Facebook
Twitter-Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.
-Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The global Data Annotation Services market for Artificial Intelligence (AI) and Machine Learning (ML) is projected for robust expansion, estimated at USD 4,287 million in 2025, with a compelling Compound Annual Growth Rate (CAGR) of 7.8% expected to persist through 2033. This significant market value underscores the foundational role of accurate and high-quality annotated data in fueling the advancement and deployment of AI/ML solutions across diverse industries. The primary drivers for this growth are the escalating demand for AI-powered applications, particularly in rapidly evolving sectors like autonomous vehicles, where precise visual and sensor data annotation is critical for navigation and safety. The healthcare industry is also a significant contributor, leveraging annotated medical images for diagnostics, drug discovery, and personalized treatment plans. Furthermore, the surge in e-commerce, driven by personalized recommendations and optimized customer experiences, relies heavily on annotated data for understanding consumer behavior and preferences. The market encompasses various annotation types, including image annotation, text annotation, audio annotation, and video annotation, each catering to specific AI model training needs. The market's trajectory is further shaped by emerging trends such as the increasing adoption of sophisticated annotation tools, including active learning and semi-supervised learning techniques, aimed at improving efficiency and reducing manual effort. The rise of cloud-based annotation platforms is also democratizing access to these services. However, certain restraints, including the escalating cost of acquiring and annotating massive datasets and the shortage of skilled data annotators, present challenges that the industry is actively working to overcome through automation and improved training programs. Prominent companies such as Appen, Infosys BPM, iMerit, and Alegion are at the forefront of this market, offering comprehensive annotation solutions. Geographically, North America, particularly the United States, is anticipated to lead the market due to early adoption of AI technologies and substantial investment in research and development, followed closely by the Asia Pacific region, driven by its large data volumes and growing AI initiatives in countries like China and India. Here is a unique report description for Data Annotation Services for AI and ML, incorporating your specified parameters:
This comprehensive report delves into the dynamic landscape of Data Annotation Services for Artificial Intelligence (AI) and Machine Learning (ML). From its foundational stages in the Historical Period (2019-2024), through its pivotal Base Year (2025), and into the expansive Forecast Period (2025-2033), this study illuminates the critical role of high-quality annotated data in fueling the advancement of intelligent technologies. We project the market to reach significant valuations, with the Estimated Year (2025) serving as a crucial benchmark for current market standing and future potential. The report analyzes key industry developments, market trends, regional dominance, and the competitive strategies of leading players, offering invaluable insights for stakeholders navigating this rapidly evolving sector.
Facebook
Twitter-Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.
-Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Data Labeling And Annotation Tools Market Size 2025-2029
The data labeling and annotation tools market size is valued to increase USD 2.69 billion, at a CAGR of 28% from 2024 to 2029. Explosive growth and data demands of generative AI will drive the data labeling and annotation tools market.
Major Market Trends & Insights
North America dominated the market and accounted for a 47% growth during the forecast period.
By Type - Text segment was valued at USD 193.50 billion in 2023
By Technique - Manual labeling segment accounted for the largest market revenue share in 2023
Market Size & Forecast
Market Opportunities: USD 651.30 billion
Market Future Opportunities: USD USD 2.69 billion
CAGR : 28%
North America: Largest market in 2023
Market Summary
The market is a dynamic and ever-evolving landscape that plays a crucial role in powering advanced technologies, particularly in the realm of artificial intelligence (AI). Core technologies, such as deep learning and machine learning, continue to fuel the demand for data labeling and annotation tools, enabling the explosive growth and data demands of generative AI. These tools facilitate the emergence of specialized platforms for generative AI data pipelines, ensuring the maintenance of data quality and managing escalating complexity. Applications of data labeling and annotation tools span various industries, including healthcare, finance, and retail, with the market expected to grow significantly in the coming years. According to recent studies, the market share for data labeling and annotation tools is projected to reach over 30% by 2026. Service types or product categories, such as manual annotation, automated annotation, and semi-automated annotation, cater to the diverse needs of businesses and organizations. Regulations, such as GDPR and HIPAA, pose challenges for the market, requiring stringent data security and privacy measures. Regional mentions, including North America, Europe, and Asia Pacific, exhibit varying growth patterns, with Asia Pacific expected to witness the fastest growth due to the increasing adoption of AI technologies. The market continues to unfold, offering numerous opportunities for innovation and growth.
What will be the Size of the Data Labeling And Annotation Tools Market during the forecast period?
Get Key Insights on Market Forecast (PDF) Request Free Sample
How is the Data Labeling And Annotation Tools Market Segmented and what are the key trends of market segmentation?
