated Values (CSV) with the question number as the header of each column and the encoded responses in the column below. To see what the question and the responses correspond to you will have to consult the survey-results-key.csv which decodes the question and responses accordingly. A pdf copy of the survey questions is available on GitHub. The survey data has been decoupled into: survey-results-key.csv - maps a question number and the responses to the actual question values. q1-16-survey-results.csv- the non-demographic component of the survey responses (Q1-Q16). q19-23-demographics.csv - the demographic part of the survey (Q19-Q21, Q23). q17-institutions.csv - the institution/location of the respondent (Q17). q18-funding.csv - funding sources within the last 5 years (Q18). Please note the code that has been used to do the analysis will not run with the decoupled survey data. Other data files included CleanedLocations.csv - normalised version of the institutions that the survey respondents volunteered. DTPs.csv - information on the UKRI Doctoral Training Partnerships (DTPs) scaped from the UKRI DTP contacts web page in October 2021. projectsearch-1646403729132.csv.gz - data snapshot from the UKRI Gateway to Research released on the 24th February 2022 made available under an Open Government Licence. locations.csv - latitude and longitude for the institutions in the cleaned locations. subjects.csv - research classifications for the ESRC projects for the 24th February data snapshot. topics.csv - topic classification for the ESRC projects for the 24th February data snapshot. Interview transcripts The interview transcripts have been anonymised and converted to markdown so that it's easier to process in general. List of interview transcripts: 1269794877.md 1578450175.md 1792505583.md 2964377624.md 3270614512.md 40983347262.md 4288358080.md 4561769548.md 4938919540.md 5037840428.md 5766299900.md 5996360861.md 6422621713.md 6776362537.md 7183719943.md 7227322280.md 7336263536.md 75909371872.md 7869268779.md 8031500357.md 9253010492.md Data Management Plan The study's Data Management Plan is provided in PDF format and shows the different data sets used throughout the duration of the study and where they have been deposited, as well as how long the SSI will keep these records.
Facebook
Twitterhttps://www.usa.gov/government-workshttps://www.usa.gov/government-works
The datasets in this zip file are in support of Intelligent Transportation Systems Joint Program Office (ITS JPO) report FHWA-JPO-16-385, "Analysis, Modeling, and Simulation (AMS) Testbed Development and Evaluation to Support Dynamic Mobility Applications (DMA) and Active Transportation and Demand Management (ATDM) Programs — Evaluation Report for ATDM Program," https://rosap.ntl.bts.gov/view/dot/32520 and FHWA-JPO-16-373, "Analysis, modeling, and simulation (AMS) testbed development and evaluation to support dynamic mobility applications (DMA) and active transportation and demand management (ATDM) programs : Dallas testbed analysis plan," https://rosap.ntl.bts.gov/view/dot/32106 The files in this zip file are specifically related to the Dallas Testbed. The compressed zip files total 2.2 GB in size. The files have been uploaded as-is; no further documentation was supplied by NTL. All located .docx files were converted to .pdf document files which are an open, archival format. These pdfs were then added to the zip file alongside the original .docx files. These files can be unzipped using any zip compression/decompression software. This zip file contains files in the following formats: .pdf document files which can be read using any pdf reader; .cvs text files which can be read using any text editor; .txt text files which can be read using any text editor; .docx document files which can be read in Microsoft Word and some other word processing programs; . xlsx spreadsheet files which can be read in Microsoft Excel and some other spreadsheet programs; .dat data files which may be text or multimedia; as well as GIS or mapping files in the fowlling formats: .mxd, .dbf, .prj, .sbn, .shp., .shp.xml; which may be opened in ArcGIS or other GIS software. [software requirements] These files were last accessed in 2017.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Five files, one of which is a ZIP archive, containing data that support the findings of this study. PDF file "IA screenshots CSU Libraries search config" contains screenshots captured from the Internet Archive's Wayback Machine for all 24 CalState libraries' homepages for years 2017 - 2019. Excel file "CCIHE2018-PublicDataFile" contains Carnegie Classifications data from the Indiana University Center for Postsecondary Research for all of the CalState campuses from 2018. CSV file "2017-2019_RAW" contains the raw data exported from Ex Libris Primo Analytics (OBIEE) for all 24 CalState libraries for calendar years 2017 - 2019. CSV file "clean_data" contains the cleaned data from Primo Analytics which was used for all subsequent analysis such as charting and import into SPSS for statistical testing. ZIP archive file "NonparametricStatisticalTestsFromSPSS" contains 23 SPSS files [.spv format] reporting the results of testing conducted in SPSS. This archive includes things such as normality check, descriptives, and Kruskal-Wallis H-test results.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
# Go Linter Evaluation Dataset
This is a publicly available dataset for 'An empirical evaluation of Golang static code analysis tools for real-world issues.' Please refer to the data according to the names of the spreadsheets.
