100+ datasets found
  1. A

    Automated Data Annotation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Automated Data Annotation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/automated-data-annotation-tools-1418622
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Aug 14, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Automated Data Annotation Tools market is experiencing rapid growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, valued at $311.8 million in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a robust Compound Annual Growth Rate (CAGR) of 19.7%. This expansion is primarily attributed to the rising adoption of AI across diverse sectors, including autonomous vehicles, healthcare, and finance, all requiring large volumes of accurately annotated data. Furthermore, the increasing complexity of AI models necessitates more sophisticated annotation techniques, further boosting market demand. The market is segmented by tool type (e.g., image annotation, text annotation, video annotation), deployment mode (cloud-based, on-premises), and industry vertical (e.g., automotive, healthcare, retail). Key players are strategically investing in R&D to enhance their offerings and expand their market share. Competition is intense, with both established tech giants and specialized startups vying for dominance. Challenges include the need for skilled annotators, data security concerns, and the high cost of annotation, particularly for complex datasets. The continued growth trajectory of the Automated Data Annotation Tools market is underpinned by several factors. Advancements in deep learning and the proliferation of AI applications in various sectors will continuously drive demand for precise and efficient annotation solutions. The emergence of innovative annotation techniques, such as automated labeling and active learning, will further streamline workflows and improve accuracy. However, maintaining data privacy and security remains a crucial aspect, requiring robust measures throughout the annotation process. Companies are focusing on developing scalable and cost-effective solutions to address these challenges, ultimately contributing to the market's sustained expansion. The competitive landscape is dynamic, with companies strategically employing mergers and acquisitions, partnerships, and product innovations to strengthen their position within this lucrative and rapidly evolving market.

  2. D

    Data Annotation and Labeling Tool Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Annotation and Labeling Tool Report [Dataset]. https://www.marketreportanalytics.com/reports/data-annotation-and-labeling-tool-53915
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data annotation and labeling tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $2 billion in 2025, is projected to expand significantly over the next decade, fueled by a Compound Annual Growth Rate (CAGR) of 25%. This growth is primarily attributed to the expanding adoption of AI across various sectors, including automotive, healthcare, and finance. The automotive industry utilizes these tools extensively for autonomous vehicle development, requiring precise annotation of images and sensor data. Similarly, healthcare leverages these tools for medical image analysis, diagnostics, and drug discovery. The rise of sophisticated AI models demanding larger and more accurately labeled datasets further accelerates market expansion. While manual data annotation remains prevalent, the increasing complexity and volume of data are driving the adoption of semi-supervised and automatic annotation techniques, offering cost and efficiency advantages. Key restraining factors include the high cost of skilled annotators, data security concerns, and the need for specialized expertise in data annotation processes. However, continuous advancements in annotation technologies and the growing availability of outsourcing options are mitigating these challenges. The market is segmented by application (automotive, government, healthcare, financial services, retail, and others) and type (manual, semi-supervised, and automatic). North America currently holds the largest market share, but Asia-Pacific is expected to witness substantial growth in the coming years, driven by increasing government investments in AI and ML initiatives. The competitive landscape is characterized by a mix of established players and emerging startups, each offering a range of tools and services tailored to specific needs. Leading companies like Labelbox, Scale AI, and SuperAnnotate are continuously innovating to enhance the accuracy, speed, and scalability of their platforms. The future of the market will depend on the ongoing development of more efficient and cost-effective annotation methods, the integration of advanced AI techniques within the tools themselves, and the increasing adoption of these tools by small and medium-sized enterprises (SMEs) across diverse industries. The focus on data privacy and security will also play a crucial role in shaping market dynamics and influencing vendor strategies. The market's continued growth trajectory hinges on addressing the challenges of data bias, ensuring data quality, and fostering the development of standardized annotation procedures to support broader AI adoption.

  3. O

    Open Source Data Annotation Tool Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 21, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Open Source Data Annotation Tool Report [Dataset]. https://www.marketresearchforecast.com/reports/open-source-data-annotation-tool-46961
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The open-source data annotation tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market's expansion is fueled by several key factors: the rising adoption of AI across various industries (including automotive, healthcare, and finance), the need for efficient and cost-effective data annotation solutions, and a growing preference for flexible, customizable tools offered by open-source platforms. While cloud-based solutions currently dominate the market due to scalability and accessibility, on-premise deployments remain significant for organizations with stringent data security requirements. The competitive landscape is dynamic, with numerous established players and emerging startups vying for market share. The market is segmented geographically, with North America and Europe currently holding the largest shares due to early adoption of AI technologies and robust research & development activities. However, the Asia-Pacific region is projected to witness significant growth in the coming years, driven by increasing investments in AI infrastructure and talent development. Challenges remain, such as the need for skilled annotators and the ongoing evolution of annotation techniques to handle increasingly complex data types. The forecast period (2025-2033) suggests continued expansion, with a projected Compound Annual Growth Rate (CAGR) – let's conservatively estimate this at 15% based on typical growth in related software sectors. This growth will be influenced by advancements in automation and semi-automated annotation tools, as well as the emergence of novel annotation paradigms. The market is expected to see further consolidation, with larger players potentially acquiring smaller, specialized companies. The increasing focus on data privacy and security will necessitate the development of more robust and compliant open-source annotation tools. Specific application segments like healthcare, with its stringent regulatory landscape, and the automotive industry, with its reliance on autonomous driving technology, will continue to be major drivers of market growth. The increasing availability of open-source datasets and pre-trained models will indirectly contribute to the market’s expansion by lowering the barrier to entry for AI development.

  4. A

    Automated Data Annotation Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jul 4, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Automated Data Annotation Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/automated-data-annotation-tool-1416565
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The automated data annotation tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $2 billion in 2025, is projected to expand at a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching approximately $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the proliferation of AI and ML across diverse industries like healthcare, finance, and autonomous vehicles necessitates large volumes of accurately labeled data. Secondly, the limitations of manual annotation, including its time-consuming nature and susceptibility to human error, are driving the adoption of automated solutions that offer increased speed, accuracy, and scalability. Furthermore, advancements in computer vision, natural language processing, and other AI techniques are continuously improving the capabilities of automated annotation tools, making them increasingly efficient and reliable. Key players like Amazon Web Services, Google, and other specialized providers are actively contributing to this growth through innovation and strategic partnerships. However, market growth isn't without challenges. The high initial investment cost of implementing automated annotation tools can be a barrier for smaller companies. Moreover, the accuracy of automated annotation can still lag behind manual annotation in certain complex scenarios, necessitating hybrid approaches that combine automated and manual processes. Despite these restraints, the long-term outlook for the automated data annotation tool market remains exceptionally positive, driven by continued advancements in AI and the expanding demand for large-scale, high-quality datasets to fuel the next generation of AI applications. The market is segmented by tool type (image, text, video, audio), deployment mode (cloud, on-premise), and industry, with each segment exhibiting unique growth trajectories reflecting specific application needs.

