100+ datasets found
  1. Application of data analytics and mining across procurement process globally...

    • statista.com
    Updated Jul 7, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Application of data analytics and mining across procurement process globally 2017 [Dataset]. https://www.statista.com/statistics/728137/worldwide-application-of-data-analytics-and-mining-across-procurement-process/
    Explore at:
    Dataset updated
    Jul 7, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2017
    Area covered
    Worldwide
    Description

    This statistic displays the various applications of data analytics and mining across procurement processes, according to chief procurement officers (CPOs) worldwide, as of 2017. Fifty-seven percent of the CPOs asked agreed that data analytics and mining had been applied to intelligent and advanced analytics for negotiations, and 40 percent of them indicated data analytics and mining had been applied to supplier portfolio optimization processes.

  2. Data Science Platform Market Analysis North America, Europe, APAC, South...

    • technavio.com
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis North America, Europe, APAC, South America, Middle East and Africa - US, Germany, China, Canada, UK, India, France, Japan, Brazil, UAE - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United Kingdom, United States, Global
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the integration of artificial intelligence (AI) and machine learning (ML). This enhancement enables more advanced data analysis and prediction capabilities, making data science platforms an essential tool for businesses seeking to gain insights from their data. Another trend shaping the market is the emergence of containerization and microservices in platforms. This development offers increased flexibility and scalability, allowing organizations to efficiently manage their projects. 
    However, the use of platforms also presents challenges, particularly In the area of data privacy and security. Ensuring the protection of sensitive data is crucial for businesses, and platforms must provide strong security measures to mitigate risks. In summary, the market is witnessing substantial growth due to the integration of AI and ML technologies, containerization, and microservices, while data privacy and security remain key challenges.
    

    What will be the Size of the Data Science Platform Market During the Forecast Period?

    Request Free Sample

    The market is experiencing significant growth due to the increasing demand for advanced data analysis capabilities in various industries. Cloud-based solutions are gaining popularity as they offer scalability, flexibility, and cost savings. The market encompasses the entire project life cycle, from data acquisition and preparation to model development, training, and distribution. Big data, IoT, multimedia, machine data, consumer data, and business data are prime sources fueling this market's expansion. Unstructured data, previously challenging to process, is now being effectively managed through tools and software. Relational databases and machine learning models are integral components of platforms, enabling data exploration, preprocessing, and visualization.
    Moreover, Artificial intelligence (AI) and machine learning (ML) technologies are essential for handling complex workflows, including data cleaning, model development, and model distribution. Data scientists benefit from these platforms by streamlining their tasks, improving productivity, and ensuring accurate and efficient model training. The market is expected to continue its growth trajectory as businesses increasingly recognize the value of data-driven insights.
    

    How is this Data Science Platform Industry segmented and which is the largest segment?

    The industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Geography
    
      North America
    
        Canada
        US
    
    
      Europe
    
        Germany
        UK
        France
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Middle East and Africa
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.
    

    On-premises deployment is a traditional method for implementing technology solutions within an organization. This approach involves purchasing software with a one-time license fee and a service contract. On-premises solutions offer enhanced security, as they keep user credentials and data within the company's premises. They can be customized to meet specific business requirements, allowing for quick adaptation. On-premises deployment eliminates the need for third-party providers to manage and secure data, ensuring data privacy and confidentiality. Additionally, it enables rapid and easy data access, and keeps IP addresses and data confidential. This deployment model is particularly beneficial for businesses dealing with sensitive data, such as those in manufacturing and large enterprises. While cloud-based solutions offer flexibility and cost savings, on-premises deployment remains a popular choice for organizations prioritizing data security and control.

    Get a glance at the Data Science Platform Industry report of share of various segments. Request Free Sample

    The on-premises segment was valued at USD 38.70 million in 2019 and showed a gradual increase during the forecast period.

    Regional Analysis

    North America is estimated to contribute 48% to the growth of the global market during the forecast period.
    

    Technavio's analysts have elaborately explained the regional trends and drivers that shape the market during the forecast period.

    For more insights on the market share of various regions, Request F

  3. Use of big data analytics in market research worldwide 2014-2021

    • statista.com
    Updated Nov 30, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2022). Use of big data analytics in market research worldwide 2014-2021 [Dataset]. https://www.statista.com/statistics/966892/market-research-industry-big-data-analytics/
    Explore at:
    Dataset updated
    Nov 30, 2022
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Worldwide
    Description

    The share of organizations using big data analytics in market research worldwide steadily increased from 2014 to 2021, despite a slight drop in 2019. During the 2021 survey, 46 percent of respondents mentioned they used big data analytics as a research method.

