The global big data and business analytics (BDA) market was valued at 168.8 billion U.S. dollars in 2018 and is forecast to grow to 215.7 billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around 85 billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate 79.4 ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around 16.5 billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.
Crime isn't a topic most people want to use mental energy to think about. We want to avoid harm, protect our loved ones, and hold on to what we claim is ours. So how do we remain vigilant without digging too deep into the filth that is crime? Data, of course. The focus of our study is to explore possible trends between crime and communities in the city of Calgary. Our purpose is visualize Calgary criminal behaviour in order to help increase awareness for both citizens and law enforcement. Through the use of our visuals, individuals can make more informed decisions to improve the overall safety of their lives. Some of the main concerns of the study include: how crime rates increase with population, which areas in Calgary have the most crime, and if crime adheres to time-sensative patterns.
In 2023, Morningstar Advisor Workstation was by far the most popular data analytics software worldwide. According to a survey carried out between December 2022 and March 2023, the market share of Morningstar Advisor Workstation was ***** percent. It was followed by Riskalyze Elite, with ***** percent, and YCharts, with ***** percent.
As of 2023, most surveyed companies in the United States and Europe, or ** percent, claim to be either industry leaders in terms of data, analytics, and artificial intelligence (AI) function advancements or about the same as their industry peers.
https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy
The Big Data Analytics in the Manufacturing Industry Report is Segmented by End-User Industry (Semiconductor, Aerospace, Automotive, And Other End-User Industries), Application (Condition Monitoring, Quality Management, Inventory Management, And Other Applications), And Geography (North America, Europe, Asia-pacific, And Latin America). The Market Sizes and Forecasts are Provided in Terms of Value (USD) for all the Above Segments.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Data Analytics-as-a-Service (DaaS) market has emerged as a transformative force in the realm of data management and analysis, providing businesses with scalable solutions to harness the power of data without the burden of extensive infrastructure or technical expertise. DaaS enables organizations to access advan
https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified
This course is an introduction to the key ideas and principles of the collection, display, and analysis of data to guide you in making valid and appropriate conclusions about the world. We live in a world where data are increasingly available, in ever larger quantities, and are increasingly expected to form the basis for decisions by governments, businesses, and other organizations, as well as by individuals in their daily lives. To cope effectively, every informed citizen must be statistically literate. This course will provide an intuitive introduction to applied statistical reasoning, introducing fundamental statistical skills and acquainting students with the full process of inquiry and evaluation used in investigations in a wide range of fields.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Data Analytics market is rapidly evolving, standing as a cornerstone for modern decision-making across various industries. With a current market size estimated to exceed billions of dollars, it has grown substantially over the past decade, driven by the explosion of big data and the increasing need for organizat
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Big Data Analytics Software market has emerged as a crucial component of modern business strategies, harnessing vast amounts of data to drive informed decision-making across various industries. As organizations scramble to gain a competitive edge, the ability to analyze and interpret complex datasets is indispen
Journal of business analytics Impact Factor 2024-2025 - ResearchHelpDesk - Business analytics research focuses on developing new insights and a holistic understanding of an organisation’s business environment to help make timely and accurate decisions, and to survive, innovate and grow. Thus, business analytics draws on the full spectrum of descriptive/diagnostic, predictive and prescriptive analytics in order to make better (i.e., data-driven and evidence-based) decisions to create business value in the broadest sense. The mission of the Journal of Business Analytics Journal (JBA) is to serve the emerging and rapidly growing community of business analytics academics and practitioners. We aim to publish articles that use real-world data and cases to tackle problem situations in a creative and innovative manner. We solicit articles that address an interesting research problem, collect and/or repurpose multiple types of data sets, and develop and evaluate analytics methods and methodologies to help organisations apply business analytics in new and