Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch. It features 7 columns including author, publication date, language, and book publisher.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Project Name: Divvy Bikeshare Trip Data_Year2020 Date Range: April 2020 to December 2020. Analyst: Ajith Software: R Program, Microsoft Excel IDE: RStudio
The following are the basic system requirements, necessary for the project: Processor: Intel i3 or AMD Ryzen 3 and higher Internal RAM: 8 GB or higher Operating System: Windows 7 or above, MacOS
**Data Usage License: https://ride.divvybikes.com/data-license-agreement ** Introduction:
In this case, study we aim to utilize different data analysis techniques and tools, to understand the rental patterns of the divvy bike sharing company and understand the key business improvement suggestions. This case study is a mandatory project to be submitted to achieve the Google Data Analytics Certification. The data utilized in this case study was licensed based on the provided data usage license. The trips between April 2020 to December 2020 are used to analyse the data.
Scenario: Marketing team needs to design marketing strategies aimed at converting casual riders into annual members. In order to do that, however, the marketing analyst team needs to better understand how annual members and casual riders differ.
Objective: The main objective of this case study, is to understand the customer usage patterns and the breakdown of customers, based on their subscription status and the average durations of the rental bike usage.
Introduction to Data: The Data provided for this project, is adhered to the data usage license, laid down by the source company. The source data was provided in the CSV files and are month and quarter breakdowns. A total of 13 columns of data was provided in each csv file.
The following are the columns, which were initially observed across the datasets.
Ride_id Ride_type Start_station_name Start_station_id End_station_name End_station_id Usertype Start_time End_time Start_lat Start_lng End_lat End_lng
Documentation, Cleaning and Preparing Data for Analysis: The total size of the datasets, for the year 2020, is approximately 450 MB, which is tiring job, when you have to upload them to the SQL database and visualize using the BI tools. I wanted to improve my skills into R environment and this is the best opportunity and optimal to use R for the data analysis.
For more insights, installation procedures for R and RStudio, please refer to the following URL, for additional information.
R Projects Document: https://www.r-project.org/other-docs.html RStudio Download: https://www.rstudio.com/products/rstudio/ Installation Guide: https://www.youtube.com/watch?v=TFGYlKvQEQ4
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 200,000 synthetic sales records simulating real-world product transactions across different U.S. regions. It is designed for data analysis, business intelligence, and machine learning projects, especially in the areas of sales forecasting, customer segmentation, profitability analysis, and regional trend evaluation.
The dataset provides detailed transactional data including customer names, product categories, pricing, and revenue details, making it highly versatile for both beginners and advanced analysts.
business · sales · profitability · forecasting · customer analysis · retail
This dataset is synthetic and created for educational and analytical purposes. You are free to use, modify, and share it under the CC BY 4.0 License.
This dataset was generated to provide a realistic foundation for learning and practicing Data Analytics, Power BI, Tableau, Python, and Excel projects.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Data analysis in business research : a step-by-step nonparametric approach. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Core concepts in data analysis : summarization, correlation and visualization. It features 7 columns including author, publication date, language, and book publisher.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The "Wikipedia SQLite Portable DB" is a compact and efficient database derived from the Kensho Derived Wikimedia Dataset (KDWD). This dataset provides a condensed subset of raw Wikimedia data in a format optimized for natural language processing (NLP) research and applications.
I am not affiliated or partnered with the Kensho in any way, just really like the dataset for giving my agents to query easily.
Key Features:
Contains over 5 million rows of data from English Wikipedia and Wikidata Stored in a portable SQLite database format for easy integration and querying Includes a link-annotated corpus of English Wikipedia pages and a compact sample of the Wikidata knowledge base Ideal for NLP tasks, machine learning, data analysis, and research projects
The database consists of four main tables:
This dataset is derived from the Kensho Derived Wikimedia Dataset (KDWD), which is built from the English Wikipedia snapshot from December 1, 2019, and the Wikidata snapshot from December 2, 2019. The KDWD is a condensed subset of the raw Wikimedia data in a form that is helpful for NLP work, and it is released under the CC BY-SA 3.0 license. Credits: The "Wikipedia SQLite Portable DB" is derived from the Kensho Derived Wikimedia Dataset (KDWD), created by the Kensho R&D group. The KDWD is based on data from Wikipedia and Wikidata, which are crowd-sourced projects supported by the Wikimedia Foundation. We would like to acknowledge and thank the Kensho R&D group for their efforts in creating the KDWD and making it available for research and development purposes. By providing this portable SQLite database, we aim to make Wikipedia data more accessible and easier to use for researchers, data scientists, and developers working on NLP tasks, machine learning projects, and other data-driven applications. We hope that this dataset will contribute to the advancement of NLP research and the development of innovative applications utilizing Wikipedia data.