  4. cyclistic dataset

    • kaggle.com
    Updated Jan 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    M-Farheen (2024). cyclistic dataset [Dataset]. https://www.kaggle.com/datasets/dsnerd00/cyclistic-dataset/suggestions?status=pending
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 15, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    M-Farheen
    Description

    Google Data Analytics Capstone Project

    Cyclistic Dataset

    Case Study: How Does a Bike-Share Navigate Speedy Success?

    Introduction

    Welcome to the Cyclistic bike-share analysis case study! In this case study, you will perform many real-world tasks of a junior data analyst. You will work for a fictional company, Cyclistic, and meet different characters and team members. In order to answer the key business questions, you will follow the steps of the data analysis process: ask, prepare, process, analyze, share, and act. Along the way, the Case Study Roadmap tables — including guiding questions and key tasks — will help you stay on the right path.

    Scenario

    You are a junior data analyst working in the marketing analyst team at Cyclistic, a bike-share company in Chicago. The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, your team will design a new marketing strategy to convert casual riders into annual members. But first, Cyclistic executives must approve your recommendations, so they must be backed up with compelling data insights and professional data visualizations. Characters and teams.

    Cyclistic: A bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike. The majority of riders opt for traditional bikes; about 8% of riders use the assistive options. Cyclistic users are more likely to ride for leisure, but about 30% use them to commute to work each day.

    Lily Moreno: The director of marketing and your manager. Moreno is responsible for the development of campaigns and initiatives to promote the bike-share program. These may include email, social media, and other channels.

    Cyclistic marketing analytics team: A team of data analysts who are responsible for collecting, analyzing, and reporting data that helps guide Cyclistic marketing strategy. You joined this team six months ago and have been busy learning about Cyclistic’s mission and business goals — as well as how you, as a junior data analyst, can help Cyclistic achieve them.

    Cyclistic executive team: The notoriously detail-oriented executive team will decide whether to approve the recommended marketing program.

    Data overview

    ride_id: It is a distinct identifier assigned to each individual ride. rideable_type: This column indicates the type of bikes used for each ride. started_at: This column denotes the timestamp when a particular ride began. ended_at: This column represents the timestamp when a specific ride concluded. start_station_name: This column contains the name of the station where the bike ride originated. start_station_id: This column represents the unique identifier for the station where the bike ride originated. end_station_name: This column contains the name of the station where the bike ride concluded. end_station_id: This column represents the unique identifier for the station where the bike ride concluded. start_lat: This column denotes the latitude coordinate of the starting point of the bike ride. start_lng: This column denotes the longitude coordinate of the starting point of the bike ride. end_lat: This column denotes the latitude coordinate of the ending point of the bike ride. end_lng: This column denotes the longitude coordinate of the ending point of the bike ride. member_casual: This column indicates whether the rider is a member or a casual user.

  5. Global Data Analysis Software Market Size By Deployment, By Application, By...

    • verifiedmarketresearch.com
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Data Analysis Software Market Size By Deployment, By Application, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/data-analysis-software-market/
    Explore at:
    Dataset updated
    May 16, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Data Analysis Software Market size was valued at USD 79.15 Billion in 2024 and is projected to reach USD 176.57 Billion by 2031, growing at a CAGR of 10.55% during the forecast period 2024-2031.

    Global Data Analysis Software Market Drivers

    The market drivers for the Data Analysis Software Market can be influenced by various factors. These may include:

    Technological Developments: The need for more advanced data analysis software is being driven by the quick development of data analytics technologies, such as machine learning, artificial intelligence, and big data analytics.
    Growing Data Volume: To extract useful insights from massive datasets, powerful data analysis software is required due to the exponential expansion of data generated from multiple sources, including social media, IoT devices, and sensors.
    Business Intelligence Requirements: To obtain a competitive edge, organisations in all sectors are depending more and more on data-driven decision-making processes. This encourages the use of data analysis software to find strategic insights by analysing and visualising large, complicated datasets.
    Regulatory Compliance: In order to maintain compliance and safeguard sensitive data, firms must invest in data analysis software with strong security capabilities. Examples of these rules and compliance requirements are the CCPA and GDPR.
    Growing Need for Real-time Analytics: Companies are under increasing pressure to make decisions quickly, which has led to a growing need for real-time analytics capabilities provided by sophisticated data analysis tools. These skills allow organisations to react quickly to market changes and gain insights.
    Cloud Adoption: As a result of the transition to cloud computing infrastructure, businesses of all sizes are adopting cloud-based data analysis software since it gives them access to scalable and affordable data analysis solutions.
    The emergence of predictive analytics is being driven by the need for data analysis tools with sophisticated predictive modelling and forecasting skills. Predictive analytics is being used to forecast future trends, customer behaviour, and market dynamics.
    Sector-specific Solutions: Businesses looking for specialised analytics solutions to handle industry-specific opportunities and challenges are adopting more vertical-specific data analysis software, which is designed to match the particular needs of sectors like healthcare, finance, retail, and manufacturing.