  5. Data Labeling And Annotation Tools Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated Jul 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Labeling And Annotation Tools Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, Spain, and UK), APAC (China), South America (Brazil), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/data-labeling-and-annotation-tools-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 4, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Canada, United States
    Description

    Snapshot img

    Data Labeling And Annotation Tools Market Size 2025-2029

    The data labeling and annotation tools market size is valued to increase USD 2.69 billion, at a CAGR of 28% from 2024 to 2029. Explosive growth and data demands of generative AI will drive the data labeling and annotation tools market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 47% growth during the forecast period.
    By Type - Text segment was valued at USD 193.50 billion in 2023
    By Technique - Manual labeling segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 651.30 billion
    Market Future Opportunities: USD USD 2.69 billion 
    CAGR : 28%
    North America: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving landscape that plays a crucial role in powering advanced technologies, particularly in the realm of artificial intelligence (AI). Core technologies, such as deep learning and machine learning, continue to fuel the demand for data labeling and annotation tools, enabling the explosive growth and data demands of generative AI. These tools facilitate the emergence of specialized platforms for generative AI data pipelines, ensuring the maintenance of data quality and managing escalating complexity. Applications of data labeling and annotation tools span various industries, including healthcare, finance, and retail, with the market expected to grow significantly in the coming years. According to recent studies, the market share for data labeling and annotation tools is projected to reach over 30% by 2026. Service types or product categories, such as manual annotation, automated annotation, and semi-automated annotation, cater to the diverse needs of businesses and organizations. Regulations, such as GDPR and HIPAA, pose challenges for the market, requiring stringent data security and privacy measures. Regional mentions, including North America, Europe, and Asia Pacific, exhibit varying growth patterns, with Asia Pacific expected to witness the fastest growth due to the increasing adoption of AI technologies. The market continues to unfold, offering numerous opportunities for innovation and growth.

    What will be the Size of the Data Labeling And Annotation Tools Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Labeling And Annotation Tools Market Segmented and what are the key trends of market segmentation?

    The data labeling and annotation tools industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeTextVideoImageAudioTechniqueManual labelingSemi-supervised labelingAutomatic labelingDeploymentCloud-basedOn-premisesGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalySpainUKAPACChinaSouth AmericaBrazilRest of World (ROW)

    By Type Insights

    The text segment is estimated to witness significant growth during the forecast period.

    The market is witnessing significant growth, fueled by the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. According to recent studies, the market for data labeling and annotation services is projected to expand by 25% in the upcoming year. This expansion is primarily driven by the burgeoning demand for high-quality, accurately labeled datasets to train advanced AI and ML models. Scalable annotation workflows are essential to meeting the demands of large-scale projects, enabling efficient labeling and review processes. Data labeling platforms offer various features, such as error detection mechanisms, active learning strategies, and polygon annotation software, to ensure annotation accuracy. These tools are integral to the development of image classification models and the comparison of annotation tools. Video annotation services are gaining popularity, as they cater to the unique challenges of video data. Data labeling pipelines and project management tools streamline the entire annotation process, from initial data preparation to final output. Keypoint annotation workflows and annotation speed optimization techniques further enhance the efficiency of annotation projects. Inter-annotator agreement is a critical metric in ensuring data labeling quality. The data labeling lifecycle encompasses various stages, including labeling, assessment, and validation, to maintain the highest level of accuracy. Semantic segmentation tools and label accuracy assessment methods contribute to the ongoing refinement of annotation techniques. Text annotation techniques, such as named entity recognition, sentiment analysis, and text classification, are essential for natural language processing. Consistency checks an

  6. D

    Data Annotation and Labeling Tool Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 2, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Annotation and Labeling Tool Report [Dataset]. https://www.marketreportanalytics.com/reports/data-annotation-and-labeling-tool-54046
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Apr 2, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Data Annotation & Labeling Tool market! Explore a comprehensive analysis revealing a $2B market in 2025, projected to reach $10B by 2033, driven by AI and ML adoption. Learn about key trends, regional insights, and leading companies shaping this rapidly evolving landscape.

  7. D

    Data Annotation Outsourcing Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Annotation Outsourcing Report [Dataset]. https://www.datainsightsmarket.com/reports/data-annotation-outsourcing-1428268
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The data annotation outsourcing market is experiencing robust growth, driven by the increasing demand for high-quality training data to fuel the advancements in artificial intelligence (AI) and machine learning (ML) technologies. The market's expansion is fueled by several key factors, including the proliferation of AI-powered applications across various industries – from autonomous vehicles and healthcare to finance and retail – each requiring vast amounts of accurately annotated data for optimal performance. This surge in demand is pushing organizations to outsource data annotation tasks to specialized providers, leveraging their expertise and cost-effective solutions. The market is segmented based on various annotation types (image, text, video, audio), application domains, and geographic regions. While North America currently holds a significant market share due to the high concentration of AI companies and robust technological infrastructure, regions like Asia-Pacific are exhibiting rapid growth, driven by increasing digitalization and government initiatives promoting AI development. Competition is intensifying among established players and emerging startups, leading to innovations in annotation techniques, automation tools, and quality control measures. The forecast period (2025-2033) anticipates continued strong growth, propelled by the ongoing advancements in AI and ML algorithms, which require ever-larger and more complex datasets. Challenges such as data security, maintaining data quality consistency across different annotation providers, and addressing ethical concerns surrounding data sourcing and usage will continue to influence market dynamics. Nevertheless, the overall outlook remains positive, with the market poised for substantial expansion, driven by the increasing reliance on AI across various industries and the growing availability of sophisticated annotation tools and techniques. Key players are focusing on strategic partnerships, acquisitions, and technological innovations to enhance their market position and cater to the evolving needs of their clients. The market’s overall value is projected to exceed expectations, outpacing initial estimations based on the observed acceleration in AI adoption.

  8. R

    AI in Data Annotation Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). AI in Data Annotation Market Research Report 2033 [Dataset]. https://researchintelo.com/report/ai-in-data-annotation-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    AI in Data Annotation Market Outlook



    As per our latest research, the global AI in Data Annotation market size reached USD 2.6 billion in 2024, reflecting the accelerating adoption of artificial intelligence and machine learning across industries. The market is projected to grow at a robust CAGR of 25.8% from 2025 to 2033, with the market value expected to reach approximately USD 18.3 billion by 2033. This remarkable growth is primarily driven by the increasing demand for high-quality labeled datasets to train sophisticated AI models, particularly in sectors such as healthcare, autonomous vehicles, and retail. As organizations continue to invest in automation and intelligent systems, the need for scalable, accurate, and efficient data annotation solutions is set to surge, underpinning the long-term expansion of this market.