novel ways. Reports of research using qualitative or quantitative approaches are welcomed, as are interdisciplinary and mixed methods approaches. Topics may include: Applications of AI and machine learning methods in business analytics Network science and social network applications for business Social media analytics Statistics and econometrics in business analytics Use of novel data science techniques in business analytics Robotics and autonomous vehicles Methods and methodologies for business analytics development and deployment Organisational factors in business analytics Responsible use of business analytics and AI Ethical and social implications of business analytics and AI Bias and explainability in analytics and AI Our editorial philosophy is to publish papers that contribute to theory and practice. Journal of Business Analytics is indexed in: AIS eLibrary Australian Business Deans Council (ABDC) Journal Quality List British Library CLOCKSS Crossref Ei Compendex (Engineering Village) Google Scholar Microsoft Academic Portico SCImago Scopus Ulrich's Periodicals Directory
This statistic shows the ways that companies are using data and analytics worldwide as of 2018. Around ** percent of respondents stated that one of the top uses of data and analytics in their company was as a driver of strategy and change.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global app data statistics tool market size was valued at approximately USD 5.3 billion in 2023 and is projected to reach USD 11.9 billion by 2032, growing at a CAGR of 9.2% during the forecast period. Several growth factors, including the escalating demand for data-driven decision-making and the rise in mobile app usage, are driving this market. As organizations increasingly recognize the value of data analytics in enhancing user engagement and optimizing app performance, the adoption of app data statistics tools is expected to surge significantly.
The growth of the app data statistics tool market is primarily fueled by the exponential increase in mobile app usage worldwide. With billions of smartphone users generating vast amounts of data daily, companies are leveraging app data statistics tools to gain actionable insights. These tools help in understanding user behavior, tracking app performance, and identifying areas for improvement. Furthermore, the growing emphasis on personalized user experiences has led to an increased demand for sophisticated analytics tools, thereby driving market growth.
Another critical growth factor is the rising importance of data-driven decision-making in various industries. Organizations across sectors such as BFSI, healthcare, retail, and media are increasingly relying on app data statistics tools to make informed decisions. These tools enable businesses to analyze large datasets, uncover trends, and optimize their strategies. The adoption of analytics tools is also propelled by the need to improve customer satisfaction and loyalty, as companies strive to offer tailored experiences to their users. The integration of artificial intelligence and machine learning in analytics tools further enhances their efficiency and accuracy, contributing to market growth.
Moreover, the market is benefitting from technological advancements and the increasing availability of advanced analytics tools. Innovations such as real-time analytics, predictive analytics, and big data analytics are enhancing the capabilities of app data statistics tools. These advancements enable organizations to gain deeper insights and make faster, more accurate decisions. Additionally, the proliferation of cloud-based solutions is making analytics tools more accessible and affordable for businesses of all sizes. Cloud deployment offers scalability, flexibility, and cost-efficiency, which are particularly attractive to small and medium enterprises (SMEs).
The role of Product Analytics Software is becoming increasingly significant in the realm of app data statistics tools. These software solutions are designed to help businesses understand how users interact with their products, providing insights that are crucial for enhancing user experience and driving product development. By analyzing user data, companies can identify trends and patterns that inform strategic decisions, such as feature enhancements and marketing strategies. The integration of Product Analytics Software with app data statistics tools enables businesses to gain a comprehensive view of user behavior, facilitating more informed decision-making and ultimately leading to improved product offerings.
Regionally, North America holds the largest market share, driven by the presence of numerous tech giants and a high adoption rate of advanced technologies. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period. The rapid digitization, increasing smartphone penetration, and the rising number of app developers in countries like China and India are driving the demand for app data statistics tools. Europe also presents significant growth opportunities, with increasing investments in technology and data analytics across various industries. Latin America and the Middle East & Africa are emerging markets with growing awareness and adoption of analytics tools.