Authors: Jianwei Wu, James Clause
## Collected Survey Data:
- This Excel file contains the collected survey data for the empirical study in details.
## R Scripts and Raw Data:
- These scripts are used for data analysis and processing.
- This is the initial data collected from surveys or other sources before any processing or analysis.
## Surveys for External Participants:
- This Excel file contains survey data collected for the evaluation of Go linters.
- This folder contains the surveys sent to external participants for collecting their feedback or data.
## Recruitment Letter.pdf:
- This PDF contains an example of the recruitment letter sent to potential survey participants, inviting them to take part in the study.
## Outputs from Existing Go Linters and Summarized Categories.xlsx:
- This Excel file contains outputs from various Go linters and categorized summaries of these outputs. It helps in comparing the performance and features of different linters.
## Selection of Go Linters.xlsx:
- This Excel file lists the Go linters selected for evaluation, along with criteria or reasons for their selection.
## UD IRB Exempt Letter.pdf:
- This PDF contains the Institutional Review Board (IRB) exemption letter from the University of Delaware (UD), indicating that the study involving human participants was exempt from full review.
## Survey Template.pdf:
- This PDF contains an example of the survey sent to the participants.
## govet issues.pdf:
- This PDF contains a list of reported issues about govet.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
The invoice dataset provided is a mock dataset generated using the Python Faker library. It has been designed to mimic the format of data collected from an online store. The dataset contains various fields, including first name, last name, email, product ID, quantity, amount, invoice date, address, city, and stock code. All of the data in the dataset is randomly generated and does not represent actual individuals or products. The dataset can be used for various purposes, including testing algorithms or models related to invoice management, e-commerce, or customer behavior analysis. The data in this dataset can be used to identify trends, patterns, or anomalies in online shopping behavior, which can help businesses to optimize their online sales strategies.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains the content of the subset of all files with a correct publication date from the 2017 release of files related to the JFK case (retrieved from https://www.archives.gov/research/jfk/2017-release). This content was extracted from the source PDF files using the R OCR libraries tesseract and pdftools.