    One of the most significant growth factors for the AI in Data Annotation market is the rapid evolution and deployment of artificial intelligence and machine learning technologies across diverse industries. As AI algorithms become more advanced, the requirement for accurately labeled data grows exponentially. Industries such as healthcare rely on annotated medical images and records to enhance diagnostic accuracy and accelerate drug discovery, while the automotive sector depends on labeled video and image data for the development of autonomous driving systems. The expansion of AI-powered virtual assistants, chatbots, and recommendation engines in retail and BFSI further elevates the importance of robust data annotation, ensuring that algorithms can interpret and respond to human inputs with precision. The proliferation of big data, combined with the increasing complexity of AI applications, is making data annotation an indispensable part of the AI development lifecycle.



    Technological advancements in annotation tools and the integration of automation are also fueling market growth. The emergence of AI-assisted annotation platforms, which leverage natural language processing and computer vision, has significantly improved the speed and accuracy of data labeling. These platforms can automatically pre-label large datasets, reducing the manual effort required and minimizing human error. Additionally, the adoption of cloud-based annotation solutions enables organizations to scale their data labeling operations efficiently, supporting remote collaboration and real-time quality control. As more enterprises recognize the value of well-annotated data in gaining a competitive edge, investments in advanced annotation software and services are expected to rise, further propelling market expansion.



    Another critical driver is the increasing emphasis on data privacy and regulatory compliance, particularly in sectors handling sensitive information. Organizations are seeking annotation solutions that ensure data security, confidentiality, and compliance with global regulations such as GDPR and HIPAA. This has led to the development of secure, on-premises annotation platforms and privacy-preserving techniques, such as federated learning and differential privacy. As regulatory scrutiny intensifies and data breaches become more commonplace, the demand for compliant and secure data annotation services is anticipated to witness substantial growth. The focus on ethical AI development, transparency, and bias mitigation also underscores the need for high-quality, unbiased labeled data, further supporting the expansion of the AI in Data Annotation market.



    Regionally, North America continues to dominate the AI in Data Annotation market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of major AI technology companies, robust research and development infrastructure, and early adoption of advanced analytics solutions are key factors driving market growth in North America. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by increasing investments in AI, rapid digital transformation, and the expansion of the IT and telecom sector. Europe remains a significant market, supported by strong regulatory frameworks and a focus on ethical AI. Latin America and the Middle East & Africa are also witnessing steady growth, driven by government initiatives and the adoption of AI in various industries.



    Component Analysis



    The AI in Data Annotation market is segmented by component into Software and Services, each playing a pivotal role in supporting the diverse needs of organizations e

  9. I

    TextTransfer: Datasets for Impact Detection

    • databank.illinois.edu
    Updated Mar 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maria Becker; Kanyao Han; Antonina Werthmann; Rezvaneh Rezapour; Haejin Lee; Jana Diesner; Andreas Witt (2024). TextTransfer: Datasets for Impact Detection [Dataset]. http://doi.org/10.13012/B2IDB-9934303_V1
    Explore at:
    Dataset updated
    Mar 21, 2024
    Authors
    Maria Becker; Kanyao Han; Antonina Werthmann; Rezvaneh Rezapour; Haejin Lee; Jana Diesner; Andreas Witt
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Dataset funded by
    German Federal Ministry of Education and Research
    Description

    Impact assessment is an evolving area of research that aims at measuring and predicting the potential effects of projects or programs. Measuring the impact of scientific research is a vibrant subdomain, closely intertwined with impact assessment. A recurring obstacle pertains to the absence of an efficient framework which can facilitate the analysis of lengthy reports and text labeling. To address this issue, we propose a framework for automatically assessing the impact of scientific research projects by identifying pertinent sections in project reports that indicate the potential impacts. We leverage a mixed-method approach, combining manual annotations with supervised machine learning, to extract these passages from project reports. This is a repository to save datasets and codes related to this project. Please read and cite the following paper if you would like to use the data: Becker M., Han K., Werthmann A., Rezapour R., Lee H., Diesner J., and Witt A. (2024). Detecting Impact Relevant Sections in Scientific Research. The 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING). This folder contains the following files: evaluation_20220927.ods: Annotated German passages (Artificial Intelligence, Linguistics, and Music) - training data annotated_data.big_set.corrected.txt: Annotated German passages (Mobility) - training data incl_translation_all.csv: Annotated English passages (Artificial Intelligence, Linguistics, and Music) - training data incl_translation_mobility.csv: Annotated German passages (Mobility) - training data ttparagraph_addmob.txt: German corpus (unannotated passages) model_result_extraction.csv: Extracted impact-relevant passages from the German corpus based on the model we trained rf_model.joblib: The random forest model we trained to extract impact-relevant passages Data processing codes can be found at: https://github.com/khan1792/texttransfer

  10. w

    Global Data Annotation and Labeling Service Market Research Report: By Type...

    • wiseguyreports.com
    Updated Oct 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Data Annotation and Labeling Service Market Research Report: By Type of Data (Text Data, Image Data, Video Data, Audio Data), By Application (Natural Language Processing, Image Recognition, Speech Recognition, Autonomous Driving), By End Use Industry (Healthcare, Automotive, Retail, Finance), By Annotation Technique (Manual Annotation, Semi-Automated Annotation, Automated Annotation) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/data-annotation-and-labeling-service-market
    Explore at:
    Dataset updated
    Oct 14, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Oct 25, 2025
    Area covered
    Global
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.72(USD Billion)
    MARKET SIZE 20253.06(USD Billion)
    MARKET SIZE 203510.0(USD Billion)
    SEGMENTS COVEREDType of Data, Application, End Use Industry, Annotation Technique, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSgrowing AI adoption, increasing data volumes, demand for accuracy, cost-effective outsourcing, technology advancements
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDMightyAI, Deep Vision, Talon.One, CVEDIA, Azuma Drive, Hive, Scale AI, Lionbridge, Cimpress, Samasource, Xerago, CloudFactory, Appen, iMerit, Toptal, DataForce
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESGrowing demand for AI models, Expansion of autonomous vehicles, Increased need for healthcare data, Proliferation of IoT applications, Rising importance of data privacy regulations
    COMPOUND ANNUAL GROWTH RATE (CAGR) 12.6% (2025 - 2035)
  11. A

    Asia Pacific Data Annotation Tools Market Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Jan 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Asia Pacific Data Annotation Tools Market Report [Dataset]. https://www.archivemarketresearch.com/reports/asia-pacific-data-annotation-tools-market-10354
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jan 21, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    global
    Variables measured
    Market Size
    Description

    The Asia Pacific data annotation tools market is projected to exhibit a robust CAGR of 28.05% during the forecast period of 2025-2033. This growth is primarily driven by the surging demand for high-quality annotated data for training and developing artificial intelligence (AI) and machine learning (ML) algorithms. The increasing adoption of AI and ML across various industry verticals, such as healthcare, retail, and financial services, is fueling the need for accurate and reliable data annotation. Key trends influencing the market growth include the rise of self-supervised annotation techniques, advancements in natural language processing (NLP), and the proliferation of cloud-based annotation platforms. Additionally, the growing awareness of the importance of data privacy and security is driving the adoption of annotation tools that comply with industry regulations. The competitive landscape features a mix of established players and emerging startups offering a wide range of annotation tools. The Asia Pacific data annotation tools market is projected to grow from USD 2.4 billion in 2022 to USD 10.5 billion by 2027, at a CAGR of 35.4% during the forecast period. The growth of the market is attributed to the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies, which require large amounts of annotated data for training and development.