The app data statistics tool market is segmented by components into software and services. Software components dominate the market, driven by the demand for sophisticated analytics solutions that can process vast amounts of data. These software tools are designed to collect, analyze, and visualize data, enabling organizations to derive meaningful insights. The growing adoption of artificial intelligence and machine learning technologies in software solutions further enhances their capabilities, making them indispensable for
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for engineering data analytics and statistics in the U.S.
https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order
The Manufacturing Data Analytics market has emerged as a pivotal force in the industrial landscape, transforming how manufacturers leverage data to enhance operational efficiency and drive informed decision-making. This sector focuses on harnessing large volumes of data generated from manufacturing processes, supply
https://www.myvisajobs.com/terms-of-service/https://www.myvisajobs.com/terms-of-service/
A dataset that explores Green Card sponsorship trends, salary data, and employer insights for master in business administration business statistics data analytics in the U.S.
Download statistics and trends for 109 plugins in the Data & Analytics category
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.
Tagging scheme:
Aligned (AL) - A concept is represented as a class in both models, either
with the same name or using synonyms or clearly linkable names;
Wrongly represented (WR) - A class in the domain expert model is
incorrectly represented in the student model, either (i) via an attribute,
method, or relationship rather than class, or
(ii) using a generic term (e.g., user'' instead of
urban
planner'');
System-oriented (SO) - A class in CM-Stud that denotes a technical
implementation aspect, e.g., access control. Classes that represent legacy
system or the system under design (portal, simulator) are legitimate;
Omitted (OM) - A class in CM-Expert that does not appear in any way in
CM-Stud;
Missing (MI) - A class in CM-Stud that does not appear in any way in
CM-Expert.
All the calculations and information provided in the following sheets
originate from that raw data.
Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.
Sheet 3 (Size-Ratio):
The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.
Sheet 4 (Overall):
Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.
For sheet 4 as well as for the following four sheets, diverging stacked bar
charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:
Sheet 5 (By-Notation):
Model correctness and model completeness is compared by notation - UC, US.
Sheet 6 (By-Case):
Model correctness and model completeness is compared by case - SIM, HOS, IFA.
Sheet 7 (By-Process):
Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.
Sheet 8 (By-Grade):
Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.
https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy
The global sports analytics service software market is experiencing robust growth, driven by the increasing adoption of data-driven strategies by sports teams, leagues, and broadcasters. The market's expansion is fueled by several key factors: the rising popularity of sports globally, the need for enhanced performance analysis, the proliferation of wearable technology generating vast amounts of data, and the increasing sophistication of analytical tools. The market is segmented by operating system (Android, iOS, Windows, and others) and application (basketball, football, and others), reflecting the diverse needs of different sports and technological preferences. North America currently holds a significant market share, owing to the established sports infrastructure and the early adoption of advanced analytics in professional leagues. However, regions like Asia-Pacific are showing promising growth potential due to the expanding sports industry and increasing investment in sports technology. The competitive landscape is characterized by a mix of established players and emerging technology companies, each offering unique solutions tailored to specific sports and analytical needs. Challenges include the high cost of implementation, data security concerns, and the need for skilled personnel to interpret and utilize the complex data generated by these systems. Despite these hurdles, the long-term outlook for the sports analytics service software market remains positive, with a projected CAGR indicating sustained growth over the forecast period. The forecast period (2025-2033) anticipates continuous growth, primarily driven by technological advancements and the increasing integration of analytics into sports decision-making at all levels. Advancements in artificial intelligence (AI) and machine learning (ML) are expected to further enhance the capabilities of these software solutions, providing more accurate predictions and actionable insights. The market's evolution will also be shaped by the ongoing development of new data sources and the increasing focus on personalized athlete development strategies. Furthermore, the growing interest in esports and the corresponding demand for performance analysis in virtual sports are also likely to contribute significantly to market growth. Competition will intensify, leading to innovation in software features, pricing strategies, and strategic partnerships to capture larger market shares. The global reach of major sports leagues will influence the expansion into new geographical markets, particularly in developing economies where the sports industry is rapidly expanding.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is about books. It has 2 rows and is filtered where the book is Data analysis with SPSS : a first course in applied statistics. It features 7 columns including author, publication date, language, and book publisher.