The code to derive the dataset is given as follows:
library(tesseract) library(pdftools)
pdfs <- list.files("[path to your output directory containing all PDF files]")
meta <- read.csv2("[path to your input directory]/jfkrelease-2017-dce65d0ec70a54d5744de17d280f3ad2.csv",header = T,sep = ',') #the meta file containing all metadata for the PDF files (e.g. publication date)
meta$Doc.Date <- as.character(meta$Doc.Date)
meta.clean <- meta[-which(meta$Doc.Date=="" | grepl("/0000",meta$Doc.Date)),] for(i in 1:nrow(meta.clean)){ meta.clean$Doc.Date[i] <- gsub("00","01",meta.clean$Doc.Date[i])
if(nchar(meta.clean$Doc.Date[i])<10){ meta.clean$Doc.Date[i]<-format(strptime(meta.clean$Doc.Date[i],format = "%d/%m/%y"),"%m/%d/%Y") }
}
meta.clean$Doc.Date <- strptime(meta.clean$Doc.Date,format = "%m/%d/%Y")
meta.clean <- meta.clean[order(meta.clean$Doc.Date),]
docs <- data.frame(content=character(0),dpub=character(0),stringsAsFactors = F) for(i in 1:nrow(meta.clean)){
pdf_prop <- pdftools::pdf_info(paste0("[path to your output directory]/",tolower(meta.clean$File.Name[i]))) tmp_files <- c() for(k in 1:pdf_prop$pages){ tmp_files <- c(tmp_files,paste0("/home/STAFF/luczakma/RProjects/JFK/data/tmp/",k)) }
img_file <- pdftools::pdf_convert(paste0("[path to your output directory]/",tolower(meta.clean$File.Name[i])), format = 'tiff', pages = NULL, dpi = 700,filenames = tmp_files)
txt <- ""
for(j in 1:length(img_file)){ extract <- ocr(img_file[j], engine = tesseract("eng")) #unlink(img_file) txt <- paste(txt,extract,collapse = " ") }
docs <- rbind(docs,data.frame(content=iconv(tolower(gsub("\s+"," ",gsub("[[:punct:]]|[ ]"," ",txt))),to="UTF-8"),dpub=format(meta.clean$Doc.Date[i],"%Y/%m/%d"),stringsAsFactors = F),stringsAsFactors = F) }
write.table(docs,"[path to your output directory]/documents.csv", row.names = F)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains the dataset for the study of computational reproducibility of Jupyter notebooks from biomedical publications. Our focus lies in evaluating the extent of reproducibility of Jupyter notebooks derived from GitHub repositories linked to publications present in the biomedical literature repository, PubMed Central. We analyzed the reproducibility of Jupyter notebooks from GitHub repositories associated with publications indexed in the biomedical literature repository PubMed Central. The dataset includes the metadata information of the journals, publications, the Github repositories mentioned in the publications and the notebooks present in the Github repositories.
Data Collection and Analysis
We use the code for reproducibility of Jupyter notebooks from the study done by Pimentel et al., 2019 and adapted the code from ReproduceMeGit. We provide code for collecting the publication metadata from PubMed Central using NCBI Entrez utilities via Biopython.
Our approach involves searching PMC using the esearch function for Jupyter notebooks using the query: ``(ipynb OR jupyter OR ipython) AND github''. We meticulously retrieve data in XML format, capturing essential details about journals and articles. By systematically scanning the entire article, encompassing the abstract, body, data availability statement, and supplementary materials, we extract GitHub links. Additionally, we mine repositories for key information such as dependency declarations found in files like requirements.txt, setup.py, and pipfile. Leveraging the GitHub API, we enrich our data by incorporating repository creation dates, update histories, pushes, and programming languages.
All the extracted information is stored in a SQLite database. After collecting and creating the database tables, we ran a pipeline to collect the Jupyter notebooks contained in the GitHub repositories based on the code from Pimentel et al., 2019.
Our reproducibility pipeline was started on 27 March 2023.
Repository Structure
Our repository is organized into two main folders:
Accessing Data and Resources:
System Requirements:
Running the pipeline:
Running the analysis:
References:
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Network traffic datasets created by Single Flow Time Series Analysis
Datasets were created for the paper: Network Traffic Classification based on Single Flow Time Series Analysis -- Josef Koumar, Karel Hynek, Tomáš Čejka -- which was published at The 19th International Conference on Network and Service Management (CNSM) 2023. Please cite usage of our datasets as:
J. Koumar, K. Hynek and T. Čejka, "Network Traffic Classification Based on Single Flow Time Series Analysis," 2023 19th International Conference on Network and Service Management (CNSM), Niagara Falls, ON, Canada, 2023, pp. 1-7, doi: 10.23919/CNSM59352.2023.10327876.