https://www.kaggle.com/datasets/kenshoresearch/kensho-derived-wikimedia-data/data
Tags: encyclopedia, wikipedia, sqlite, database, reference, knowledge-base, articles, information-retrieval, natural-language-processing, nlp, text-data, large-dataset, multi-table, data-science, machine-learning, research, data-analysis, data-mining, content-analysis, information-extraction, text-mining, text-classification, topic-modeling, language-modeling, question-answering, fact-checking, entity-recognition, named-entity-recognition, link-prediction, graph-analysis, network-analysis, knowledge-graph, ontology, semantic-web, structured-data, unstructured-data, data-integration, data-processing, data-cleaning, data-wrangling, data-visualization, exploratory-data-analysis, eda, corpus, document-collection, open-source, crowdsourced, collaborative, online-encyclopedia, web-data, hyperlinks, categories, page-views, page-links, embeddings
Usage with LIKE queries: ``` import aiosqlite import asyncio
class KenshoDatasetQuery: def init(self, db_file): self.db_file = db_file
async def _aenter_(self):
self.conn = await aiosqlite.connect(self.db_file)
return self
async def _aexit_(self, exc_type, exc_val, exc_tb):
await self.conn.close()
async def search_pages_by_title(self, title):
query = """
SELECT pages.page_id, pages.item_id, pages.title, pages.views,
items.labels AS item_labels, items.description AS item_description,
link_annotated_text.sections
FROM pages
JOIN items ON pages.item_id = items.id
JOIN link_annotated_text ON pages.page_id = link_annotated_text.page_id
WHERE pages.title LIKE ?
"""
async with self.conn.execute(query, (f"%{title}%",)) as cursor:
return await cursor.fetchall()
async def search_items_by_label_or_description(self, keyword):
query = """
SELECT id, labels, description
FROM items
WHERE labels LIKE ? OR description LIKE ?
"""
async with self.conn.execute(query, (f"%{keyword}%", f"%{keyword}%")) as cursor:
return await cursor.fetchall()
async def search_items_by_label(self, label):
query = """
SELECT id, labels, description
FROM items
WHERE labels LIKE ?
"""
async with self.conn.execute(query, (f"%{label}%",)) as cursor:
return await cursor.fetchall()
async def search_properties_by_label_or_desc...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trusted Research Environments (TREs) enable analysis of sensitive data under strict security assertions that protect the data with technical organizational and legal measures from (accidentally) being leaked outside the facility. While many TREs exist in Europe, little information is available publicly on the architecture and descriptions of their building blocks & their slight technical variations. To shine light on these problems, we give an overview of existing, publicly described TREs and a bibliography linking to the system description. We further analyze their technical characteristics, especially in their commonalities & variations and provide insight on their data type characteristics and availability. Our literature study shows that 47 TREs worldwide provide access to sensitive data of which two-thirds provide data themselves, predominantly via secure remote access. Statistical offices make available a majority of available sensitive data records included in this study.
We performed a literature study covering 47 TREs worldwide using scholarly databases (Scopus, Web of Science, IEEE Xplore, Science Direct), a computer science library (dblp.org), Google and grey literature focusing on retrieving the following source material:
The goal for this literature study is to discover existing TREs, analyze their characteristics and data availability to give an overview on available infrastructure for sensitive data research as many European initiatives have been emerging in recent months.
