Facebook
TwitterIntroduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.
Section 1 - Ask:
A. Guiding Questions:
1. Who are the key stakeholders and what are their goals for the data analysis project?
2. What is the business task that this data analysis project is attempting to solve?
B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.
Section 2 - Prepare:
A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?
B. Key Tasks:
Research and communicate the source of the data, and how it is stored/organized to stakeholders.
*The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
*Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were:
-sleepDay_merged.csv
-dailyActivity_merged.csv
Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundIndividual participant data (IPD) meta-analyses that obtain “raw” data from studies rather than summary data typically adopt a “two-stage” approach to analysis whereby IPD within trials generate summary measures, which are combined using standard meta-analytical methods. Recently, a range of “one-stage” approaches which combine all individual participant data in a single meta-analysis have been suggested as providing a more powerful and flexible approach. However, they are more complex to implement and require statistical support. This study uses a dataset to compare “two-stage” and “one-stage” models of varying complexity, to ascertain whether results obtained from the approaches differ in a clinically meaningful way. Methods and FindingsWe included data from 24 randomised controlled trials, evaluating antiplatelet agents, for the prevention of pre-eclampsia in pregnancy. We performed two-stage and one-stage IPD meta-analyses to estimate overall treatment effect and to explore potential treatment interactions whereby particular types of women and their babies might benefit differentially from receiving antiplatelets. Two-stage and one-stage approaches gave similar results, showing a benefit of using anti-platelets (Relative risk 0.90, 95% CI 0.84 to 0.97). Neither approach suggested that any particular type of women benefited more or less from antiplatelets. There were no material differences in results between different types of one-stage model. ConclusionsFor these data, two-stage and one-stage approaches to analysis produce similar results. Although one-stage models offer a flexible environment for exploring model structure and are useful where across study patterns relating to types of participant, intervention and outcome mask similar relationships within trials, the additional insights provided by their usage may not outweigh the costs of statistical support for routine application in syntheses of randomised controlled trials. Researchers considering undertaking an IPD meta-analysis should not necessarily be deterred by a perceived need for sophisticated statistical methods when combining information from large randomised trials.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
TwitterSummary of data analysis and randomization procedure.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Examples of boilerplate text from PLOS ONE papers based on targeted n-gram searches (sentence level).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is Statistical and computational methods in data analysis. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This document provides a clear and practical guide to understanding missing data mechanisms, including Missing Completely At Random (MCAR), Missing At Random (MAR), and Missing Not At Random (MNAR). Through real-world scenarios and examples, it explains how different types of missingness impact data analysis and decision-making. It also outlines common strategies for handling missing data, including deletion techniques and imputation methods such as mean imputation, regression, and stochastic modeling.Designed for researchers, analysts, and students working with real-world datasets, this guide helps ensure statistical validity, reduce bias, and improve the overall quality of analysis in fields like public health, behavioral science, social research, and machine learning.
Facebook
TwitterThis publication provides all the information required to understand the PISA 2003 educational performance database and perform analyses in accordance with the complex methodologies used to collect and process the data. It enables researchers to both reproduce the initial results and to undertake further analyses. The publication includes introductory chapters explaining the statistical theories and concepts required to analyse the PISA data, including full chapters on how to apply replicate weights and undertake analyses using plausible values; worked examples providing full syntax in SPSS®; and a comprehensive description of the OECD PISA 2003 international database. The PISA 2003 database includes micro-level data on student educational performance for 41 countries collected in 2003, together with students’ responses to the PISA 2003 questionnaires and the test questions. A similar manual is available for SAS users.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is a widely accepted fact that evolving software systems change and grow. However, it is less well-understood how change is distributed over time, specifically in object oriented software systems. The patterns and techniques used to measure growth permit developers to identify specific releases where significant change took place as well as to inform them of the longer term trend in the distribution profile. This knowledge assists developers in recording systemic and substantial changes to a release, as well as to provide useful information as input into a potential release retrospective. However, these analysis methods can only be applied after a mature release of the code has been developed. But in order to manage the evolution of complex software systems effectively, it is important to identify change-prone classes as early as possible. Specifically, developers need to know where they can expect change, the likelihood of a change, and the magnitude of these modifications in order to take proactive steps and mitigate any potential risks arising from these changes. Previous research into change-prone classes has identified some common aspects, with different studies suggesting that complex and large classes tend to undergo more changes and classes that changed recently are likely to undergo modifications in the near future. Though the guidance provided is helpful, developers need more specific guidance in order for it to be applicable in practice. Furthermore, the information needs to be available at a level that can help in developing tools that highlight and monitor evolution prone parts of a system as well as support effort estimation activities. The specific research questions that we address in this chapter are: (1) What is the likelihood that a class will change from a given version to the next? (a) Does this probability change over time? (b) Is this likelihood project specific, or general? (2) How is modification frequency distributed for classes that change? (3) What is the distribution of the magnitude of change? Are most modifications minor adjustments, or substantive modifications? (4) Does structural complexity make a class susceptible to change? (5) Does popularity make a class more change-prone? We make recommendations that can help developers to proactively monitor and manage change. These are derived from a statistical analysis of change in approximately 55000 unique classes across all projects under investigation. The analysis methods that we applied took into consideration the highly skewed nature of the metric data distributions. The raw metric data (4 .txt files and 4 .log files in a .zip file measuring ~2MB in total) is provided as a comma separated values (CSV) file, and the first line of the CSV file contains the header. A detailed output of the statistical analysis undertaken is provided as log files generated directly from Stata (statistical analysis software).