The data labeling and annotation tools industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. TypeTextVideoImageAudioTechniqueManual labelingSemi-supervised labelingAutomatic labelingDeploymentCloud-basedOn-premisesGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalySpainUKAPACChinaSouth AmericaBrazilRest of World (ROW)
By Type Insights
The text segment is estimated to witness significant growth during the forecast period.
The market is witnessing significant growth, fueled by the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies. According to recent studies, the market for data labeling and annotation services is projected to expand by 25% in the upcoming year. This expansion is primarily driven by the burgeoning demand for high-quality, accurately labeled datasets to train advanced AI and ML models. Scalable annotation workflows are essential to meeting the demands of large-scale projects, enabling efficient labeling and review processes. Data labeling platforms offer various features, such as error detection mechanisms, active learning strategies, and polygon annotation software, to ensure annotation accuracy. These tools are integral to the development of image classification models and the comparison of annotation tools. Video annotation services are gaining popularity, as they cater to the unique challenges of video data. Data labeling pipelines and project management tools streamline the entire annotation process, from initial data preparation to final output. Keypoint annotation workflows and annotation speed optimization techniques further enhance the efficiency of annotation projects. Inter-annotator agreement is a critical metric in ensuring data labeling quality. The data labeling lifecycle encompasses various stages, including labeling, assessment, and validation, to maintain the highest level of accuracy. Semantic segmentation tools and label accuracy assessment methods contribute to the ongoing refinement of annotation techniques. Text annotation techniques, such as named entity recognition, sentiment analysis, and text classification, are essential for natural language processing. Consistency checks an
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Reflect Data Annotation is a dataset for object detection tasks - it contains Objects annotations for 200 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitter-Secure Implementation: NDA is signed to gurantee secure implementation and data is destroyed upon delivery.
-Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001
Facebook
TwitterNexdata provides high-quality Annotated Imagery Data annotation for bounding box, polygon,segmentation,polyline, key points,image classification and image description. We have handled tons of data for autonomous driving, internet entertainment, retail, surveillance and security and etc.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The open-source data annotation tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in the burgeoning fields of artificial intelligence (AI) and machine learning (ML). The market's expansion is fueled by the need for efficient and cost-effective annotation solutions, particularly for large datasets. Organizations across various sectors, including automotive, healthcare, and finance, are leveraging these tools to improve the accuracy and performance of their AI models. The availability of open-source alternatives offers a significant advantage over proprietary solutions, enabling developers and researchers to customize tools according to their specific needs and avoid vendor lock-in. Furthermore, the collaborative nature of open-source projects fosters innovation and continuous improvement, resulting in a more dynamic and rapidly evolving ecosystem. While the market is relatively nascent, it exhibits a substantial growth trajectory, attracting numerous companies and developers, as evidenced by the active participation of organizations such as Alecion, Amazon Mechanical Turk, and Appen Limited. This competitive landscape further accelerates innovation and accessibility. The open-source nature of these tools also democratizes access to advanced AI development capabilities. Smaller companies and individual researchers can now participate in the development and deployment of AI solutions, leveling the playing field and fostering wider adoption. However, the market faces challenges such as the need for ongoing community support and maintenance of these tools, ensuring their long-term viability and preventing fragmentation. Despite these challenges, the future outlook for the open-source data annotation tool market remains positive, with continued growth driven by increased adoption in various industries and advancements in AI and ML technologies. The market is predicted to maintain a healthy compound annual growth rate (CAGR) over the forecast period, reflecting the sustained demand for efficient and accessible data annotation solutions.
Facebook
Twitterhttps://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy
As per our latest research, the global AI in Data Annotation market size reached USD 2.6 billion in 2024, reflecting the accelerating adoption of artificial intelligence and machine learning across industries. The market is projected to grow at a robust CAGR of 25.8% from 2025 to 2033, with the market value expected to reach approximately USD 18.3 billion by 2033. This remarkable growth is primarily driven by the increasing demand for high-quality labeled datasets to train sophisticated AI models, particularly in sectors such as healthcare, autonomous vehicles, and retail. As organizations continue to invest in automation and intelligent systems, the need for scalable, accurate, and efficient data annotation solutions is set to surge, underpinning the long-term expansion of this market.
One of the most significant growth factors for the AI in Data Annotation market is the rapid evolution and deployment of artificial intelligence and machine learning technologies across diverse industries. As AI algorithms become more advanced, the requirement for accurately labeled data grows exponentially. Industries such as healthcare rely on annotated medical images and records to enhance diagnostic accuracy and accelerate drug discovery, while the automotive sector depends on labeled video and image data for the development of autonomous driving systems. The expansion of AI-powered virtual assistants, chatbots, and recommendation engines in retail and BFSI further elevates the importance of robust data annotation, ensuring that algorithms can interpret and respond to human inputs with precision. The proliferation of big data, combined with the increasing complexity of AI applications, is making data annotation an indispensable part of the AI development lifecycle.