This dataset consists of five comma-separated values (.csv) files describing our inventory:
Additionally, a MariaDB (10.5 or higher) schema definition .sql file is needed, properly modelling the schema for databases:
The analysis was done through Jupyter Notebook which can be found in our source code repository: https://gitlab.tuwien.ac.at/martin.weise/tres/-/blob/master/analysis.ipynb
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Dirty Cafe Sales dataset contains 10,000 rows of synthetic data representing sales transactions in a cafe. This dataset is intentionally "dirty," with missing values, inconsistent data, and errors introduced to provide a realistic scenario for data cleaning and exploratory data analysis (EDA). It can be used to practice cleaning techniques, data wrangling, and feature engineering.
dirty_cafe_sales.csv| Column Name | Description | Example Values |
|---|---|---|
Transaction ID | A unique identifier for each transaction. Always present and unique. | TXN_1234567 |
Item | The name of the item purchased. May contain missing or invalid values (e.g., "ERROR"). | Coffee, Sandwich |
Quantity | The quantity of the item purchased. May contain missing or invalid values. | 1, 3, UNKNOWN |
Price Per Unit | The price of a single unit of the item. May contain missing or invalid values. | 2.00, 4.00 |
Total Spent | The total amount spent on the transaction. Calculated as Quantity * Price Per Unit. | 8.00, 12.00 |
Payment Method | The method of payment used. May contain missing or invalid values (e.g., None, "UNKNOWN"). | Cash, Credit Card |
Location | The location where the transaction occurred. May contain missing or invalid values. | In-store, Takeaway |
Transaction Date | The date of the transaction. May contain missing or incorrect values. | 2023-01-01 |
Missing Values:
Item, Payment Method, Location) may contain missing values represented as None or empty cells.Invalid Values:
"ERROR" or "UNKNOWN" to simulate real-world data issues.Price Consistency:
The dataset includes the following menu items with their respective price ranges:
| Item | Price($) |
|---|---|
| Coffee | 2 |
| Tea | 1.5 |
| Sandwich | 4 |
| Salad | 5 |
| Cake | 3 |
| Cookie | 1 |
| Smoothie | 4 |
| Juice | 3 |
This dataset is suitable for: - Practicing data cleaning techniques such as handling missing values, removing duplicates, and correcting invalid entries. - Exploring EDA techniques like visualizations and summary statistics. - Performing feature engineering for machine learning workflows.
To clean this dataset, consider the following steps: 1. Handle Missing Values: - Fill missing numeric values with the median or mean. - Replace missing categorical values with the mode or "Unknown."
Handle Invalid Values:
"ERROR" and "UNKNOWN" with NaN or appropriate values.Date Consistency:
Feature Engineering:
Day of the Week or Transaction Month, for further analysis.This dataset is released under the CC BY-SA 4.0 License. You are free to use, share, and adapt it, provided you give appropriate credit.
If you have any questions or feedback, feel free to reach out through the dataset's discussion board on Kaggle.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is Statistical and computational methods in data analysis. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterThis dataset originates from a series of experimental studies titled “Tough on People, Tolerant to AI? Differential Effects of Human vs. AI Unfairness on Trust” The project investigates how individuals respond to unfair behavior (distributive, procedural, and interactional unfairness) enacted by artificial intelligence versus human agents, and how such behavior affects cognitive and affective trust.1 Experiment 1a: The Impact of AI vs. Human Distributive Unfairness on TrustOverview: This dataset comes from an experimental study aimed at examining how individuals respond in terms of cognitive and affective trust when distributive unfairness is enacted by either an artificial intelligence (AI) agent or a human decision-maker. Experiment 1a specifically focuses on the main effect of the “type of decision-maker” on trust.Data Generation and Processing: The data were collected through Credamo, an online survey platform. Initially, 98 responses were gathered from students at a university in China. Additional student participants were recruited via Credamo to supplement the sample. Attention check items were embedded in the questionnaire, and participants who failed were automatically excluded in real-time. Data collection continued until 202 valid responses were obtained. SPSS software was used for data cleaning and analysis.Data Structure and Format: The data file is named “Experiment1a.sav” and is in SPSS format. It contains 28 columns and 202 rows, where each row corresponds to one participant. Columns represent measured variables, including: grouping and randomization variables, one manipulation check item, four items measuring distributive fairness perception, six items on cognitive trust, five items on affective trust, three items for honesty checks, and four demographic variables (gender, age, education, and grade level). The final three columns contain computed means for distributive fairness, cognitive trust, and affective trust.Additional Information: No missing data are present. All variable