  12. Global Data Annotation Outsourcing Market Size By Annotation Type, By...

    • verifiedmarketresearch.com
    Updated Aug 29, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Data Annotation Outsourcing Market Size By Annotation Type, By Industry Vertical, By Deployment Model, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/data-annotation-outsourcing-market/
    Explore at:
    Dataset updated
    Aug 29, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Data Annotation Outsourcing Market size was valued at USD 0.8 Billion in 2023 and is projected to reach USD 3.6 Billion by 2031, growing at a CAGR of 33.2%during the forecasted period 2024 to 2031.

    Global Data Annotation Outsourcing Market Drivers

    The market drivers for the Data Annotation Outsourcing Market can be influenced by various factors. These may include:

    Fast Growth in AI and Machine Learning Applications: The need for data annotation services has increased as a result of the need for huge amounts of labeled data for training AI and machine learning models. Companies can focus on their core skills by outsourcing these processes and yet receive high-quality annotated data.

    Growing Need for High-Quality Labeled Data: The efficacy of AI models depends on precise data labeling. In order to achieve accurate and reliable data labeling, businesses are outsourcing their annotation responsibilities to specialist service providers, which is propelling market expansion.

    Global Data Annotation Outsourcing Market Restraints

    Several factors can act as restraints or challenges for the Data Annotation Outsourcing Market. These may include:

    Data Privacy and Security Issues: It can be difficult to guarantee data privacy and security. Strict rules and guidelines must be followed by businesses in order to protect sensitive data, which can be expensive and complicated.

    Problems with Quality Control: It can be difficult to maintain consistent and high-quality data annotation when working with numerous vendors. The effectiveness of AI and machine learning models might be impacted by inconsistent or inaccurate data annotations.

  13. G

    Data Annotation for Autonomous Driving Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Annotation for Autonomous Driving Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-annotation-for-autonomous-driving-market
    Explore at:
    pptx, csv, pdfAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Annotation for Autonomous Driving Market Outlook



    According to our latest research, the global Data Annotation for Autonomous Driving market size has reached USD 1.42 billion in 2024, with a robust compound annual growth rate (CAGR) of 23.1% projected through the forecast period. By 2033, the market is expected to attain a value of USD 10.82 billion, reflecting the surging demand for high-quality labeled data to fuel advanced driver-assistance systems (ADAS) and fully autonomous vehicles. The primary growth factor propelling this market is the rapid evolution of machine learning and computer vision technologies, which require vast, accurately annotated datasets to ensure the reliability and safety of autonomous driving systems.



    The exponential growth of the data annotation for autonomous driving market is largely attributed to the intensifying race among automakers and technology companies to deploy Level 3 and above autonomous vehicles. As these vehicles rely heavily on AI-driven perception systems, the need for meticulously annotated datasets for training, validation, and testing has never been more critical. The proliferation of sensors such as LiDAR, radar, and high-resolution cameras in modern vehicles generates massive volumes of multimodal data, all of which must be accurately labeled to enable object detection, lane keeping, semantic understanding, and navigation. The increasing complexity of driving scenarios, including urban environments and adverse weather conditions, further amplifies the necessity for comprehensive data annotation services.



    Another significant growth driver is the expanding adoption of semi-automated and fully autonomous commercial fleets, particularly in logistics, ride-hailing, and public transportation. These deployments demand continuous data annotation for real-world scenario adaptation, edge case identification, and system refinement. The rise of regulatory frameworks mandating safety validation and explainability in AI models has also contributed to the surge in demand for precise annotation, as regulatory compliance hinges on transparent and traceable data preparation processes. Furthermore, the integration of AI-powered annotation tools, which leverage machine learning to accelerate and enhance the annotation process, is streamlining workflows and reducing time-to-market for autonomous vehicle solutions.



    Strategic investments and collaborations among automotive OEMs, Tier 1 suppliers, and specialized technology providers are accelerating the development of scalable, high-quality annotation pipelines. As global automakers expand their autonomous driving programs, partnerships with data annotation service vendors are becoming increasingly prevalent, driving innovation in annotation methodologies and quality assurance protocols. The entry of new players and the expansion of established firms into emerging markets, particularly in the Asia Pacific region, are fostering a competitive landscape that emphasizes cost efficiency, scalability, and domain expertise. This dynamic ecosystem is expected to further catalyze the growth of the data annotation for autonomous driving market over the coming decade.



    From a regional perspective, Asia Pacific leads the global market, accounting for over 36% of total revenue in 2024, followed closely by North America and Europe. The regionÂ’s dominance is underpinned by the rapid digitization of the automotive sector in countries such as China, Japan, and South Korea, where government incentives and aggressive investment in smart mobility initiatives are stimulating demand for autonomous driving technologies. North America, with its concentration of leading technology companies and research institutions, continues to be a hub for AI innovation and autonomous vehicle testing. EuropeÂ’s robust regulatory framework and focus on vehicle safety standards are also contributing to a steady increase in data annotation activities, particularly among premium automakers and mobility service providers.