This Zenodo repository contains 23 datasets created from 15 well-known published datasets which are cited in the table below. Each dataset contains 69 features created by Time Series Analysis of Single Flow Time Series. The detailed description of features from datasets is in the file: feature_description.pdf
In the following table is a description of each dataset file:
| File name | Detection problem | Citation of original raw dataset |
| botnet_binary.csv | Binary detection of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
| botnet_multiclass.csv | Multi-class classification of botnet | S. García et al. An Empirical Comparison of Botnet Detection Methods. Computers & Security, 45:100–123, 2014. |
| cryptomining_design.csv | Binary detection of cryptomining; the design part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
| cryptomining_evaluation.csv | Binary detection of cryptomining; the evaluation part | Richard Plný et al. Datasets of Cryptomining Communication. Zenodo, October 2022 |
| dns_malware.csv | Binary detection of malware DNS | Samaneh Mahdavifar et al. Classifying Malicious Domains using DNS Traffic Analysis. In DASC/PiCom/CBDCom/CyberSciTech 2021, pages 60–67. IEEE, 2021. |
| doh_cic.csv | Binary detection of DoH |
Mohammadreza MontazeriShatoori et al. Detection of doh tunnels using time-series classification of encrypted traffic. In DASC/PiCom/CBDCom/CyberSciTech 2020, pages 63–70. IEEE, 2020 |
| doh_real_world.csv | Binary detection of DoH | Kamil Jeřábek et al. Collection of datasets with DNS over HTTPS traffic. Data in Brief, 42:108310, 2022 |
| dos.csv | Binary detection of DoS | Nickolaos Koroniotis et al. Towards the development of realistic botnet dataset in the Internet of Things for network forensic analytics: Bot-IoT dataset. Future Gener. Comput. Syst., 100:779–796, 2019. |
| edge_iiot_binary.csv | Binary detection of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
| edge_iiot_multiclass.csv | Multi-class classification of IoT malware | Mohamed Amine Ferrag et al. Edge-iiotset: A new comprehensive realistic cyber security dataset of iot and iiot applications: Centralized and federated learning, 2022. |
| https_brute_force.csv | Binary detection of HTTPS Brute Force | Jan Luxemburk et al. HTTPS Brute-force dataset with extended network flows, November 2020 |
| ids_cic_binary.csv | Binary detection of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
| ids_cic_multiclass.csv | Multi-class classification of intrusion in IDS | Iman Sharafaldin et al. Toward generating a new intrusion detection dataset and intrusion traffic characterization. ICISSp, 1:108–116, 2018. |
| ids_unsw_nb_15_binary.csv | Binary detection of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
| ids_unsw_nb_15_multiclass.csv | Multi-class classification of intrusion in IDS | Nour Moustafa and Jill Slay. Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In 2015 military communications and information systems conference (MilCIS), pages 1–6. IEEE, 2015. |
| iot_23.csv | Binary detection of IoT malware | Sebastian Garcia et al. IoT-23: A labeled dataset with malicious and benign IoT network traffic, January 2020. More details here https://www.stratosphereips.org /datasets-iot23 |
| ton_iot_binary.csv | Binary detection of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
| ton_iot_multiclass.csv | Multi-class classification of IoT malware | Nour Moustafa. A new distributed architecture for evaluating ai-based security systems at the edge: Network ton iot datasets. Sustainable Cities and Society, 72:102994, 2021 |
| tor_binary.csv | Binary detection of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
| tor_multiclass.csv | Multi-class classification of TOR | Arash Habibi Lashkari et al. Characterization of Tor Traffic using Time based Features. In ICISSP 2017, pages 253–262. SciTePress, 2017. |
| vpn_iscx_binary.csv | Binary detection of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
| vpn_iscx_multiclass.csv | Multi-class classification of VPN | Gerard Draper-Gil et al. Characterization of Encrypted and VPN Traffic Using Time-related. In ICISSP, pages 407–414, 2016. |
| vpn_vnat_binary.csv | Binary detection of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