names are labeled in English abbreviations to facilitate further analysis. The dataset can be directly opened in SPSS or exported to other formats.2 Experiment 1b: The Mediating Role of Perceived Ability and Benevolence (Distributive Unfairness)Overview: This dataset originates from an experimental study designed to replicate the findings of Experiment 1a and further examine the potential mediating role of perceived ability and perceived benevolence.Data Generation and Processing: Participants were recruited via the Credamo online platform. Attention check items were embedded in the survey to ensure data quality. Data were collected using a rolling recruitment method, with invalid responses removed in real time. A total of 228 valid responses were obtained.Data Structure and Format: The dataset is stored in a file named Experiment1b.sav in SPSS format and can be directly opened in SPSS software. It consists of 228 rows and 40 columns. Each row represents one participant’s data record, and each column corresponds to a different measured variable. Specifically, the dataset includes: random assignment and grouping variables; one manipulation check item; four items measuring perceived distributive fairness; six items on perceived ability; five items on perceived benevolence; six items on cognitive trust; five items on affective trust; three items for attention check; and three demographic variables (gender, age, and education). The last five columns contain the computed mean scores for perceived distributive fairness, ability, benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be analyzed directly in SPSS or exported to other formats as needed.3 Experiment 2a: Differential Effects of AI vs. Human Procedural Unfairness on TrustOverview: This dataset originates from an experimental study aimed at examining whether individuals respond differently in terms of cognitive and affective trust when procedural unfairness is enacted by artificial intelligence versus human decision-makers. Experiment 2a focuses on the main effect of the decision agent on trust outcomes.Data Generation and Processing: Participants were recruited via the Credamo online survey platform from two universities located in different regions of China. A total of 227 responses were collected. After excluding those who failed the attention check items, 204 valid responses were retained for analysis. Data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2a.sav in SPSS format and can be directly opened in SPSS software. It contains 204 rows and 30 columns. Each row represents one participant’s response record, while each column corresponds to a specific variable. Variables include: random assignment and grouping; one manipulation check item; seven items measuring perceived procedural fairness; six items on cognitive trust; five items on affective trust; three attention check items; and three demographic variables (gender, age, and education). The final three columns contain computed average scores for procedural fairness, cognitive trust, and affective trust.Additional Notes: The dataset contains no missing values. All variables are labeled using standardized English abbreviations to facilitate reuse and secondary analysis. The file can be directly analyzed in SPSS or exported to other formats as needed.4 Experiment 2b: Mediating Role of Perceived Ability and Benevolence (Procedural Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 2a and to further examine the potential mediating roles of perceived ability and perceived benevolence in shaping trust responses under procedural unfairness.Data Generation and Processing: Participants were working adults recruited through the Credamo online platform. A rolling data collection strategy was used, where responses failing attention checks were excluded in real time. The final dataset includes 235 valid responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in a file named Experiment2b.sav, which is in SPSS format and can be directly opened using SPSS software. It contains 235 rows and 43 columns. Each row corresponds to a single participant, and each column represents a specific measured variable. These include: random assignment and group labels; one manipulation check item; seven items measuring procedural fairness; six items for perceived ability; five items for perceived benevolence; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final five columns contain the computed average scores for procedural fairness, perceived ability, perceived benevolence, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variables are labeled using standardized English abbreviations to support future reuse and secondary analysis. The dataset can be directly analyzed in SPSS and easily converted into other formats if needed.5 Experiment 3a: Effects of AI vs. Human Interactional Unfairness on TrustOverview: This dataset comes from an experimental study that investigates how interactional unfairness, when enacted by either artificial intelligence or human decision-makers, influences individuals’ cognitive and affective trust. Experiment 3a focuses on the main effect of the “decision-maker type” under interactional unfairness conditions.Data Generation and Processing: Participants were college students recruited from two universities in different regions of China through the Credamo survey platform. After excluding responses that failed attention checks, a total of 203 valid cases were retained from an initial pool of 223 responses. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3a.sav, in SPSS format and compatible with SPSS software. It contains 203 rows and 27 columns. Each row represents a single participant, while each column corresponds to a specific measured variable. These include: random assignment and condition labels; one manipulation check item; four items measuring interactional fairness perception; six items for cognitive trust; five items for affective trust; three attention check items; and three demographic variables (gender, age, education). The final three columns contain computed average scores for interactional fairness, cognitive trust, and affective trust.Additional Notes: There are no missing values in the dataset. All variable names are provided using standardized English abbreviations to facilitate secondary analysis. The data can be directly analyzed using SPSS and exported to other formats as needed.6 Experiment 3b: The Mediating Role of Perceived Ability and Benevolence (Interactional Unfairness)Overview: This dataset comes from an experimental study designed to replicate the findings of Experiment 3a and further examine the potential mediating roles of perceived ability and perceived benevolence under conditions of interactional unfairness.Data Generation and Processing: Participants were working adults recruited via the Credamo platform. Attention check questions were embedded in the survey, and responses that failed these checks were excluded in real time. Data collection proceeded in a rolling manner until a total of 227 valid responses were obtained. All data were processed and analyzed using SPSS software.Data Structure and Format: The dataset is stored in the file named Experiment3b.sav, in SPSS format and compatible with SPSS software. It includes 227 rows and
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Modeling and data analysis : an introduction with environmental applications. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Background:The infodemic we are experiencing with AI related publications in healthcare is unparalleled. The excitement and fear surrounding the adoption of rapidly evolving AI in healthcare applications pose a real challenge. Collaborative learning from published research is one of the best ways to understand the associated opportunities and challenges in the field. To gain a deep understanding of recent developments in this field, we have conducted a quantitative and qualitative review of AI in healthcare research articles published in 2023.Methods:We performed a PubMed search using the terms, “machine learning” or “artificial intelligence” and “2023”, restricted to English language and human subject research as of December 31, 2023 on January 1, 2024. Utilizing a Deep Learning-based approach, we assessed the maturity of publications. Following this, we manually annotated the healthcare specialty, data utilized, and models employed for the identified mature articles. Subsequently, empirical data analysis was performed to elucidate trends and statistics. Similarly, we performed a search for Large Language Model(LLM) based publications for the year 2023.Results:Our PubMed search yielded 23,306 articles, of which 1,612 were classified as mature. Following exclusions, 1,226 articles were selected for final analysis. Among these, the highest number of articles originated from the Imaging specialty (483), followed by Gastroenterology (86), and Ophthalmology (78). Analysis of data types revealed that image data was predominant, utilized in 75.2% of publications, followed by tabular data (12.9%) and text data (11.6%). Deep Learning models were extensively employed, constituting 59.8% of the models used. For the LLM related publications,after exclusions, 584 publications were finally classified into the 26 different healthcare specialties and used for further analysis. The utilization of Large Language Models (LLMs), is highest in general healthcare specialties, at 20.1%, followed by surgery at 8.5%.Conclusion:Image based healthcare specialities such as Radiology, Gastroenterology and Cardiology have dominated the landscape of AI in healthcare research for years. In the future, we are likely to see other healthcare specialties including the education and administrative areas of healthcare be driven by the LLMs and possibly multimodal models in the next era of AI in healthcare research and publications.Data Files Description:Here, we are providing two data files. The first file, named FinalData_2023_YIR, contains 1267 rows with columns including 'DOI', 'Title', 'Abstract', 'Author Name', 'Author Address', 'Specialty', 'Data type', 'Model type', and 'Systematic Reviews'. The columns 'Specialty', 'Data type', 'Model type', and 'Systematic Reviews' were manually annotated by the BrainX AI research team. The second file, named Final_LLM_2023_YIR, consists of 584 rows and columns including 'DOI', 'Title', 'Abstract', 'Author Name', 'Author Address', 'Journal', and 'Specialty'. Here, the 'Specialty' column was also manually annotated by the BrainX AI Research Team.
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.