  6. Textual Data Analytics: Sentiment Scores & Behavioral Metrics Dataset | S&P...

    • marketplace.spglobal.com
    Updated Aug 2, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    S&P Global (2020). Textual Data Analytics: Sentiment Scores & Behavioral Metrics Dataset | S&P Global Marketplace [Dataset]. https://www.marketplace.spglobal.com/en/datasets/textual-data-analytics-sentiment-scores-behavioral-metrics-(36)
    Explore at:
    Dataset updated
    Aug 2, 2020
    Dataset authored and provided by
    S&P Globalhttp://www.spglobal.com/
    Description

    Sentiment scores and behavioral metrics leveraging natural language processing from company transcripts.

  7. Data from: SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN...

    • data.staging.idas-ds1.appdat.jsc.nasa.gov
    • data.nasa.gov
    • +1more
    Updated Feb 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.staging.idas-ds1.appdat.jsc.nasa.gov (2025). SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN PROCESSES FOR HYPERSPECTRAL DATA ANALYSIS [Dataset]. https://data.staging.idas-ds1.appdat.jsc.nasa.gov/dataset/spatially-adaptive-semi-supervised-learning-with-gaussian-processes-for-hyperspectral-data
    Explore at:
    Dataset updated
    Feb 19, 2025
    Dataset provided by
    NASAhttp://nasa.gov/
    Description

    SPATIALLY ADAPTIVE SEMI-SUPERVISED LEARNING WITH GAUSSIAN PROCESSES FOR HYPERSPECTRAL DATA ANALYSIS GOO JUN * AND JOYDEEP GHOSH* Abstract. A semi-supervised learning algorithm for the classification of hyperspectral data, Gaussian process expectation maximization (GP-EM), is proposed. Model parameters for each land cover class is first estimated by a supervised algorithm using Gaussian process regressions to find spatially adaptive parameters, and the estimated parameters are then used to initialize a spatially adaptive mixture-of-Gaussians model. The mixture model is updated by expectationmaximization iterations using the unlabeled data, and the spatially adaptive parameters for unlabeled instances are obtained by Gaussian process regressions with soft assignments. Two sets of hyperspectral data taken from the Botswana area by the NASA EO-1 satellite are used for experiments. Empirical evaluations show that the proposed framework performs significantly better than baseline algorithms that do not use spatial information, and the results are also better than any previously reported results by other algorithms on the same data.

  8. B

    Big Data Analytics Market in Energy Sector Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Big Data Analytics Market in Energy Sector Report [Dataset]. https://www.marketresearchforecast.com/reports/big-data-analytics-market-in-energy-sector-5888
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Big Data Analytics Market in Energy Sector size was valued at USD 9.56 USD Billion in 2023 and is projected to reach USD 13.81 USD Billion by 2032, exhibiting a CAGR of 5.4 % during the forecast period. Big Data Analytics in the energy sector can be defined as the application of sophisticated methods or tools in analyzing vast collections of information that are produced by numerous entities within the energy industry. This process covers descriptive, predictive, and prescriptive analytics to provide valuable information for procedures, costs, and strategies. Real-time analytics, etc are immediate, while predictive analytics focuses on the probability to happen in the future and prescriptive analytics solutions provide recommendations for action. Some of the main characteristics of the data collectors include handling large datasets, compatibility with IoT to stream data, and machine learning features for pattern detection. These can range from grid control and load management to predicting customer demand and equipment reliability and equipment efficiency enhancement. Thus, there is a significant advantage because Big Data Analytics helps global energy companies to increase performance, minimize sick time, and develop effective strategies to meet the necessary legal demands. Key drivers for this market are: Growing Focus on Safety and Organization to Fuel Market Growth. Potential restraints include: Higher Cost of Geotechnical Services to Hinder Market Growth. Notable trends are: Growth of IT Infrastructure to Bolster the Demand for Modern Cable Tray Management Solutions.