| vpn_vnat_multiclass.csv | Multi-class classification of VPN | Steven Jorgensen et al. Extensible Machine Learning for Encrypted Network Traffic Application Labeling via Uncertainty Quantification. CoRR, abs/2205.05628, 2022 |
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Pesticide Data Program (PDP) is a national pesticide residue database program. Through cooperation with State agriculture departments and other Federal agencies, PDP manages the collection, analysis, data entry, and reporting of pesticide residues on agricultural commodities in the U.S. food supply, with an emphasis on those commodities highly consumed by infants and children.This dataset provides information on where each tested sample was collected, where the product originated from, what type of product it was, and what residues were found on the product, for calendar years 1992 through 2023. The data can measure residues of individual compounds and classes of compounds, as well as provide information about the geographic distribution of the origin of samples, from growers, packers and distributors. The dataset also includes information on where the samples were taken, what laboratory was used to test them, and all testing procedures (by sample, so can be linked to the compound that is identified). The dataset also contains a reference variable for each compound that denotes the limit of detection for a pesticide/commodity pair (LOD variable). The metadata also includes EPA tolerance levels or action levels for each pesticide/commodity pair. The dataset will be updated on a continual basis, with a new resource data file added annually after the PDP calendar-year survey data is released.Resources in this dataset:Resource Title: CSV Data Dictionary for PDP.File Name: PDP_DataDictionary.csv. Resource Description: Machine-readable Comma Separated Values (CSV) format data dictionary for PDP Database Zip files. Defines variables for the sample identity and analytical results data tables/files. The ## characters in the Table and Text Data File name refer to the 2-digit year for the PDP survey, like 97 for 1997 or 01 for 2001. For details on table linking, see PDF. Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/en-us/microsoft-365/excelResource Title: Data dictionary for Pesticide Data Program. File Name: PDP DataDictionary.pdf. Resource Description: Data dictionary for PDP Database Zip files. Resource Software Recommended: Adobe Acrobat, url: https://www.adobe.comResource Title: 2023 PDP Database Zip File. File Name: 2023PDPDatabase.zipResource Title: 2022 PDP Database Zip File. File Name: 2022PDPDatabase.zipResource Title: 2021 PDP Database Zip File. File Name: 2021PDPDatabase.zipResource Title: 2020 PDP Database Zip File. File Name: 2020PDPDatabase.zipResource Title: 2019 PDP Database Zip File. File Name: 2019PDPDatabase.zipResource Title: 2018 PDP Database Zip File. File Name: 2018PDPDatabase.zipResource Title: 2017 PDP Database Zip File. File Name: 2017PDPDatabase.zipResource Title: 2016 PDP Database Zip File. File Name: 2016PDPDatabase.zipResource Title: 2015 PDP Database Zip File. File Name: 2015PDPDatabase.zipResource Title: 2014 PDP Database Zip File. File Name: 2014PDPDatabase.zipResource Title: 2013 PDP Database Zip File. File Name: 2013PDPDatabase.zipResource Title: 2012 PDP Database Zip File. File Name: 2012PDPDatabase.zipResource Title: 2011 PDP Database Zip File. File Name: 2011PDPDatabase.zipResource Title: 2010 PDP Database Zip File. File Name: 2010PDPDatabase.zipResource Title: 2009 PDP Database Zip File. File Name: 2009PDPDatabase.zipResource Title: 2008 PDP Database Zip File. File Name: 2008PDPDatabase.zipResource Title: 2007 PDP Database Zip File. File Name: 2007PDPDatabase.zipResource Title: 2006 PDP Database Zip File. File Name: 2006PDPDatabase.zipResource Title: 2005 PDP Database Zip File. File Name: 2005PDPDatabase.zipResource Title: 2004 PDP Database Zip File. File Name: 2004PDPDatabase.zipResource Title: 2003 PDP Database Zip File. File Name: 2003PDPDatabase.zipResource Title: 2002 PDP Database Zip File. File Name: 2002PDPDatabase.zipResource Title: 2001 PDP Database Zip File. File Name: 2001PDPDatabase.zipResource Title: 2000 PDP Database Zip File. File Name: 2000PDPDatabase.zipResource Title: 1999 PDP Database Zip File. File Name: 1999PDPDatabase.zipResource Title: 1998 PDP Database Zip File. File Name: 1998PDPDatabase.zipResource Title: 1997 PDP Database Zip File. File Name: 1997PDPDatabase.zipResource Title: 1996 PDP Database Zip File. File Name: 1996PDPDatabase.zipResource Title: 1995 PDP Database Zip File. File Name: 1995PDPDatabase.zipResource Title: 1994 PDP Database Zip File. File Name: 1994PDPDatabase.zipResource Title: 1993 PDP Database Zip File. File Name: 1993PDPDatabase.zipResource Title: 1992 PDP Database Zip File. File Name: 1992PDPDatabase.zip
