Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 1 row and is filtered where the book is Data analysis in business research : a step-by-step nonparametric approach. It features 7 columns including author, publication date, language, and book publisher.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Many upcoming and proposed missions to ocean worlds such as Europa, Enceladus, and Titan aim to evaluate their habitability and the existence of potential life on these moons. These missions will suffer from communication challenges and technology limitations. We review and investigate the applicability of data science and unsupervised machine learning (ML) techniques on isotope ratio mass spectrometry data (IRMS) from volatile laboratory analogs of Europa and Enceladus seawaters as a case study for development of new strategies for icy ocean world missions. Our driving science goal is to determine whether the mass spectra of volatile gases could contain information about the composition of the seawater and potential biosignatures. We implement data science and ML techniques to investigate what inherent information the spectra contain and determine whether a data science pipeline could be designed to quickly analyze data from future ocean worlds missions. In this study, we focus on the exploratory data analysis (EDA) step in the analytics pipeline. This is a crucial unsupervised learning step that allows us to understand the data in depth before subsequent steps such as predictive/supervised learning. EDA identifies and characterizes recurring patterns, significant correlation structure, and helps determine which variables are redundant and which contribute to significant variation in the lower dimensional space. In addition, EDA helps to identify irregularities such as outliers that might be due to poor data quality. We compared dimensionality reduction methods Uniform Manifold Approximation and Projection (UMAP) and Principal Component Analysis (PCA) for transforming our data from a high-dimensional space to a lower dimension, and we compared clustering algorithms for identifying data-driven groups (“clusters”) in the ocean worlds analog IRMS data and mapping these clusters to experimental conditions such as seawater composition and CO2 concentration. Such data analysis and characterization efforts are the first steps toward the longer-term science autonomy goal where similar automated ML tools could be used onboard a spacecraft to prioritize data transmissions for bandwidth-limited outer Solar System missions.
Facebook
TwitterABOUT DATASET
This is the R markdown notebook. It contains step by step guide for working on Data Analysis with R. It helps you with installing the relevant packages and how to load them. it also provides a detailed summary of the "dplyr" commands that you can use to manipulate your data in the R environment.
Anyone new to R and wish to carry out some data analysis on R can check it out!
Facebook
TwitterThese R scripts were used to preprocess and analyze the data of the VR acceptance study. The script "RunAnalyses" executes each data-analysis step. The script "SummarizeData" will preprocess and create the datasets used for the analyses. Some parts of this script may not run accurately on the raw dataset that is publicly shared, since the raw data of the demographics were adjusted to protect participant's privacy.
Facebook
TwitterIntroduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.
Section 1 - Ask:
A. Guiding Questions:
1. Who are the key stakeholders and what are their goals for the data analysis project?
2. What is the business task that this data analysis project is attempting to solve?
B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.
Section 2 - Prepare:
A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?
B. Key Tasks:
Research and communicate the source of the data, and how it is stored/organized to stakeholders.
*The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
*Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were:
-sleepDay_merged.csv
-dailyActivity_merged.csv
Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
Mass spectrometry (MS)-based proteomics data analysis is composed of many stages from quality control, data cleaning, and normalization to statistical and functional analysis, without forgetting multiple visualization steps. All of these need to be reported next to published results to make them fully understandable and reusable for the community. Although this seems straightforward, exhaustively reporting all aspects of an analysis workflow can be tedious and error prone. This letter reports good practices when describing data analysis of MS-based proteomics data and discusses why and how the community should put efforts into more transparently reporting data analysis workflows.