  9. Japan Data Analytics Market Size, Share, Growth and Industry Report

    • imarcgroup.com
    pdf,excel,csv,ppt
    Updated Nov 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    IMARC Group (2023). Japan Data Analytics Market Size, Share, Growth and Industry Report [Dataset]. https://www.imarcgroup.com/japan-data-analytics-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Nov 30, 2023
    Dataset provided by
    Imarc Group
    Authors
    IMARC Group
    License

    https://www.imarcgroup.com/privacy-policyhttps://www.imarcgroup.com/privacy-policy

    Time period covered
    2024 - 2032
    Area covered
    Global, Japan
    Description

    Japan data analytics market size reached USD 4,392 Million in 2024. Looking forward, IMARC Group expects the market to reach USD 12,020 Million by 2033, exhibiting a growth rate (CAGR) of 11.8% during 2025-2033. The increasing demand for artificial intelligence and machine learning, which enable predictive and prescriptive analytics, allowing organizations to anticipate trends, automate processes, and make data-driven recommendations, is primarily driving the market.

    Report Attribute
    Key Statistics
    Base Year
    2024
    Forecast Years
    2025-2033
    Historical Years
    2019-2024
    Market Size in 2024
    USD 4,392 Million
    Market Forecast in 2033
    USD 12,020 Million
    Market Growth Rate 2025-203311.8%

    IMARC Group provides an analysis of the key trends in each segment of the market, along with forecasts at the country level for 2025-2033. Our report has categorized the market based on type, solution, deployment, and application.

  10. High Performance Data Analytics (HPDA) Market By Type (Structured,...

    • verifiedmarketresearch.com
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). High Performance Data Analytics (HPDA) Market By Type (Structured, Unstructured, Semi-structured), By Component (Software, Hardware, Services), By Vertical (Healthcare, Government And Defence, IT And Telecom, Banking, Financial Services, And Insurance (BFSI), Transportation And Logistics, Retail And Consumer Goods), And Region for 2024-2031 [Dataset]. https://www.verifiedmarketresearch.com/product/high-performance-data-analytics-hpda-market/
    Explore at:
    Dataset updated
    Mar 21, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    The need for advanced analytical approaches to provide HPDA solutions is driving the market growth of High Performance Data Analytics (HPDA). According to the analyst from Verified Market Research, The High Performance Data Analytics (HPDA) Market is estimated to reach a valuation of USD 597.06 Billion over the forecast period 2031, by subjugating around USD 113.23 Billion in 2023.

    The adoption of an open-source framework for big data analytics is driving market growth. This surge in demand enables the market to grow at a CAGR of 23.1% from 2024 to 2031.

    High Performance Data Analytics (HPDA) Market: Definition/ Overview

    HPDA refers to big data analytics that uses High-Performance Computing (HPC) techniques. Big data analytics has always relied on high-performance computing (HPC), but as data grows exponentially, new forms of high-performance computing will be required to access previously unimaginable volumes of data. The combination of big data analytics and high-performance computing is called “high-performance data analytics.” High-performance data analytics is the process of quickly finding insights from large data sets by running powerful analytical tools in parallel on high-performance computing systems.

    Furthermore, high-performance data analytics infrastructure is a rapidly expanding market for government and commercial organizations that need to combine high-performance computing with data-intensive analysis. For complex modeling and simulations, big data analytics techniques like Hadoop and Spark have long required high-performance computing, which they lack.

  11. Reliance on data & analysis for marketing decisions in Western Europe 2024

    • statista.com
    Updated Dec 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2024). Reliance on data & analysis for marketing decisions in Western Europe 2024 [Dataset]. https://www.statista.com/statistics/1465527/reliance-data-analysis-marketing-decisions-europe/
    Explore at:
    Dataset updated
    Dec 6, 2024
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    May 2024
    Area covered
    France, Germany, Europe, United Kingdom
    Description

    During a survey carried out in 2024, roughly one in three marketing managers from France, Germany, and the United Kingdom stated that they based every marketing decision on data. Under 10 percent of respondents in all five surveyed countries said they struggled to incorporate data analytics into their decision-making process.