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Context:This synthetic healthcare dataset has been created to serve as a valuable resource for data science, machine learning, and data analysis enthusiasts. It is designed to mimic real-world healthcare data, enabling users to practice, develop, and showcase their data manipulation and analysis skills in the context of the healthcare industry.
Inspiration:The inspiration behind this dataset is rooted in the need for practical and diverse healthcare data for educational and research purposes. Healthcare data is often sensitive and subject to privacy regulations, making it challenging to access for learning and experimentation. To address this gap, I have leveraged Python's Faker library to generate a dataset that mirrors the structure and attributes commonly found in healthcare records. By providing this synthetic data, I hope to foster innovation, learning, and knowledge sharing in the healthcare analytics domain.
Dataset Information:Each column provides specific information about the patient, their admission, and the healthcare services provided, making this dataset suitable for various data analysis and modeling tasks in the healthcare domain. Here's a brief explanation of each column in the dataset - - Name: This column represents the name of the patient associated with the healthcare record. - Age: The age of the patient at the time of admission, expressed in years. - Gender: Indicates the gender of the patient, either "Male" or "Female." - Blood Type: The patient's blood type, which can be one of the common blood types (e.g., "A+", "O-", etc.). - Medical Condition: This column specifies the primary medical condition or diagnosis associated with the patient, such as "Diabetes," "Hypertension," "Asthma," and more. - Date of Admission: The date on which the patient was admitted to the healthcare facility. - Doctor: The name of the doctor responsible for the patient's care during their admission. - Hospital: Identifies the healthcare facility or hospital where the patient was admitted. - Insurance Provider: This column indicates the patient's insurance provider, which can be one of several options, including "Aetna," "Blue Cross," "Cigna," "UnitedHealthcare," and "Medicare." - Billing Amount: The amount of money billed for the patient's healthcare services during their admission. This is expressed as a floating-point number. - Room Number: The room number where the patient was accommodated during their admission. - Admission Type: Specifies the type of admission, which can be "Emergency," "Elective," or "Urgent," reflecting the circumstances of the admission. - Discharge Date: The date on which the patient was discharged from the healthcare facility, based on the admission date and a random number of days within a realistic range. - Medication: Identifies a medication prescribed or administered to the patient during their admission. Examples include "Aspirin," "Ibuprofen," "Penicillin," "Paracetamol," and "Lipitor." - Test Results: Describes the results of a medical test conducted during the patient's admission. Possible values include "Normal," "Abnormal," or "Inconclusive," indicating the outcome of the test.
Usage Scenarios:This dataset can be utilized for a wide range of purposes, including: - Developing and testing healthcare predictive models. - Practicing data cleaning, transformation, and analysis techniques. - Creating data visualizations to gain insights into healthcare trends. - Learning and teaching data science and machine learning concepts in a healthcare context. - You can treat it as a Multi-Class Classification Problem and solve it for Test Results which contains 3 categories(Normal, Abnormal, and Inconclusive).
Acknowledgments:Image Credit:Image by BC Y from Pixabay