retail_store_sales.csv| Column Name | Description | Example Values |
|---|---|---|
Transaction ID | A unique identifier for each transaction. Always present and unique. | TXN_1234567 |
Customer ID | A unique identifier for each customer. 25 unique customers. | CUST_01 |
Category | The category of the purchased item. | Food, Furniture |
Item | The name of the purchased item. May contain missing values or None. | Item_1_FOOD, None |
Price Per Unit | The static price of a single unit of the item. May contain missing or None values. | 4.00, None |
Quantity | The quantity of the item purchased. May contain missing or None values. | 1, None |
Total Spent | The total amount spent on the transaction. Calculated as Quantity * Price Per Unit. | 8.00, None |
Payment Method | The method of payment used. May contain missing or invalid values. | Cash, Credit Card |
Location | The location where the transaction occurred. May contain missing or invalid values. | In-store, Online |
Transaction Date | The date of the transaction. Always present and valid. | 2023-01-15 |
Discount Applied | Indicates if a discount was applied to the transaction. May contain missing values. | True, False, None |
The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_EHE | Blender | 5.0 |
| Item_2_EHE | Microwave | 6.5 |
| Item_3_EHE | Toaster | 8.0 |
| Item_4_EHE | Vacuum Cleaner | 9.5 |
| Item_5_EHE | Air Purifier | 11.0 |
| Item_6_EHE | Electric Kettle | 12.5 |
| Item_7_EHE | Rice Cooker | 14.0 |
| Item_8_EHE | Iron | 15.5 |
| Item_9_EHE | Ceiling Fan | 17.0 |
| Item_10_EHE | Table Fan | 18.5 |
| Item_11_EHE | Hair Dryer | 20.0 |
| Item_12_EHE | Heater | 21.5 |
| Item_13_EHE | Humidifier | 23.0 |
| Item_14_EHE | Dehumidifier | 24.5 |
| Item_15_EHE | Coffee Maker | 26.0 |
| Item_16_EHE | Portable AC | 27.5 |
| Item_17_EHE | Electric Stove | 29.0 |
| Item_18_EHE | Pressure Cooker | 30.5 |
| Item_19_EHE | Induction Cooktop | 32.0 |
| Item_20_EHE | Water Dispenser | 33.5 |
| Item_21_EHE | Hand Blender | 35.0 |
| Item_22_EHE | Mixer Grinder | 36.5 |
| Item_23_EHE | Sandwich Maker | 38.0 |
| Item_24_EHE | Air Fryer | 39.5 |
| Item_25_EHE | Juicer | 41.0 |
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_FUR | Office Chair | 5.0 |
| Item_2_FUR | Sofa | 6.5 |
| Item_3_FUR | Coffee Table | 8.0 |
| Item_4_FUR | Dining Table | 9.5 |
| Item_5_FUR | Bookshelf | 11.0 |
| Item_6_FUR | Bed F... |
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The uploaded dataset contains detailed information about employees, training programs, and other HR-related metrics. Here's an overview:
General Details:
Rows: 3,150
Columns: 39
Column Names:
Unnamed: 0
FirstName
LastName
StartDate
ExitDate
Title
Supervisor
ADEmail
BusinessUnit
EmployeeStatus
EmployeeType
PayZone
EmployeeClassificationType
TerminationType
TerminationDescription
DepartmentType
Division
DOB
State
JobFunctionDescription
GenderCode
LocationCode
RaceDesc
MaritalDesc
Performance Score
Current Employee Rating
Employee ID
Survey Date
Engagement Score
Satisfaction Score
Work-Life Balance Score
Training Date
Training Program Name
Training Type
Training Outcome
Location
Trainer
Training Duration (Days)
Training Cost
Summary:
Employee Data: Contains details such as names, start and exit dates, job titles, and supervisors.
Performance and Survey Metrics: Includes engagement, satisfaction, and work-life balance scores.
Training Information: Covers program names, training types, outcomes, durations, costs, and trainer details.
Diversity Details: Includes gender, race, and marital status.
Status & Classification: Indicates employee status (active/terminated), type, and termination reasons.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This repository was created for my Master's thesis in Computational Intelligence and Internet of Things at the University of Córdoba, Spain. The purpose of this repository is to store the datasets found that were used in some of the studies that served as research material for this Master's thesis. Also, the datasets used in the experimental part of this work are included.
Below are the datasets specified, along with the details of their references, authors, and download sources.
----------- STS-Gold Dataset ----------------
The dataset consists of 2026 tweets. The file consists of 3 columns: id, polarity, and tweet. The three columns denote the unique id, polarity index of the text and the tweet text respectively.
Reference: Saif, H., Fernandez, M., He, Y., & Alani, H. (2013). Evaluation datasets for Twitter sentiment analysis: a survey and a new dataset, the STS-Gold.
File name: sts_gold_tweet.csv
----------- Amazon Sales Dataset ----------------
This dataset is having the data of 1K+ Amazon Product's Ratings and Reviews as per their details listed on the official website of Amazon. The data was scraped in the month of January 2023 from the Official Website of Amazon.