  12. d

    PISA 2003 Data Analysis Manual SPSS

    • catalog.data.gov
    • cloud.csiss.gmu.edu
    • +1more
    Updated Mar 30, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Department of State (2021). PISA 2003 Data Analysis Manual SPSS [Dataset]. https://catalog.data.gov/dataset/pisa-2003-data-analysis-manual-spss
    Explore at:
    Dataset updated
    Mar 30, 2021
    Dataset provided by
    U.S. Department of State
    Description

    This publication provides all the information required to understand the PISA 2003 educational performance database and perform analyses in accordance with the complex methodologies used to collect and process the data. It enables researchers to both reproduce the initial results and to undertake further analyses. The publication includes introductory chapters explaining the statistical theories and concepts required to analyse the PISA data, including full chapters on how to apply replicate weights and undertake analyses using plausible values; worked examples providing full syntax in SPSS®; and a comprehensive description of the OECD PISA 2003 international database. The PISA 2003 database includes micro-level data on student educational performance for 41 countries collected in 2003, together with students’ responses to the PISA 2003 questionnaires and the test questions. A similar manual is available for SAS users.

  13. Google Data Analytics Capstone

    • kaggle.com
    Updated Aug 9, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Reilly McCarthy (2022). Google Data Analytics Capstone [Dataset]. https://www.kaggle.com/datasets/reillymccarthy/google-data-analytics-capstone/discussion
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 9, 2022
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Reilly McCarthy
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Hello! Welcome to the Capstone project I have completed to earn my Data Analytics certificate through Google. I chose to complete this case study through RStudio desktop. The reason I did this is that R is the primary new concept I learned throughout this course. I wanted to embrace my curiosity and learn more about R through this project. In the beginning of this report I will provide the scenario of the case study I was given. After this I will walk you through my Data Analysis process based on the steps I learned in this course:

    1. Ask
    2. Prepare
    3. Process
    4. Analyze
    5. Share
    6. Act

    The data I used for this analysis comes from this FitBit data set: https://www.kaggle.com/datasets/arashnic/fitbit

    " This dataset generated by respondents to a distributed survey via Amazon Mechanical Turk between 03.12.2016-05.12.2016. Thirty eligible Fitbit users consented to the submission of personal tracker data, including minute-level output for physical activity, heart rate, and sleep monitoring. "

  14. Company Datasets for Business Profiling

    • datarade.ai
    Updated Feb 23, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Oxylabs (2017). Company Datasets for Business Profiling [Dataset]. https://datarade.ai/data-products/company-datasets-for-business-profiling-oxylabs
    Explore at:
    .json, .xml, .csv, .xlsAvailable download formats
    Dataset updated
    Feb 23, 2017
    Dataset authored and provided by
    Oxylabs
    Area covered
    Tunisia, Canada, British Indian Ocean Territory, Bangladesh, Nepal, Northern Mariana Islands, Moldova (Republic of), Isle of Man, Andorra, Taiwan
    Description

    Company Datasets for valuable business insights!

    Discover new business prospects, identify investment opportunities, track competitor performance, and streamline your sales efforts with comprehensive Company Datasets.

    These datasets are sourced from top industry providers, ensuring you have access to high-quality information:

    • Owler: Gain valuable business insights and competitive intelligence. -AngelList: Receive fresh startup data transformed into actionable insights. -CrunchBase: Access clean, parsed, and ready-to-use business data from private and public companies. -Craft.co: Make data-informed business decisions with Craft.co's company datasets. -Product Hunt: Harness the Product Hunt dataset, a leader in curating the best new products.

    We provide fresh and ready-to-use company data, eliminating the need for complex scraping and parsing. Our data includes crucial details such as:

    • Company name;
    • Size;
    • Founding date;
    • Location;
    • Industry;
    • Revenue;
    • Employee count;
    • Competitors.

    You can choose your preferred data delivery method, including various storage options, delivery frequency, and input/output formats.

    Receive datasets in CSV, JSON, and other formats, with storage options like AWS S3 and Google Cloud Storage. Opt for one-time, monthly, quarterly, or bi-annual data delivery.

    With Oxylabs Datasets, you can count on:

    • Fresh and accurate data collected and parsed by our expert web scraping team.
    • Time and resource savings, allowing you to focus on data analysis and achieving your business goals.
    • A customized approach tailored to your specific business needs.
    • Legal compliance in line with GDPR and CCPA standards, thanks to our membership in the Ethical Web Data Collection Initiative.

    Pricing Options:

    Standard Datasets: choose from various ready-to-use datasets with standardized data schemas, priced from $1,000/month.

    Custom Datasets: Tailor datasets from any public web domain to your unique business needs. Contact our sales team for custom pricing.