Facebook
TwitterABSTRACT Meta-analysis is an adequate statistical technique to combine results from different studies, and its use has been growing in the medical field. Thus, not only knowing how to interpret meta-analysis, but also knowing how to perform one, is fundamental today. Therefore, the objective of this article is to present the basic concepts and serve as a guide for conducting a meta-analysis using R and RStudio software. For this, the reader has access to the basic commands in the R and RStudio software, necessary for conducting a meta-analysis. The advantage of R is that it is a free software. For a better understanding of the commands, two examples were presented in a practical way, in addition to revising some basic concepts of this statistical technique. It is assumed that the data necessary for the meta-analysis has already been collected, that is, the description of methodologies for systematic review is not a discussed subject. Finally, it is worth remembering that there are many other techniques used in meta-analyses that were not addressed in this work. However, with the two examples used, the article already enables the reader to proceed with good and robust meta-analyses. Level of Evidence V, Expert Opinion.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data analysis can be accurate and reliable only if the underlying assumptions of the used statistical method are validated. Any violations of these assumptions can change the outcomes and conclusions of the analysis. In this study, we developed Smart Data Analysis V2 (SDA-V2), an interactive and user-friendly web application, to assist users with limited statistical knowledge in data analysis, and it can be freely accessed at https://jularatchumnaul.shinyapps.io/SDA-V2/. SDA-V2 automatically explores and visualizes data, examines the underlying assumptions associated with the parametric test, and selects an appropriate statistical method for the given data. Furthermore, SDA-V2 can assess the quality of research instruments and determine the minimum sample size required for a meaningful study. However, while SDA-V2 is a valuable tool for simplifying statistical analysis, it does not replace the need for a fundamental understanding of statistical principles. Researchers are encouraged to combine their expertise with the software’s capabilities to achieve the most accurate and credible results.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Data Analysis is the process that supports decision-making and informs arguments in empirical studies. Descriptive statistics, Exploratory Data Analysis (EDA), and Confirmatory Data Analysis (CDA) are the approaches that compose Data Analysis (Xia & Gong; 2014). An Exploratory Data Analysis (EDA) comprises a set of statistical and data mining procedures to describe data. We ran EDA to provide statistical facts and inform conclusions. The mined facts allow attaining arguments that would influence the Systematic Literature Review of DL4SE.
The Systematic Literature Review of DL4SE requires formal statistical modeling to refine the answers for the proposed research questions and formulate new hypotheses to be addressed in the future. Hence, we introduce DL4SE-DA, a set of statistical processes and data mining pipelines that uncover hidden relationships among Deep Learning reported literature in Software Engineering. Such hidden relationships are collected and analyzed to illustrate the state-of-the-art of DL techniques employed in the software engineering context.
Our DL4SE-DA is a simplified version of the classical Knowledge Discovery in Databases, or KDD (Fayyad, et al; 1996). The KDD process extracts knowledge from a DL4SE structured database. This structured database was the product of multiple iterations of data gathering and collection from the inspected literature. The KDD involves five stages:
Selection. This stage was led by the taxonomy process explained in section xx of the paper. After collecting all the papers and creating the taxonomies, we organize the data into 35 features or attributes that you find in the repository. In fact, we manually engineered features from the DL4SE papers. Some of the features are venue, year published, type of paper, metrics, data-scale, type of tuning, learning algorithm, SE data, and so on.
Preprocessing. The preprocessing applied was transforming the features into the correct type (nominal), removing outliers (papers that do not belong to the DL4SE), and re-inspecting the papers to extract missing information produced by the normalization process. For instance, we normalize the feature “metrics” into “MRR”, “ROC or AUC”, “BLEU Score”, “Accuracy”, “Precision”, “Recall”, “F1 Measure”, and “Other Metrics”. “Other Metrics” refers to unconventional metrics found during the extraction. Similarly, the same normalization was applied to other features like “SE Data” and “Reproducibility Types”. This separation into more detailed classes contributes to a better understanding and classification of the paper by the data mining tasks or methods.
Transformation. In this stage, we omitted to use any data transformation method except for the clustering analysis. We performed a Principal Component Analysis to reduce 35 features into 2 components for visualization purposes. Furthermore, PCA also allowed us to identify the number of clusters that exhibit the maximum reduction in variance. In other words, it helped us to identify the number of clusters to be used when tuning the explainable models.
Data Mining. In this stage, we used three distinct data mining tasks: Correlation Analysis, Association Rule Learning, and Clustering. We decided that the goal of the KDD process should be oriented to uncover hidden relationships on the extracted features (Correlations and Association Rules) and to categorize the DL4SE papers for a better segmentation of the state-of-the-art (Clustering). A clear explanation is provided in the subsection “Data Mining Tasks for the SLR od DL4SE”. 5.Interpretation/Evaluation. We used the Knowledge Discover to automatically find patterns in our papers that resemble “actionable knowledge”. This actionable knowledge was generated by conducting a reasoning process on the data mining outcomes. This reasoning process produces an argument support analysis (see this link).
We used RapidMiner as our software tool to conduct the data analysis. The procedures and pipelines were published in our repository.
Overview of the most meaningful Association Rules. Rectangles are both Premises and Conclusions. An arrow connecting a Premise with a Conclusion implies that given some premise, the conclusion is associated. E.g., Given that an author used Supervised Learning, we can conclude that their approach is irreproducible with a certain Support and Confidence.