    Annotation Tools for Robotics Perception are becoming increasingly vital in the realm of autonomous driving. These tools facilitate the precise labeling of complex datasets, which is crucial for training the perception systems of autonomous vehicles. By employing advanced annotation techniques, these tools enable the identification and clas

  14. O

    Open Source Data Labeling Tool Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Open Source Data Labeling Tool Report [Dataset]. https://www.marketresearchforecast.com/reports/open-source-data-labeling-tool-28519
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Mar 7, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The open-source data labeling tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in the burgeoning artificial intelligence (AI) and machine learning (ML) sectors. The market's expansion is fueled by several key factors. Firstly, the rising adoption of AI across various industries, including healthcare, automotive, and finance, necessitates large volumes of accurately labeled data. Secondly, open-source tools offer a cost-effective alternative to proprietary solutions, making them attractive to startups and smaller companies with limited budgets. Thirdly, the collaborative nature of open-source development fosters continuous improvement and innovation, leading to more sophisticated and user-friendly tools. While the cloud-based segment currently dominates due to scalability and accessibility, on-premise solutions maintain a significant share, especially among organizations with stringent data security and privacy requirements. The geographical distribution reveals strong growth in North America and Europe, driven by established tech ecosystems and early adoption of AI technologies. However, the Asia-Pacific region is expected to witness significant growth in the coming years, fueled by increasing digitalization and government initiatives promoting AI development. The market faces some challenges, including the need for skilled data labelers and the potential for inconsistencies in data quality across different open-source tools. Nevertheless, ongoing developments in automation and standardization are expected to mitigate these concerns. The forecast period of 2025-2033 suggests a continued upward trajectory for the open-source data labeling tool market. Assuming a conservative CAGR of 15% (a reasonable estimate given the rapid advancements in AI and the increasing need for labeled data), and a 2025 market size of $500 million (a plausible figure considering the significant investments in the broader AI market), the market is projected to reach approximately $1.8 billion by 2033. This growth will be further shaped by the ongoing development of new features, improved user interfaces, and the integration of advanced techniques such as active learning and semi-supervised learning within open-source tools. The competitive landscape is dynamic, with both established players and emerging startups contributing to the innovation and expansion of this crucial segment of the AI ecosystem. Companies are focusing on improving the accuracy, efficiency, and accessibility of their tools to cater to a growing and diverse user base.

  15. A

    AI Data Annotation Solution Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Data Annotation Solution Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-data-annotation-solution-1947416
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Nov 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI Data Annotation Solution market is projected for significant expansion, driven by the escalating demand for high-quality, labeled data across various artificial intelligence applications. With an estimated market size of approximately $6.5 billion in 2025, the sector is anticipated to experience a robust Compound Annual Growth Rate (CAGR) of around 18% through 2033. This substantial growth is underpinned by critical drivers such as the rapid advancement and adoption of machine learning and deep learning technologies, the burgeoning need for autonomous systems in sectors like automotive and robotics, and the increasing application of AI for enhanced customer experiences in retail and financial services. The proliferation of data generated from diverse sources, including text, images, video, and audio, further fuels the necessity for accurate and efficient annotation solutions to train and refine AI models. Government initiatives focused on smart city development and healthcare advancements also contribute considerably to this growth trajectory, highlighting the pervasive influence of AI-driven solutions. The market is segmented across various applications, with IT, Automotive, and Healthcare expected to be leading contributors due to their intensive AI development pipelines. The growing reliance on AI for predictive analytics, fraud detection, and personalized services within the Financial Services sector, along with the push for automation and improved customer engagement in Retail, also signifies substantial opportunities. Emerging trends such as the rise of active learning and semi-supervised learning techniques to reduce annotation costs, alongside the increasing adoption of AI-powered annotation tools and platforms that offer enhanced efficiency and scalability, are shaping the competitive landscape. However, challenges like the high cost of annotation, the need for skilled annotators, and concerns regarding data privacy and security can act as restraints. Major players like Google, Amazon Mechanical Turk, Scale AI, Appen, and Labelbox are actively innovating to address these challenges and capture market share, indicating a dynamic and competitive environment focused on delivering precise and scalable data annotation services. This comprehensive report delves deep into the dynamic and rapidly evolving AI Data Annotation Solution market. With a Study Period spanning from 2019 to 2033, a Base Year and Estimated Year of 2025, and a Forecast Period from 2025 to 2033, this analysis provides unparalleled insights into market dynamics, trends, and future projections. The report leverages Historical Period data from 2019-2024 to establish a robust foundation for its forecasts.

  16. Z

    Taxonomies for Semantic Research Data Annotation

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 23, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Göpfert, Christoph; Haas, Jan Ingo; Schröder, Lucas; Gaedke, Martin (2024). Taxonomies for Semantic Research Data Annotation [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_7908854
    Explore at:
    Dataset updated
    Jul 23, 2024
    Dataset provided by
    Technische Universität Chemnitz
    Authors
    Göpfert, Christoph; Haas, Jan Ingo; Schröder, Lucas; Gaedke, Martin
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset contains 35 of 39 taxonomies that were the result of a systematic review. The systematic review was conducted with the goal of identifying taxonomies suitable for semantically annotating research data. A special focus was set on research data from the hybrid societies domain.

    The following taxonomies were identified as part of the systematic review:

    Filename

    Taxonomy Title

    acm_ccs

    ACM Computing Classification System [1]

    amec

    A Taxonomy of Evaluation Towards Standards [2]

    bibo

    A BIBO Ontology Extension for Evaluation of Scientific Research Results [3]

    cdt

    Cross-Device Taxonomy [4]

    cso

    Computer Science Ontology [5]

    ddbm

    What Makes a Data-driven Business Model? A Consolidated Taxonomy [6]

    ddi_am

    DDI Aggregation Method [7]

    ddi_moc

    DDI Mode of Collection [8]

    n/a

    DemoVoc [9]

    discretization

    Building a New Taxonomy for Data Discretization Techniques [10]

    dp

    Demopaedia [11]

    dsg

    Data Science Glossary [12]

    ease

    A Taxonomy of Evaluation Approaches in Software Engineering [13]

    eco

    Evidence & Conclusion Ontology [14]

    edam

    EDAM: The Bioscientific Data Analysis Ontology [15]

    n/a

    European Language Social Science Thesaurus [16]

    et

    Evaluation Thesaurus [17]

    glos_hci

    The Glossary of Human Computer Interaction [18]

    n/a

    Humanities and Social Science Electronic Thesaurus [19]

    hcio

    A Core Ontology on the Human-Computer Interaction Phenomenon [20]

    hft

    Human-Factors Taxonomy [21]

    hri

    A Taxonomy to Structure and Analyze Human–Robot Interaction [22]

    iim

    A Taxonomy of Interaction for Instructional Multimedia [23]

    interrogation

    A Taxonomy of Interrogation Methods [24]

    iot

    Design Vocabulary for Human–IoT Systems Communication [25]

    kinect

    Understanding Movement and Interaction: An Ontology for Kinect-Based 3D Depth Sensors [26]

    maco

    Thesaurus Mass Communication [27]

    n/a

    Thesaurus Cognitive Psychology of Human Memory [28]

    mixed_initiative

    Mixed-Initiative Human-Robot Interaction: Definition, Taxonomy, and Survey [29]

    qos_qoe

    A Taxonomy of Quality of Service and Quality of Experience of Multimodal Human-Machine Interaction [30]

    ro

    The Research Object Ontology [31]

    senses_sensors

    A Human-Centered Taxonomy of Interaction Modalities and Devices [32]

    sipat

    A Taxonomy of Spatial Interaction Patterns and Techniques [33]

    social_errors

    A Taxonomy of Social Errors in Human-Robot Interaction [34]

    sosa

    Semantic Sensor Network Ontology [35]

    swo

    The Software Ontology [36]

    tadirah

    Taxonomy of Digital Research Activities in the Humanities [37]

    vrs

    Virtual Reality and the CAVE: Taxonomy, Interaction Challenges and Research Directions [38]

    xdi

    Cross-Device Interaction [39]