Owner: Karkavelraja J., Postgraduate student at Puducherry Technological University (Puducherry, Puducherry, India)
Features:
License: CC BY-NC-SA 4.0
File name: amazon.csv
----------- Rotten Tomatoes Reviews Dataset ----------------
This rating inference dataset is a sentiment classification dataset, containing 5,331 positive and 5,331 negative processed sentences from Rotten Tomatoes movie reviews. On average, these reviews consist of 21 words. The first 5331 rows contains only negative samples and the last 5331 rows contain only positive samples, thus the data should be shuffled before usage.
This data is collected from https://www.cs.cornell.edu/people/pabo/movie-review-data/ as a txt file and converted into a csv file. The file consists of 2 columns: reviews and labels (1 for fresh (good) and 0 for rotten (bad)).
Reference: Bo Pang and Lillian Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL'05), pages 115–124, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics
File name: data_rt.csv
----------- Preprocessed Dataset Sentiment Analysis ----------------
Preprocessed amazon product review data of Gen3EcoDot (Alexa) scrapped entirely from amazon.in
Stemmed and lemmatized using nltk.
Sentiment labels are generated using TextBlob polarity scores.
The file consists of 4 columns: index, review (stemmed and lemmatized review using nltk), polarity (score) and division (categorical label generated using polarity score).
DOI: 10.34740/kaggle/dsv/3877817
Citation: @misc{pradeesh arumadi_2022, title={Preprocessed Dataset Sentiment Analysis}, url={https://www.kaggle.com/dsv/3877817}, DOI={10.34740/KAGGLE/DSV/3877817}, publisher={Kaggle}, author={Pradeesh Arumadi}, year={2022} }
This dataset was used in the experimental phase of my research.
File name: EcoPreprocessed.csv
----------- Amazon Earphones Reviews ----------------
This dataset consists of a 9930 Amazon reviews, star ratings, for 10 latest (as of mid-2019) bluetooth earphone devices for learning how to train Machine for sentiment analysis.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 5 columns: ReviewTitle, ReviewBody, ReviewStar, Product and division (manually added - categorical label generated using ReviewStar score)
License: U.S. Government Works
Source: www.amazon.in
File name (original): AllProductReviews.csv (contains 14337 reviews)
File name (edited - used for my research) : AllProductReviews2.csv (contains 9930 reviews)
----------- Amazon Musical Instruments Reviews ----------------
This dataset contains 7137 comments/reviews of different musical instruments coming from Amazon.
This dataset was employed in the experimental phase of my research. To align it with the objectives of my study, certain reviews were excluded from the original dataset, and an additional column was incorporated into this dataset.
The file consists of 10 columns: reviewerID, asin (ID of the product), reviewerName, helpful (helpfulness rating of the review), reviewText, overall (rating of the product), summary (summary of the review), unixReviewTime (time of the review - unix time), reviewTime (time of the review (raw) and division (manually added - categorical label generated using overall score).
Source: http://jmcauley.ucsd.edu/data/amazon/
File name (original): Musical_instruments_reviews.csv (contains 10261 reviews)
File name (edited - used for my research) : Musical_instruments_reviews2.csv (contains 7137 reviews)
Facebook
TwitterThe dataset is a comprehensive sales record from Gottlieb-Cruickshank, detailing various transactions that took place in Poland in January 2018. The data includes information on customers, products, and sales teams, with a focus on the pharmaceutical industry. Below is a detailed description of the dataset:
Columns:
Row 1:
Row 2:
This dataset can be utilized for various analyses, including sales performance by city, product, and sales teams, as well as geographical distribution of sales within Poland. It provides valuable insights into the pharmaceutical sales strategies and their execution within a specific time frame.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Experimental data and software for the paper: Defaults: a double-edged sword in governing common resources
The experiment consisted in three treatments of the Common Pool Resource Dilemma, where three default interventions were applied: pro-social, self-serving and no default. Plus, the participants had to complete an SVO task and a Risk assessment task.
Description of the data and file structure
In the file called all_participants.csv is the full dataset of all participants that took part of the experiment. This includes participants who will end up excluded and dropouts.