Spatial analysis and statistical summaries of the Protected Areas Database of the United States (PAD-US) provide land managers and decision makers with a general assessment of management intent for biodiversity protection, natural resource management, and recreation access across the nation. The PAD-US 3.0 Combined Fee, Designation, Easement feature class (with Military Lands and Tribal Areas from the Proclamation and Other Planning Boundaries feature class) was modified to remove overlaps, avoiding overestimation in protected area statistics and to support user needs. A Python scripted process ("PADUS3_0_CreateVectorAnalysisFileScript.zip") associated with this data release prioritized overlapping designations (e.g. Wilderness within a National Forest) based upon their relative biodiversity conservation status (e.g. GAP Status Code 1 over 2), public access values (in the order of Closed, Restricted, Open, Unknown), and geodatabase load order (records are deliberately organized in the PAD-US full inventory with fee owned lands loaded before overlapping management designations, and easements). The Vector Analysis File ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") associated item of PAD-US 3.0 Spatial Analysis and Statistics ( https://doi.org/10.5066/P9KLBB5D ) was clipped to the Census state boundary file to define the extent and serve as a common denominator for statistical summaries. Boundaries of interest to stakeholders (State, Department of the Interior Region, Congressional District, County, EcoRegions I-IV, Urban Areas, Landscape Conservation Cooperative) were incorporated into separate geodatabase feature classes to support various data summaries ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip") and Comma-separated Value (CSV) tables ("PADUS3_0SummaryStatistics_TabularData_CSV.zip") summarizing "PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.zip" are provided as an alternative format and enable users to explore and download summary statistics of interest (Comma-separated Table [CSV], Microsoft Excel Workbook [.XLSX], Portable Document Format [.PDF] Report) from the PAD-US Lands and Inland Water Statistics Dashboard ( https://www.usgs.gov/programs/gap-analysis-project/science/pad-us-statistics ). In addition, a "flattened" version of the PAD-US 3.0 combined file without other extent boundaries ("PADUS3_0VectorAnalysisFile_ClipCensus.zip") allow for other applications that require a representation of overall protection status without overlapping designation boundaries. The "PADUS3_0VectorAnalysis_State_Clip_CENSUS2020" feature class ("PADUS3_0VectorAnalysisFileOtherExtents_Clip_Census.gdb") is the source of the PAD-US 3.0 raster files (associated item of PAD-US 3.0 Spatial Analysis and Statistics, https://doi.org/10.5066/P9KLBB5D ). Note, the PAD-US inventory is now considered functionally complete with the vast majority of land protection types represented in some manner, while work continues to maintain updates and improve data quality (see inventory completeness estimates at: http://www.protectedlands.net/data-stewards/ ). In addition, changes in protected area status between versions of the PAD-US may be attributed to improving the completeness and accuracy of the spatial data more than actual management actions or new acquisitions. USGS provides no legal warranty for the use of this data. While PAD-US is the official aggregation of protected areas ( https://www.fgdc.gov/ngda-reports/NGDA_Datasets.html ), agencies are the best source of their lands data.
The global big data and business analytics (BDA) market was valued at 168.8 billion U.S. dollars in 2018 and is forecast to grow to 215.7 billion U.S. dollars by 2021. In 2021, more than half of BDA spending will go towards services. IT services is projected to make up around 85 billion U.S. dollars, and business services will account for the remainder. Big data High volume, high velocity and high variety: one or more of these characteristics is used to define big data, the kind of data sets that are too large or too complex for traditional data processing applications. Fast-growing mobile data traffic, cloud computing traffic, as well as the rapid development of technologies such as artificial intelligence (AI) and the Internet of Things (IoT) all contribute to the increasing volume and complexity of data sets. For example, connected IoT devices are projected to generate 79.4 ZBs of data in 2025. Business analytics Advanced analytics tools, such as predictive analytics and data mining, help to extract value from the data and generate business insights. The size of the business intelligence and analytics software application market is forecast to reach around 16.5 billion U.S. dollars in 2022. Growth in this market is driven by a focus on digital transformation, a demand for data visualization dashboards, and an increased adoption of cloud.