    Experience a seamless journey with Oxylabs:

    • Understanding your data needs: We work closely to understand your business nature and daily operations, defining your unique data requirements.
    • Developing a customized solution: Our experts create a custom framework to extract public data using our in-house web scraping infrastructure.
    • Delivering data sample: We provide a sample for your feedback on data quality and the entire delivery process.
    • Continuous data delivery: We continuously collect public data and deliver custom datasets per the agreed frequency.

    Unlock the power of data with Oxylabs' Company Datasets and supercharge your business insights today!

  15. D

    Data Analytics Market Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Dec 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2024). Data Analytics Market Report [Dataset]. https://www.marketresearchforecast.com/reports/data-analytics-market-1787
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Dec 31, 2024
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Data Analytics Market size was valued at USD 41.05 USD billion in 2023 and is projected to reach USD 222.39 USD billion by 2032, exhibiting a CAGR of 27.3 % during the forecast period. Data Analytics can be defined as the rigorous process of using tools and techniques within a computational framework to analyze various forms of data for the purpose of decision-making by the concerned organization. This is used in almost all fields such as health, money matters, product promotion, and transportation in order to manage businesses, foresee upcoming events, and improve customers’ satisfaction. Some of the principal forms of data analytics include descriptive, diagnostic, prognostic, as well as prescriptive analytics. Data gathering, data manipulation, analysis, and data representation are the major subtopics under this area. There are a lot of advantages of data analytics, and some of the most prominent include better decision making, productivity, and saving costs, as well as the identification of relationships and trends that people could be unaware of. The recent trends identified in the market include the use of AI and ML technologies and their applications, the use of big data, increased focus on real-time data processing, and concerns for data privacy. These developments are shaping and propelling the advancement and proliferation of data analysis functions and uses. Key drivers for this market are: Rising Demand for Edge Computing Likely to Boost Market Growth. Potential restraints include: Data Security Concerns to Impede the Market Progress . Notable trends are: Metadata-Driven Data Fabric Solutions to Expand Market Growth.

  16. d

    BestPlace: Retail and GIS Data Analytics, POI Database Solutions for CPG &...

    • datarade.ai
    Updated Jan 2, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    BestPlace (2022). BestPlace: Retail and GIS Data Analytics, POI Database Solutions for CPG & FMCG, Feature Enrichment for Machine Learning [Dataset]. https://datarade.ai/data-products/bestplace-retail-and-gis-data-analytics-poi-database-soluti-bestplace-fe4f
    Explore at:
    .json, .csv, .xls, .txtAvailable download formats
    Dataset updated
    Jan 2, 2022
    Dataset authored and provided by
    BestPlace
    Area covered
    Serbia, Bahrain, Macedonia (the former Yugoslav Republic of), Lithuania, Argentina, Ireland, Tunisia, Cambodia, Uruguay, Ecuador
    Description