Support = Number of occurrences this statement is true divided by the amount of statements Confidence = The support of the statement divided by the number of occurrences of the premise
Facebook
TwitterWe demonstrate a two-step data analysis method to increase the accuracy of single-molecule Förster Resonance Energy Transfer (smFRET) experiments. Most current smFRET studies are at a time resolution on the millisecond level. When the system also contains molecular dynamics on the millisecond level, simulations show that large errors are present (e.g., > 40%) because false state assignment becomes significant during data analysis. We introduce and confirm an additional step after normal smFRET data analysis that is able to reduce the error (e.g., < 10%). The idea is to use Monte Carlo simulation to search ideal smFRET trajectories and compare them to the experimental data. Using a mathematical model, we are able to find the matches between these two sets, and back guess the hidden rate constants in the experimental results.
Facebook
TwitterAttribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
It is a widely accepted fact that evolving software systems change and grow. However, it is less well-understood how change is distributed over time, specifically in object oriented software systems. The patterns and techniques used to measure growth permit developers to identify specific releases where significant change took place as well as to inform them of the longer term trend in the distribution profile. This knowledge assists developers in recording systemic and substantial changes to a release, as well as to provide useful information as input into a potential release retrospective. However, these analysis methods can only be applied after a mature release of the code has been developed. But in order to manage the evolution of complex software systems effectively, it is important to identify change-prone classes as early as possible. Specifically, developers need to know where they can expect change, the likelihood of a change, and the magnitude of these modifications in order to take proactive steps and mitigate any potential risks arising from these changes. Previous research into change-prone classes has identified some common aspects, with different studies suggesting that complex and large classes tend to undergo more changes and classes that changed recently are likely to undergo modifications in the near future. Though the guidance provided is helpful, developers need more specific guidance in order for it to be applicable in practice. Furthermore, the information needs to be available at a level that can help in developing tools that highlight and monitor evolution prone parts of a system as well as support effort estimation activities. The specific research questions that we address in this chapter are: (1) What is the likelihood that a class will change from a given version to the next? (a) Does this probability change over time? (b) Is this likelihood project specific, or general? (2) How is modification frequency distributed for classes that change? (3) What is the distribution of the magnitude of change? Are most modifications minor adjustments, or substantive modifications? (4) Does structural complexity make a class susceptible to change? (5) Does popularity make a class more change-prone? We make recommendations that can help developers to proactively monitor and manage change. These are derived from a statistical analysis of change in approximately 55000 unique classes across all projects under investigation. The analysis methods that we applied took into consideration the highly skewed nature of the metric data distributions. The raw metric data (4 .txt files and 4 .log files in a .zip file measuring ~2MB in total) is provided as a comma separated values (CSV) file, and the first line of the CSV file contains the header. A detailed output of the statistical analysis undertaken is provided as log files generated directly from Stata (statistical analysis software).
Facebook
TwitterOne more step towards Machine learning! This is a titatic dataset with exploratory data analysis html file. I used pandas-profiling for fast analysis.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1. Zip file containing the interactive supplement.
Facebook
TwitterGeneral workflow and variables used in the consecutive steps of the statistical analysis.
Facebook
TwitterThis datasets about Netflix Movies & TV Shows. Datasets have 12 columns with some null values. To analysis of dataset are used Pandas, plotly.express and Datetime libraries. Analysis process I divided into several parts for step wise analysis and to find out trending questions on social media for Bollywood actors and actress.
There are many representations of missing data. They are Null values, missing values. I used some of methods used in data analysis process to clean missing values.
There I used some string method on column such as 'cast', 'Lested_in' to extract data
Converting an object type into datatype objects with the to_datetime function then we have a datatime object, can extract various part of data such as year, month and day
Here, I find out several eye catching question. the following questions are like as- - Show the all Movies & TV Shows released by month - Count the all types of unique rating & which rating are with most number - Salman, Shah Rukh and Akshay Kumar all movie - Find out the Movies & Series have Maximum time length - Year on Year show added on Netflix by its type - Akshay Kumar all comedies movies, Shah Rukh movies with Kajol and Salman-Akshay Movies - Who Director has made the most TV Shows - Actors and Actress who have given most Number of Movies - Find out which types of genre has most movies and TV Shows
Facebook
Twitterhttps://cdla.io/permissive-1-0/https://cdla.io/permissive-1-0/
Case study: How does a bike-share navigate speedy success?