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Hello! Welcome to the Capstone project I have completed to earn my Data Analytics certificate through Google. I chose to complete this case study through RStudio desktop. The reason I did this is that R is the primary new concept I learned throughout this course. I wanted to embrace my curiosity and learn more about R through this project. In the beginning of this report I will provide the scenario of the case study I was given. After this I will walk you through my Data Analysis process based on the steps I learned in this course:
The data I used for this analysis comes from this FitBit data set: https://www.kaggle.com/datasets/arashnic/fitbit
" This dataset generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. "
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data refer to the paper “Upcoming issues, new methods: using Interactive Qualitative Analysis (IQA) in Management Research”. This article is a guide to the application of the IQA method in management research and the files available refer to: 1. 1-Affinities, definitions, and cards produced by focus group.docx: all cards, affinities and definitions create by focus group session.docx 2. 2-Step-by-step - Analysis procedures.docx: detailed data analysis procedures.docx 3. 3-Axial Coding Tables – Individual Interviews.docx: detailed axial coding procedures.docx 4. 4-Theoretical Coding Table – Individual Interviews.docx: detailed theoretical coding procedures.docx
Facebook
TwitterIntroduction After completing my Google Data Analytics Professional Certificate on Coursera, I accomplished a Capstone Project, recommended by Google, to improve and highlight the technical skills of data analysis knowledge, such as R programming, SQL, and Tableau. In the Cyclistic Case Study, I performed many real-world tasks of a junior data analyst. To answer the critical business questions, I followed the steps of the data analysis process: ask, prepare, process, analyze, share, and act. **Scenario ** You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations. Characters and teams Cyclistic: A bike-share program that has grown to a fleet of 5,824 bicycles that are tracked and locked into a network of 692 stations across Chicago. The bikes can be unlocked from one station and returned to any other station in the system at any time. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day. Stakeholders Lily Moreno: The director of marketing and your manager. Moreno is responsible for the development of campaigns and initiatives to promote the bike-share program. These may include email, social media, and other channels. Cyclistic marketing analytics team: A team of data analysts responsible for collecting, analyzing, and reporting data that helps guide Cyclistic marketing strategy. You joined this team six months ago and have been busy learning about Cyclistic’s mission and business goals and how you, as a junior data analyst, can help Cyclistic achieve them. *Cyclistic executive team: *The notoriously detail-oriented executive team will decide whether to approve the recommended marketing program.
Facebook
TwitterScientific investigation is of value only insofar as relevant results are obtained and communicated, a task that requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a challenge. Recent innovations for statistical analysis of multifaceted interrelated data make obtaining more accurate and meaningful results possible, but key decisions of the analyses to use, and which components to present in a scientific paper or report, may be overwhelming. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the statistical models and the results, and optimize communication with the reader with respect to both the procedure and the outcomes. The protocol takes the investigator from study design and organization of data (formulating relevant questions, visualizing data collection, data...