    BestPlace is an innovative retail data and analytics tool created explicitly for medium and enterprise-level CPG/FMCG companies. It's designed to revolutionize your retail data analysis approach by adding a strategic location-based perspective to your existing database. This perspective enriches your data landscape and allows your business to understand better and cater to shopping behavior. An In-Depth Approach to Retail Analytics Unlike conventional analytics tools, BestPlace delves deep into each store location details, providing a comprehensive analysis of your retail database. We leverage unique tools and methodologies to extract, analyze, and compile data. Our processes have been accurately designed to provide a holistic view of your business, equipping you with the information you need to make data-driven data-backed decisions. Amplifying Your Database with BestPlace At BestPlace, we understand the importance of a robust and informative retail database design. We don't just add new stores to your database; we enrich each store with vital characteristics and factors. These enhancements come from open cartographic sources such as Google Maps and our proprietary GIS database, all carefully collected and curated by our experienced data analysts. Store Features We enrich your retail database with an array of store features, which include but are not limited to: Number of reviews Average ratings Operational hours Categories relevant to each point Our attention to detail ensures your retail database becomes a powerful tool for understanding customer interactions and preferences. Geo-Analytical Factors Each store in your database is further enhanced with geo-analytical data. We analyze: Maximum pedestrian and vehicle traffic within a defined radius Number of households and average income within the catchment area vicinity Number of schools, hospitals, universities, competitors, stores, bars, clubs, and restaurants in the surrounding area Point attendance based on mobile device location data (ensuring GDPR compliance) Our refined retail data collection and analysis provides detailed shopping behavior insights, leading to in-depth shopper analytics and retail foot traffic data that support strategic planning and execution. The Power of Points of Interest (POI) Data At BestPlace, we harness the power of Point of Interest (POI) data (to bring you the most complete retail data set.) to bring your retail data to life. Our POI data collection process involves analyzing and categorizing foot traffic data, providing a comprehensive foot traffic dataset as a result. This data allows you to understand the ebb and flow of individuals around your store locations, suggesting invaluable insights for strategic planning and operational efficiency. Leveraging GIS Data Our GIS data collection process is meticulous and comprehensive. We tap into multiple GIS data sources, providing a wealth of data to enhance your retail analytics. This process allows us to equip your database with a broad range of geospatial features, including demographic and socioeconomic information from various census data for GIS applications. By including GIS data in your analysis, you gain a multi-dimensional perspective of your retail landscape, allowing for more strategic decision-making. The Advantages of Census Data BestPlace grants you direct access to a wealth of census data sets. This transforms your retail database into a more potent tool for decision-making, providing a deeper understanding of the demographics and socioeconomic factors surrounding your store locations. With the ability to download census data directly, you can enrich your retail data analysis with valuable insights about potential customers, giving you the upper hand in your strategic planning. Extensive Use Cases BestPlace's capabilities stretch across various applications, offering value in areas such as: Competition Analysis: Identify your competitors, analyze their performance, and understand your standing in the market with our extensive POI database and retail data analytics capabilities. New Location Search: Use our rich retail store database to identify ideal locations for store expansions based on foot traffic data, proximity to key points, and potential customer demographics. Location Comparison: Compare multiple store locations based on numerous factors and make informed decisions about where to focus your resources. Distribution Optimization: Leverage our FMCG data analytics and retail traffic analytics to optimize your distribution strategy and maximize ROI. Building Machine Learning Models: Integrate our all-purpose machine learning models into your business decision processes to enable more efficient and effective decision-making. (Integrate our all-purpose machine learning models to build your own in-house solutions with the help of our data.) Comprehensive Deliverables As a BestPlace client, you receive a comprehensive produc...

  17. A

    AI Tools for Data Analysis Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Feb 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). AI Tools for Data Analysis Report [Dataset]. https://www.archivemarketresearch.com/reports/ai-tools-for-data-analysis-18014
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 10, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Market Size and Growth: The global AI tools for data analysis market was valued at approximately USD 24,160 million in 2025 and is projected to expand at a CAGR of XX% during the forecast period from 2025 to 2033, reaching a valuation of over USD XX million by 2033. The market growth is attributed to increasing adoption of AI and machine learning (ML) technologies to automate and enhance data analysis processes. Drivers, Trends, and Restraints: Key drivers of the market include the growing volume and complexity of data, the need for real-time insights, and the increasing demand for predictive analytics. Emerging trends such as cloud-based deployment, self-service analytics, and augmented data analysis are further fueling market growth. However, challenges such as data privacy concerns and the lack of skilled professionals in some regions may hinder market expansion.

  18. Global Process Analytics Market Size By Type, By Deployment Mode, By By...

    • verifiedmarketresearch.com
    Updated May 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Process Analytics Market Size By Type, By Deployment Mode, By By Process Mining Type, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/process-analytics-market/
    Explore at:
    Dataset updated
    May 25, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Process Analytics Market size was valued at USD 1864.26 Million in 2023 and is projected to reach USD 46769.11 Million by 2030, growing at a CAGR of 49.60% during the forecast period 2024-2030.

    Global Process Analytics Market Drivers

    The market drivers for the Process Analytics Market can be influenced by various factors. These may include:

    Initiatives for Digital Transformation: Businesses in a variety of industries are going through a digital transformation to increase production, customer happiness, and efficiency. Understanding and improving company processes is made easier with the aid of process analytics tools, which is essential for a successful digital transformation.
    Growing Process Mining Adoption: Process mining solutions are becoming more and more well-liked since they facilitate the analysis of business processes using event logs. The need for process analytics solutions is being driven by these tools, which offer insights into process inefficiencies and bottlenecks.
    Growing Requirement for Risk Management and Compliance: Process analytics adoption is being driven by regulatory regulations and the necessity of strong risk management frameworks in organisations. These solutions offer transparency and traceability in company processes, which aids in guaranteeing adherence to norms and regulations.
    Technological Developments in Big Data and AI: Big data analytics and artificial intelligence (AI) are enhanced when combined with process analytics technologies, allowing for more precise and timely analysis. The development of technology is one of the main factors propelling the market.
    Growth of Data-Driven: Judging Decision-making in business is becoming more and more dependent on data-driven insights. Process analytics solutions offer comprehensive insights into process performance and opportunities for enhancement, which helps to make better decisions.
    Need for Enhanced Operational Effectiveness: Businesses are always searching for methods to cut expenses and increase operational effectiveness. Process optimisation and identification of inefficiencies result in improved resource usage and cost savings thanks to process analytics.
    The expansion of cloud computing: Organisations may more easily implement and employ process analytics tools because to the scalability, flexibility, and cost advantages that come with adopting cloud-based solutions. The market for process analytics is being driven by the expansion of cloud computing.
    Growing Intricacy of Business Procedures: Globalisation, mergers and acquisitions, changing market dynamics, and other factors are making business processes increasingly complicated, necessitating the use of sophisticated technologies for process analysis and management.
    Improved Management of Customer Experience: Businesses are concentrating on enhancing the customer experience, and process analytics solutions aid in comprehending interactions and touchpoints with customers. This realisation facilitates process simplification for increased customer satisfaction.
    Advantage of Competition: Businesses are using process analytics to improve productivity, acquire a competitive edge, and increase their ability to adapt to changes in the market.

  19. B

    Big Data Analysis Software Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    AMA Research & Media LLP (2025). Big Data Analysis Software Report [Dataset]. https://www.archivemarketresearch.com/reports/big-data-analysis-software-58980
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset provided by
    AMA Research & Media LLP
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Big Data Analysis Software market is experiencing robust growth, driven by the increasing volume of data generated across various sectors and the rising need for actionable insights. The market, estimated at $50 billion in 2025, is projected to exhibit a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033. This significant expansion is fueled by several key factors. The widespread adoption of cloud-based solutions offers scalability, cost-effectiveness, and accessibility, accelerating market penetration. Furthermore, the growing demand for real-time analytics across industries like banking, manufacturing, and government is a major driver. Specific trends include the increasing integration of AI and machine learning into analytics platforms, enhancing predictive capabilities and automating processes. However, challenges remain, such as data security concerns, the complexity of implementing and managing big data solutions, and the skills gap in data science expertise. These factors represent potential restraints on market growth, though ongoing technological advancements and increased investment in data literacy initiatives are mitigating these issues. The market is segmented by deployment type (cloud-based and on-premises) and application (banking, manufacturing, consultancy, government, and others), with cloud-based solutions dominating due to their inherent advantages. The competitive landscape is highly dynamic, featuring both established technology giants like Google, Amazon, and IBM, alongside specialized software providers such as Rohde & Schwarz and Qlucore. The diversity of players indicates a wide range of solutions catering to diverse needs and market segments. Regional growth is expected to be diverse, with North America and Europe maintaining substantial market shares due to early adoption and advanced technological infrastructure. However, rapidly developing economies in Asia-Pacific and the Middle East & Africa are poised for significant growth, presenting lucrative opportunities for market expansion. The forecast period (2025-2033) anticipates continued market expansion, driven by technological innovations, increasing data volumes, and growing adoption across various industries and geographies. The market's long-term prospects remain positive, indicating a significant return on investment for businesses involved in its development and implementation.

  20. Number of data analysis professionals in Japan FY 2018-2023

    • statista.com
    Updated Feb 9, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2023). Number of data analysis professionals in Japan FY 2018-2023 [Dataset]. https://www.statista.com/statistics/1048031/japan-number-data-analysis-employees/
    Explore at:
    Dataset updated
    Feb 9, 2023
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Japan
    Description

    In fiscal year 2021, over 107 thousand professionals were working in the field of data analysis in Japan. This number is expected to continue to grow consistently over the next years, since an increasing number of companies are using big data they have collected via smart devices, sensors and such to help their decision making process.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2023). Application of data analytics and mining across procurement process globally 2017 [Dataset]. https://www.statista.com/statistics/728137/worldwide-application-of-data-analytics-and-mining-across-procurement-process/
Organization logo

Application of data analytics and mining across procurement process globally 2017

Explore at:
Dataset updated
Jul 7, 2023
Dataset authored and provided by
Statistahttp://statista.com/
Time period covered
2017
Area covered
Worldwide
Description

This statistic displays the various applications of data analytics and mining across procurement processes, according to chief procurement officers (CPOs) worldwide, as of 2017. Fifty-seven percent of the CPOs asked agreed that data analytics and mining had been applied to intelligent and advanced analytics for negotiations, and 40 percent of them indicated data analytics and mining had been applied to supplier portfolio optimization processes.

Search
Clear search
Close search
Google apps
Main menu