The experimental data files come in two formats: wide and long. The wide version, called data_wide_format.csv contains one row per participant and a column for all the fields, including rounds from 1 to 10 of the CPR task. Also, this file includes all demographic information of the participants, times and payments. The ID shown is generated internally and has no relationship with the participants' Prolific ID.
The long version, called data_long_format.csv, contains 10 rows per participant, and columns for the extraction and other variables necessary for analysis. This version contains the necessary data to reproduce all the figures and statistics detailed in the main manuscript.
In both of the previous files, the participants taken into account were the ones who completed the whole experiment. Those who did not complete the comprehension test, dropped out or did not sign the Informed Consent Form were excluded from the experimental data used. More details in the Methods below.
In the file default_opinions.csv, we manually classified the responses by participants to whether they were influenced by the default presented.
The file "Instructions of the experiment.pdf" contains the instructions of the experiment as shown to participants, also screenshots of the platform.
Facebook
TwitterThis is a case study called Capstone Project from the Google Data Analytics Certificate.
In this case study, I am working as a junior data analyst at a fictitious bike-share company in Chicago called Cyclistic.
Cyclistic is a bike-share program that features more than 5,800 bicycles and 600 docking stations. Cyclistic sets itself apart by also offering reclining bikes, hand tricycles, and cargo bikes, making bike-share more inclusive to people with disabilities and riders who can’t use a standard two-wheeled bike.
The director of marketing believes the company’s future success depends on maximizing the number of annual memberships. Therefore, your team wants to understand how casual riders and annual members use Cyclistic bikes differently. From these insights, our team will design a new marketing strategy to convert casual riders into annual members.
1: Cyclistic Executive Team
2: Lily Moreno, Director of Marketing and Manager
# Prepare
The last four quarters were selected for analysis which cover April 01, 2019 - March 31, 2020. These are the datasets used:
Divvy_Trips_2019_Q2
Divvy_Trips_2019_Q3
Divvy_Trips_2019_Q4
Divvy_Trips_2020_Q1
The data is stored in CSV files. Each file contains one month data for a total of 12 .csv files.
Data appears to be reliable with no bias. It also appears to be original, current and cited.
I used Cyclistic’s historical trip data found here: https://divvy-tripdata.s3.amazonaws.com/index.html
The data has been made available by Motivate International Inc. under this license: https://ride.divvybikes.com/data-license-agreement
Financial information is not available.
Used R to analyze and clean data
After analysis, visuals were created as shown below with R.
Conclusion:
Facebook
TwitterI wanted to run data analysis and machine learning on a large dataset to build my data science skills but I felt out of touch with the various datasets available so I thought... how about I try and build my own dataset?
I wondered what data should be in the dataset and settled with online digital game purchases since I am an avid gamer. Imagine getting sales data from the PlayStation Store or Xbox Microsoft Store, this is what I was aiming to replicate.
I envisaged the dataset to be data created through the purchase of a digital game on either the UK PlayStation Store or Xbox Microsoft Store. Considering this, the scope of dataset varies depending on which column of data you are viewing, for example: - Date and Time: purchases were defined between a start/end date (this can be altered, see point 4) and, of course, anytime across the 24hr clock - Geographically: purchases were setup to come from any postcode in the UK - in total this is over 1,000,000 active postcodes - Purchases: the list of game titles available for purchase is 24 - Registered Banks: the list of registered banks in the UK (as of 03/2022) was 159
To generate the dataset, I built a function in Python. This function, when called with the number of rows you want in your dataset, will generate the dataset. For example, calling function(1000) will provide you with a dataset with 1000 rows.
Considering this, if just over 42,000 rows of data (42,892 to be exact) isn't enough, feel free to check out the code on my GitHub to run the function yourself with as many rows as you want.
Note: You can also edit the start/end dates of the function depending on which timespan you want the dataset to cover.
Yes, as stated above, this dataset is still a work in progress and is therefore not 100% perfect. There is a backlog of issues that need to be resolved. Feel free to check out the backlog.
One example of this is how on various columns, the distributions of data is equal, when in fact for the dataset to be entirely random, this should not be the case. An example of this issue is the Time column. These issues will be resolved in a later update.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is An introduction to data analysis in R : hands-on coding, data mining, visualization and statistics from scratch. It features 7 columns including author, publication date, language, and book publisher.