    We converted the taxonomies into SKOS (Simple Knowledge Organisation System) representation. The following 4 taxonomies were not converted as they were already available in SKOS and were for this reason excluded from this dataset:

    1) DemoVoc, cf. http://thesaurus.web.ined.fr/navigateur/ available at https://thesaurus.web.ined.fr/exports/demovoc/demovoc.rdf

    2) European Language Social Science Thesaurus, cf. https://thesauri.cessda.eu/elsst/en/ available at https://zenodo.org/record/5506929

    3) Humanities and Social Science Electronic Thesaurus, cf. https://hasset.ukdataservice.ac.uk/hasset/en/ available at https://zenodo.org/record/7568355

    4) Thesaurus Cognitive Psychology of Human Memory, cf. https://www.loterre.fr/presentation/ available at https://skosmos.loterre.fr/P66/en/

    References

    [1] “The 2012 ACM Computing Classification System,” ACM Digital Library, 2012. https://dl.acm.org/ccs (accessed May 08, 2023).

    [2] AMEC, “A Taxonomy of Evaluation Towards Standards.” Aug. 31, 2016. Accessed: May 08, 2023. [Online]. Available: https://amecorg.com/amecframework/home/supporting-material/taxonomy/

    [3] B. Dimić Surla, M. Segedinac, and D. Ivanović, “A BIBO ontology extension for evaluation of scientific research results,” in Proceedings of the Fifth Balkan Conference in Informatics, in BCI ’12. New York, NY, USA: Association for Computing Machinery, Sep. 2012, pp. 275–278. doi: 10.1145/2371316.2371376.

    [4] F. Brudy et al., “Cross-Device Taxonomy: Survey, Opportunities and Challenges of Interactions Spanning Across Multiple Devices,” in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, in CHI ’19. New York, NY, USA: Association for Computing Machinery, Mai 2019, pp. 1–28. doi: 10.1145/3290605.3300792.

    [5] A. A. Salatino, T. Thanapalasingam, A. Mannocci, F. Osborne, and E. Motta, “The Computer Science Ontology: A Large-Scale Taxonomy of Research Areas,” in Lecture Notes in Computer Science 1137, D. Vrandečić, K. Bontcheva, M. C. Suárez-Figueroa, V. Presutti, I. Celino, M. Sabou, L.-A. Kaffee, and E. Simperl, Eds., Monterey, California, USA: Springer, Oct. 2018, pp. 187–205. Accessed: May 08, 2023. [Online]. Available: http://oro.open.ac.uk/55484/

    [6] M. Dehnert, A. Gleiss, and F. Reiss, “What makes a data-driven business model? A consolidated taxonomy,” presented at the European Conference on Information Systems, 2021.

    [7] DDI Alliance, “DDI Controlled Vocabulary for Aggregation Method,” 2014. https://ddialliance.org/Specification/DDI-CV/AggregationMethod_1.0.html (accessed May 08, 2023).

    [8] DDI Alliance, “DDI Controlled Vocabulary for Mode Of Collection,” 2015. https://ddialliance.org/Specification/DDI-CV/ModeOfCollection_2.0.html (accessed May 08, 2023).

    [9] INED - French Institute for Demographic Studies, “Thésaurus DemoVoc,” Feb. 26, 2020. https://thesaurus.web.ined.fr/navigateur/en/about (accessed May 08, 2023).

    [10] A. A. Bakar, Z. A. Othman, and N. L. M. Shuib, “Building a new taxonomy for data discretization techniques,” in 2009 2nd Conference on Data Mining and Optimization, Oct. 2009, pp. 132–140. doi: 10.1109/DMO.2009.5341896.

    [11] N. Brouard and C. Giudici, “Unified second edition of the Multilingual Demographic Dictionary (Demopaedia.org project),” presented at the 2017 International Population Conference, IUSSP, Oct. 2017. Accessed: May 08, 2023. [Online]. Available: https://iussp.confex.com/iussp/ipc2017/meetingapp.cgi/Paper/5713

    [12] DuCharme, Bob, “Data Science Glossary.” https://www.datascienceglossary.org/ (accessed May 08, 2023).

    [13] A. Chatzigeorgiou, T. Chaikalis, G. Paschalidou, N. Vesyropoulos, C. K. Georgiadis, and E. Stiakakis, “A Taxonomy of Evaluation Approaches in Software Engineering,” in Proceedings of the 7th Balkan Conference on Informatics Conference, in BCI ’15. New York, NY, USA: Association for Computing Machinery, Sep. 2015, pp. 1–8. doi: 10.1145/2801081.2801084.

    [14] M. C. Chibucos, D. A. Siegele, J. C. Hu, and M. Giglio, “The Evidence and Conclusion Ontology (ECO): Supporting GO Annotations,” in The Gene Ontology Handbook, C. Dessimoz and N. Škunca, Eds., in Methods in Molecular Biology. New York, NY: Springer, 2017, pp. 245–259. doi: 10.1007/978-1-4939-3743-1_18.

    [15] M. Black et al., “EDAM: the bioscientific data analysis ontology,” F1000Research, vol. 11, Jan. 2021, doi: 10.7490/f1000research.1118900.1.

    [16] Council of European Social Science Data Archives (CESSDA), “European Language Social Science Thesaurus ELSST,” 2021. https://thesauri.cessda.eu/en/ (accessed May 08, 2023).

    [17] M. Scriven, Evaluation Thesaurus, 3rd Edition. Edgepress, 1981. Accessed: May 08, 2023. [Online]. Available: https://us.sagepub.com/en-us/nam/evaluation-thesaurus/book3562

    [18] Papantoniou, Bill et al., The Glossary of Human Computer Interaction. Interaction Design Foundation. Accessed: May 08, 2023. [Online]. Available: https://www.interaction-design.org/literature/book/the-glossary-of-human-computer-interaction

    [19] “UK Data Service Vocabularies: HASSET Thesaurus.” https://hasset.ukdataservice.ac.uk/hasset/en/ (accessed May 08, 2023).

    [20] S. D. Costa, M. P. Barcellos, R. de A. Falbo, T. Conte, and K. M. de Oliveira, “A core ontology on the Human–Computer Interaction phenomenon,” Data Knowl. Eng., vol. 138, p. 101977, Mar. 2022, doi: 10.1016/j.datak.2021.101977.