Scenario:
As a data analyst on Cyclistic's marketing team, our focus is on enhancing annual memberships to drive the company's success. We aim to analyze the differing usage patterns between casual riders and annual members to craft a marketing strategy aimed at converting casual riders. Our recommendations, supported by data insights and professional visualizations, await Cyclistic executives' approval to proceed.
About the company
In 2016, Cyclistic launched a bike-share program in Chicago, growing to 5,824 bikes and 692 stations. Initially, their marketing aimed at broad segments with flexible pricing plans attracting both casual riders (single-ride or full-day passes) and annual members. However, recognizing that annual members are more profitable, Cyclistic is shifting focus to convert casual riders into annual members. To achieve this, they plan to analyze historical bike trip data to understand the differences and preferences between the two user groups, aiming to tailor marketing strategies that encourage casual riders to purchase annual memberships.
Project Overview:
This capstone project is a culmination of the skills and knowledge acquired through the Google Professional Data Analytics Certification. It focuses on Track 1, which is centered around Cyclistic, a fictional bike-share company modeled to reflect real-world data analytics scenarios in the transportation and service industry.
Dataset Acknowledgment:
We are grateful to Motivate Inc. for providing the dataset that serves as the foundation of this capstone project. Their contribution has enabled us to apply practical data analytics techniques to a real-world dataset, mirroring the challenges and opportunities present in the bike-sharing sector.
Objective:
The primary goal of this project is to analyze the Cyclistic dataset to uncover actionable insights that could help the company optimize its operations, improve customer satisfaction, and increase its market share. Through comprehensive data exploration, cleaning, analysis, and visualization, we aim to identify patterns and trends that inform strategic business decisions.
Methodology:
Data Collection: Utilizing the dataset provided by Motivate Inc., which includes detailed information on bike usage, customer behavior, and operational metrics. Data Cleaning and Preparation: Ensuring the dataset is accurate, complete, and ready for analysis by addressing any inconsistencies, missing values, or anomalies. Data Analysis: Applying statistical methods and data analytics techniques to extract meaningful insights from the dataset.
Visualization and Reporting:
Creating intuitive and compelling visualizations to present the findings clearly and effectively, facilitating data-driven decision-making. Findings and Recommendations:
Conclusion:
The Cyclistic Capstone Project not only demonstrates the practical application of data analytics skills in a real-world scenario but also provides valuable insights that can drive strategic improvements for Cyclistic. Through this project, showcasing the power of data analytics in transforming data into actionable knowledge, underscoring the importance of data-driven decision-making in today's competitive business landscape.
Acknowledgments:
Special thanks to Motivate Inc. for their support and for providing the dataset that made this project possible. Their contribution is immensely appreciated and has significantly enhanced the learning experience.
STRATEGIES USED
Case Study Roadmap - ASK
●What is the problem you are trying to solve? ●How can your insights drive business decisions?
Key Tasks ● Identify the business task ● Consider key stakeholders
Deliverable ● A clear statement of the business task
Case Study Roadmap - PREPARE
● Where is your data located? ● Are there any problems with the data?
Key tasks ● Download data and store it appropriately. ● Identify how it’s organized.
Deliverable ● A description of all data sources used
Case Study Roadmap - PROCESS
● What tools are you choosing and why? ● What steps have you taken to ensure that your data is clean?
Key tasks ● Choose your tools. ● Document the cleaning process.
Deliverable ● Documentation of any cleaning or manipulation of data
Case Study Roadmap - ANALYZE
● Has your data been properly formaed? ● How will these insights help answer your business questions?
Key tasks ● Perform calculations ● Formatting
Deliverable ● A summary of analysis
Case Study Roadmap - SHARE
● Were you able to answer all questions of stakeholders? ● Can Data visualization help you share findings?
Key tasks ● Present your findings ● Create effective data viz.