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
In the way of my journey to earn the google data analytics certificate I will practice real world example by following the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Picking the Bellabeat example.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Mass spectrometry (MS)-based proteomics data analysis is composed of many stages from quality control, data cleaning, and normalization to statistical and functional analysis, without forgetting multiple visualization steps. All of these need to be reported next to published results to make them fully understandable and reusable for the community. Although this seems straightforward, exhaustively reporting all aspects of an analysis workflow can be tedious and error prone. This letter reports good practices when describing data analysis of MS-based proteomics data and discusses why and how the community should put efforts into more transparently reporting data analysis workflows.
Facebook
TwitterThe purpose of this study is to develop statistical and informatics tools for analyzing and visualizing Actical™ (actigraphy) data linked to fatigue in Sleep Medicine Center patients.
Facebook
TwitterWe analysed the Understanding Society Data from Waves 1 and 2 in our project to explore the uses of paradata in cross-sectional and longitudinal surveys with the aim of gaining knowledge that leads to improvement in field process management and responsive survey designs. The project’s key objective was to explore the uses of paradata for cross-sectional and longitudinal surveys with the aim of gaining knowledge that leads to improvement in field process management and responsive survey designs. The research was organised into three sub-projects which: 1. investigate the use of call record data and interviewer observations to study nonresponse in longitudinal surveys; 2. provide insights into the effects of interviewing strategies and other interviewer attributes on response in longitudinal surveys, and 3. gain knowledge about the measurement error properties of paradata, in particular interviewer observations. Analysis techniques included multilevel, discrete-time event history and longitudinal data analysis methods. Dissemination included a short course and an international workshop on paradata.
Facebook
TwitterThe open science movement produces vast quantities of openly published data connected to journal articles, creating an enormous resource for educators to engage students in current topics and analyses. However, educators face challenges using these materials to meet course objectives. I present a case study using open science (published articles and their corresponding datasets) and open educational practices in a capstone course. While engaging in current topics of conservation, students trace connections in the research process, learn statistical analyses, and recreate analyses using the programming language R. I assessed the presence of best practices in open articles and datasets, examined student selection in the open grading policy, surveyed students on their perceived learning gains, and conducted a thematic analysis on student reflections. First, articles and datasets met just over half of the assessed fairness practices, but this increased with the publication date. There was a..., Article and dataset fairness To assess the utility of open articles and their datasets as an educational tool in an undergraduate academic setting, I measured the congruence of each pair to a set of best practices and guiding principles. I assessed ten guiding principles and best practices (Table 1), where each category was scored ‘1’ or ‘0’ based on whether it met that criteria, with a total possible score of ten. Open grading policies Students were allowed to specify the percentage weight for each assessment category in the course, including 1) six coding exercises (Exercises), 2) one lead exercise (Lead Exercise), 3) fourteen annotation assignments of readings (Annotations), 4) one final project (Final Project), 5) five discussion board posts and a statement of learning reflection (Discussion), and 6) attendance and participation (Participation). I examined if assessment categories (independent variable) were weighted (dependent variable) differently by students using an analysis of ..., , # Data for: Integrating open education practices with data analysis of open science in an undergraduate course
Author: Marja H Bakermans Affiliation: Worcester Polytechnic Institute, 100 Institute Rd, Worcester, MA 01609 USA ORCID: https://orcid.org/0000-0002-4879-7771 Institutional IRB approval: IRB-24–0314
The full dataset file called OEPandOSdata (.xlsx extension) contains 8 files. Below are descriptions of the name and contents of each file. NA = not applicable or no data available
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Initial data analysis checklist for data screening in longitudinal studies.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Software tools used to collect and analyze data. Parentheses for analysis software indicate the tools participants were taught to use as part of their education in research methods and statistics. “Other” responses for data collection software were largely comprised of survey tools (e.g. Survey Monkey, LimeSurvey) and tools for building and running behavioral experiments (e.g. Gorilla, JsPsych). “Other” responses for data analysis software largely consisted of neuroimaging-related tools (e.g. SPM, AFNI).
Facebook
TwitterIntroduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.
Section 1 - Ask:
A. Guiding Questions:
1. Who are the key stakeholders and what are their goals for the data analysis project?
2. What is the business task that this data analysis project is attempting to solve?
B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.
Section 2 - Prepare:
A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?
B. Key Tasks:
Research and communicate the source of the data, and how it is stored/organized to stakeholders.
*The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
*Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were:
-sleepDay_merged.csv
-dailyActivity_merged.csv
Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...