    [21] V. J. Gawron et al., “Human Factors Taxonomy,” Proc. Hum. Factors Soc. Annu. Meet., vol. 35, no. 18, pp. 1284–1287, Sep. 1991, doi: 10.1177/154193129103501807.

    [22] L. Onnasch and E. Roesler, “A Taxonomy to Structure and Analyze Human–Robot Interaction,” Int. J. Soc. Robot., vol. 13, no. 4, pp. 833–849, Jul. 2021, doi: 10.1007/s12369-020-00666-5.

    [23] R. A. Schwier, “A Taxonomy of Interaction for Instructional Multimedia.” Sep. 28, 1992. Accessed: May 09, 2023. [Online]. Available: https://eric.ed.gov/?id=ED352044

    [24] C. Kelly, J. Miller, A. Redlich, and S. Kleinman, “A Taxonomy of Interrogation Methods,”

  17. D

    Data Annotation Services Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Annotation Services Market Research Report 2033 [Dataset]. https://dataintelo.com/report/data-annotation-services-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Annotation Services Market Outlook



    According to our latest research conducted for the year 2024, the global Data Annotation Services market size reached USD 2.7 billion. The market is experiencing robust momentum and is anticipated to expand at a CAGR of 26.2% from 2025 to 2033. By the end of 2033, the market is forecasted to attain a value of USD 19.3 billion. This remarkable growth is primarily fueled by the surging demand for high-quality labeled data to train artificial intelligence (AI) and machine learning (ML) models across diverse sectors, including healthcare, automotive, retail, and IT & telecommunications. As organizations increasingly invest in AI-driven solutions, the need for accurate and scalable data annotation services continues to escalate, shaping the trajectory of this dynamic market.




    One of the most significant growth factors propelling the Data Annotation Services market is the exponential rise in AI and ML adoption across industries. Enterprises are leveraging advanced analytics and automation to enhance operational efficiency, personalize customer experiences, and drive innovation. However, the effectiveness of AI models hinges on the quality and accuracy of annotated data used during the training phase. As a result, organizations are increasingly outsourcing data annotation tasks to specialized service providers, ensuring that their algorithms receive high-quality, contextually relevant training data. This shift is further amplified by the proliferation of complex data types, such as images, videos, and audio, which require sophisticated annotation methodologies and domain-specific expertise.




    Another key driver is the rapid expansion of autonomous systems, particularly in the automotive and healthcare sectors. The development of autonomous vehicles, for instance, necessitates extensive image and video annotation to enable accurate object detection, lane recognition, and real-time decision-making. Similarly, in healthcare, annotated medical images and records are crucial for training diagnostic algorithms that assist clinicians in disease detection and treatment planning. The growing reliance on data-driven decision-making, coupled with regulatory requirements for transparency and accountability in AI models, is further boosting the demand for reliable and scalable data annotation services worldwide.




    The evolving landscape of data privacy and security regulations is also shaping the Data Annotation Services market. As governments introduce stringent data protection laws, organizations must ensure that their annotation processes comply with legal and ethical standards. This has led to the emergence of secure annotation platforms and privacy-aware workflows, which safeguard sensitive information while maintaining annotation quality. Additionally, the increasing complexity of annotation tasks, such as sentiment analysis, named entity recognition, and multi-modal labeling, is driving innovation in annotation tools and techniques. Market players are investing in the development of AI-assisted and semi-automated annotation solutions to address these challenges and streamline large-scale annotation projects.




    Regionally, North America continues to dominate the Data Annotation Services market, driven by early AI adoption, a robust technology ecosystem, and significant investments from leading tech companies. However, the Asia Pacific region is witnessing the fastest growth, fueled by the rapid digital transformation of economies such as China, India, and Japan. Europe is also emerging as a crucial market, supported by strong regulatory frameworks and a focus on ethical AI development. The Middle East & Africa and Latin America are gradually catching up, as governments and enterprises recognize the strategic importance of AI and data-driven innovation. Overall, the global Data Annotation Services market is poised for exponential growth, underpinned by technological advancements and the relentless pursuit of AI excellence.



    Type Analysis



    The Data Annotation Services market is segmented by type into Text Annotation, Image Annotation, Video Annotation, Audio Annotation, and Others. Text Annotation remains a foundational segment, supporting a myriad of applications such as natural language processing (NLP), sentiment analysis, and chatbot training. The rise of language-based AI applications in customer service, content moderation, and document analysis is fueling demand for precise te

  18. D

    Data Annotation Services for AI and ML Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Nov 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Annotation Services for AI and ML Report [Dataset]. https://www.datainsightsmarket.com/reports/data-annotation-services-for-ai-and-ml-493582
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Nov 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Annotation Services market for Artificial Intelligence (AI) and Machine Learning (ML) is projected for robust expansion, estimated at USD 4,287 million in 2025, with a compelling Compound Annual Growth Rate (CAGR) of 7.8% expected to persist through 2033. This significant market value underscores the foundational role of accurate and high-quality annotated data in fueling the advancement and deployment of AI/ML solutions across diverse industries. The primary drivers for this growth are the escalating demand for AI-powered applications, particularly in rapidly evolving sectors like autonomous vehicles, where precise visual and sensor data annotation is critical for navigation and safety. The healthcare industry is also a significant contributor, leveraging annotated medical images for diagnostics, drug discovery, and personalized treatment plans. Furthermore, the surge in e-commerce, driven by personalized recommendations and optimized customer experiences, relies heavily on annotated data for understanding consumer behavior and preferences. The market encompasses various annotation types, including image annotation, text annotation, audio annotation, and video annotation, each catering to specific AI model training needs. The market's trajectory is further shaped by emerging trends such as the increasing adoption of sophisticated annotation tools, including active learning and semi-supervised learning techniques, aimed at improving efficiency and reducing manual effort. The rise of cloud-based annotation platforms is also democratizing access to these services. However, certain restraints, including the escalating cost of acquiring and annotating massive datasets and the shortage of skilled data annotators, present challenges that the industry is actively working to overcome through automation and improved training programs. Prominent companies such as Appen, Infosys BPM, iMerit, and Alegion are at the forefront of this market, offering comprehensive annotation solutions. Geographically, North America, particularly the United States, is anticipated to lead the market due to early adoption of AI technologies and substantial investment in research and development, followed closely by the Asia Pacific region, driven by its large data volumes and growing AI initiatives in countries like China and India. Here is a unique report description for Data Annotation Services for AI and ML, incorporating your specified parameters:

    This comprehensive report delves into the dynamic landscape of Data Annotation Services for Artificial Intelligence (AI) and Machine Learning (ML). From its foundational stages in the Historical Period (2019-2024), through its pivotal Base Year (2025), and into the expansive Forecast Period (2025-2033), this study illuminates the critical role of high-quality annotated data in fueling the advancement of intelligent technologies. We project the market to reach significant valuations, with the Estimated Year (2025) serving as a crucial benchmark for current market standing and future potential. The report analyzes key industry developments, market trends, regional dominance, and the competitive strategies of leading players, offering invaluable insights for stakeholders navigating this rapidly evolving sector.