Deliverable ● Supporting viz and key findings
**Case Study Roadmap - A...
Facebook
TwitterMGVB is a collection of tools for proteomics data analysis. It covers data processing from in silico digestion of protein sequences to comprehensive identification of postranslational modifications and solving the protein inference problem. The toolset is developed with efficiency in mind. It enables analysis at a fraction of the resources cost typically required by existing commercial and free tools. MGVB, as it is a native application, is much faster than existing proteomics tools such as MaxQuant and MSFragger and, in the same time, finds very similar, in some cases even larger number of peptides at a chosen level of statistical significance. It implements a probabilistic scoring function to match spectra to sequences, and a novel combinatorial search strategy for finding post-translational modifications, and a Bayesian approach to locate modification sites. This report describes the algorithms behind the tools, presents benchmarking data sets analysis comparing MGVB performance to MaxQuant/Andromeda, and provides step by step instructions for using it in typical analytical scenarios. The toolset is provided free to download and use for academic research and in software projects, but is not open source at the present. It is the intention of the author that it will be made open source in the near future—following rigorous evaluations and feedback from the proteomics research community.
Facebook
TwitterIn this study, we employed various machine learning models to predict metabolic phenotypes, focusing on thyroid function, using a dataset from the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2012. Our analysis utilized laboratory parameters relevant to thyroid function or metabolic dysregulation in addition to demographic features, aiming to uncover potential associations between thyroid function and metabolic phenotypes by various machine learning methods. Multinomial Logistic Regression performed best to identify the relationship between thyroid function and metabolic phenotypes, achieving an area under receiver operating characteristic curve (AUROC) of 0.818, followed closely by Neural Network (AUROC: 0.814). Following the above, the performance of Random Forest, Boosted Trees, and K Nearest Neighbors was inferior to the first two methods (AUROC 0.811, 0.811, and 0.786, respectively). In Random Forest, homeostatic model assessment for insulin resistance, serum uric acid, serum albumin, gamma glutamyl transferase, and triiodothyronine/thyroxine ratio were positioned in the upper ranks of variable importance. These results highlight the potential of machine learning in understanding complex relationships in health data. However, it’s important to note that model performance may vary depending on data characteristics and specific requirements. Furthermore, we emphasize the significance of accounting for sampling weights in complex survey data analysis and the potential benefits of incorporating additional variables to enhance model accuracy and insights. Future research can explore advanced methodologies combining machine learning, sample weights, and expanded variable sets to further advance survey data analysis.
Facebook
TwitterScientific investigation is of value only insofar as relevant results are obtained and communicated, a task that requires organizing, evaluating, analysing and unambiguously communicating the significance of data. In this context, working with ecological data, reflecting the complexities and interactions of the natural world, can be a challenge. Recent innovations for statistical analysis of multifaceted interrelated data make obtaining more accurate and meaningful results possible, but key decisions of the analyses to use, and which components to present in a scientific paper or report, may be overwhelming. We offer a 10-step protocol to streamline analysis of data that will enhance understanding of the data, the statistical models and the results, and optimize communication with the reader with respect to both the procedure and the outcomes. The protocol takes the investigator from study design and organization of data (formulating relevant questions, visualizing data collection, data...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This book is written for statisticians, data analysts, programmers, researchers, teachers, students, professionals, and general consumers on how to perform different types of statistical data analysis for research purposes using the R programming language. R is an open-source software and object-oriented programming language with a development environment (IDE) called RStudio for computing statistics and graphical displays through data manipulation, modelling, and calculation. R packages and supported libraries provides a wide range of functions for programming and analyzing of data. Unlike many of the existing statistical softwares, R has the added benefit of allowing the users to write more efficient codes by using command-line scripting and vectors. It has several built-in functions and libraries that are extensible and allows the users to define their own (customized) functions on how they expect the program to behave while handling the data, which can also be stored in the simple object system.For all intents and purposes, this book serves as both textbook and manual for R statistics particularly in academic research, data analytics, and computer programming targeted to help inform and guide the work of the R users or statisticians. It provides information about different types of statistical data analysis and methods, and the best scenarios for use of each case in R. It gives a hands-on step-by-step practical guide on how to identify and conduct the different parametric and non-parametric procedures. This includes a description of the different conditions or assumptions that are necessary for performing the various statistical methods or tests, and how to understand the results of the methods. The book also covers the different data formats and sources, and how to test for reliability and validity of the available datasets. Different research experiments, case scenarios and examples are explained in this book. It is the first book to provide a comprehensive description and step-by-step practical hands-on guide to carrying out the different types of statistical analysis in R particularly for research purposes with examples. Ranging from how to import and store datasets in R as Objects, how to code and call the methods or functions for manipulating the datasets or objects, factorization, and vectorization, to better reasoning, interpretation, and storage of the results for future use, and graphical visualizations and representations. Thus, congruence of Statistics and Computer programming for Research.