  19. D

    Data Labeling Tools Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Oct 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Data Labeling Tools Report [Dataset]. https://www.archivemarketresearch.com/reports/data-labeling-tools-556569
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Oct 15, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Labeling Tools market is projected to experience robust growth, reaching an estimated market size of $X,XXX million by 2025, with a Compound Annual Growth Rate (CAGR) of XX% from 2019 to 2033. This expansion is primarily fueled by the escalating demand for high-quality labeled data, a critical component for training and optimizing machine learning and artificial intelligence models. Key drivers include the rapid advancement and adoption of AI across various sectors, the increasing volume of unstructured data generated daily, and the growing need for automated decision-making processes. The proliferation of computer vision, natural language processing, and speech recognition technologies further necessitates precise and efficient data labeling, thereby propelling market growth. Businesses are increasingly investing in sophisticated data labeling solutions to enhance the accuracy and performance of their AI applications, ranging from autonomous vehicles and medical image analysis to personalized customer experiences and fraud detection. The market is characterized by a dynamic landscape of evolving technologies and strategic collaborations. Cloud-based solutions are gaining significant traction due to their scalability, flexibility, and cost-effectiveness, while on-premises solutions continue to cater to organizations with stringent data security and privacy requirements. Key application segments driving this growth include IT, automotive, government, healthcare, financial services, and retail, each leveraging labeled data for distinct AI-driven innovations. Emerging trends such as the adoption of active learning, semi-supervised learning, and data augmentation techniques are aimed at improving labeling efficiency and reducing costs. However, challenges such as the scarcity of skilled annotators, data privacy concerns, and the high cost of establishing and managing labeling workflows can pose restraints to market expansion. Despite these hurdles, the continuous innovation in AI and the expanding use cases for machine learning are expected to ensure sustained market growth. This report delves into the dynamic landscape of data labeling tools, providing in-depth insights into market concentration, product innovation, regional trends, and key growth drivers. With a projected market valuation expected to exceed $5,000 million by 2028, the industry is experiencing robust expansion fueled by the escalating demand for high-quality labeled data across diverse AI applications.

  20. Self-Annotated Wearable Activity Data

    • zenodo.org
    • data-staging.niaid.nih.gov
    • +1more
    zip
    Updated Sep 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Hölzemann; Alexander Hölzemann; Kristof Van Laerhoven; Kristof Van Laerhoven (2024). Self-Annotated Wearable Activity Data [Dataset]. http://doi.org/10.3389/fcomp.2024.1379788
    Explore at:
    zipAvailable download formats
    Dataset updated
    Sep 18, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Alexander Hölzemann; Alexander Hölzemann; Kristof Van Laerhoven; Kristof Van Laerhoven
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Our dataset contains 2 weeks of approx. 8-9 hours of acceleration data per day from 11 participants wearing a Bangle.js Version 1 smartwatch with our firmware installed.

    The dataset contains annotations from 4 different commonly used annotation methods utilized in user studies that focus on in-the-wild data. These methods can be grouped in user-driven, in situ annotations - which are performed before or during the activity is recorded - and recall methods - where participants annotate their data in hindsight at the end of the day.

    The participants had the task to label their activities using (1) a button located on the smartwatch, (2) the activity tracking app Strava, (3) a (hand)written diary and (4) a tool to visually inspect and label activity data, called MAD-GUI. Methods (1)-(3) are used in both weeks, however method (4) is introduced in the beginning of the second study week.

    The accelerometer data is recorded with 25 Hz, a sensitivity of ±8g and is stored in a csv format. Labels and raw data are not yet combined. You can either write your own script to label the data or follow the instructions in our corresponding Github repository.

    The following unique classes are included in our dataset:

    laying, sitting, walking, running, cycling, bus_driving, car_driving, vacuum_cleaning, laundry, cooking, eating, shopping, showering, yoga, sport, playing_games, desk_work, guitar_playing, gardening, table_tennis, badminton, horse_riding.

    However, many activities are very participant specific and therefore only performed by one of the participants.

    The labels are also stored as a .csv file and have the following columns:

    week_day, start, stop, activity, layer

    Example:

    week2_day2,10:30:00,11:00:00,vacuum_cleaning,d

    The layer columns specifies which annotation method was used to set this label.

    The following identifiers can be found in the column:

    b: in situ button

    a: in situ app

    d: self-recall diary

    g: time-series recall labelled with a the MAD-GUI

    The corresponding publication is currently under review.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Data Insights Market (2025). Automated Data Annotation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/automated-data-annotation-tools-1418622

Automated Data Annotation Tools Report

Explore at:
doc, pdf, pptAvailable download formats
Dataset updated
Aug 14, 2025
Dataset authored and provided by
Data Insights Market
License

https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

Time period covered
2025 - 2033
Area covered
Global
Variables measured
Market Size
Description

The Automated Data Annotation Tools market is experiencing rapid growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, valued at $311.8 million in 2025, is projected to expand significantly over the forecast period (2025-2033), fueled by a robust Compound Annual Growth Rate (CAGR) of 19.7%. This expansion is primarily attributed to the rising adoption of AI across diverse sectors, including autonomous vehicles, healthcare, and finance, all requiring large volumes of accurately annotated data. Furthermore, the increasing complexity of AI models necessitates more sophisticated annotation techniques, further boosting market demand. The market is segmented by tool type (e.g., image annotation, text annotation, video annotation), deployment mode (cloud-based, on-premises), and industry vertical (e.g., automotive, healthcare, retail). Key players are strategically investing in R&D to enhance their offerings and expand their market share. Competition is intense, with both established tech giants and specialized startups vying for dominance. Challenges include the need for skilled annotators, data security concerns, and the high cost of annotation, particularly for complex datasets. The continued growth trajectory of the Automated Data Annotation Tools market is underpinned by several factors. Advancements in deep learning and the proliferation of AI applications in various sectors will continuously drive demand for precise and efficient annotation solutions. The emergence of innovative annotation techniques, such as automated labeling and active learning, will further streamline workflows and improve accuracy. However, maintaining data privacy and security remains a crucial aspect, requiring robust measures throughout the annotation process. Companies are focusing on developing scalable and cost-effective solutions to address these challenges, ultimately contributing to the market's sustained expansion. The competitive landscape is dynamic, with companies strategically employing mergers and acquisitions, partnerships, and product innovations to strengthen their position within this lucrative and rapidly evolving market.

Search
Clear search
Close search
Google apps
Main menu