Technological advancements in annotation tools and the integration of automation are also fueling market growth. The emergence of AI-assisted annotation platforms, which leverage natural language processing and computer vision, has significantly improved the speed and accuracy of data labeling. These platforms can automatically pre-label large datasets, reducing the manual effort required and minimizing human error. Additionally, the adoption of cloud-based annotation solutions enables organizations to scale their data labeling operations efficiently, supporting remote collaboration and real-time quality control. As more enterprises recognize the value of well-annotated data in gaining a competitive edge, investments in advanced annotation software and services are expected to rise, further propelling market expansion.
Another critical driver is the increasing emphasis on data privacy and regulatory compliance, particularly in sectors handling sensitive information. Organizations are seeking annotation solutions that ensure data security, confidentiality, and compliance with global regulations such as GDPR and HIPAA. This has led to the development of secure, on-premises annotation platforms and privacy-preserving techniques, such as federated learning and differential privacy. As regulatory scrutiny intensifies and data breaches become more commonplace, the demand for compliant and secure data annotation services is anticipated to witness substantial growth. The focus on ethical AI development, transparency, and bias mitigation also underscores the need for high-quality, unbiased labeled data, further supporting the expansion of the AI in Data Annotation market.
Regionally, North America continues to dominate the AI in Data Annotation market, accounting for the largest revenue share in 2024, followed by Europe and Asia Pacific. The presence of major AI technology companies, robust research and development infrastructure, and early adoption of advanced analytics solutions are key factors driving market growth in North America. Meanwhile, Asia Pacific is emerging as the fastest-growing region, fueled by increasing investments in AI, rapid digital transformation, and the expansion of the IT and telecom sector. Europe remains a significant market, supported by strong regulatory frameworks and a focus on ethical AI. Latin America and the Middle East & Africa are also witnessing steady growth, driven by government initiatives and the adoption of AI in various industries.
The AI in Data Annotation market is segmented by component into Software and Services, each playing a pivotal role in supporting the diverse needs of organizations e
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
The data annotation and labeling tool market is experiencing robust growth, driven by the increasing demand for high-quality training data in artificial intelligence (AI) and machine learning (ML) applications. The market, estimated at $2 billion in 2025, is projected to expand significantly over the next decade, fueled by a Compound Annual Growth Rate (CAGR) of 25%. This growth is primarily attributed to the expanding adoption of AI across various sectors, including automotive, healthcare, and finance. The automotive industry utilizes these tools extensively for autonomous vehicle development, requiring precise annotation of images and sensor data. Similarly, healthcare leverages these tools for medical image analysis, diagnostics, and drug discovery. The rise of sophisticated AI models demanding larger and more accurately labeled datasets further accelerates market expansion. While manual data annotation remains prevalent, the increasing complexity and volume of data are driving the adoption of semi-supervised and automatic annotation techniques, offering cost and efficiency advantages. Key restraining factors include the high cost of skilled annotators, data security concerns, and the need for specialized expertise in data annotation processes. However, continuous advancements in annotation technologies and the growing availability of outsourcing options are mitigating these challenges. The market is segmented by application (automotive, government, healthcare, financial services, retail, and others) and type (manual, semi-supervised, and automatic). North America currently holds the largest market share, but Asia-Pacific is expected to witness substantial growth in the coming years, driven by increasing government investments in AI and ML initiatives. The competitive landscape is characterized by a mix of established players and emerging startups, each offering a range of tools and services tailored to specific needs. Leading companies like Labelbox, Scale AI, and SuperAnnotate are continuously innovating to enhance the accuracy, speed, and scalability of their platforms. The future of the market will depend on the ongoing development of more efficient and cost-effective annotation methods, the integration of advanced AI techniques within the tools themselves, and the increasing adoption of these tools by small and medium-sized enterprises (SMEs) across diverse industries. The focus on data privacy and security will also play a crucial role in shaping market dynamics and influencing vendor strategies. The market's continued growth trajectory hinges on addressing the challenges of data bias, ensuring data quality, and fostering the development of standardized annotation procedures to support broader AI adoption.
Facebook
Twitterhttps://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy
The global data annotation platform market is expected to reach a value of USD XXX million by 2033, exhibiting a CAGR of XX% during the forecast period (2025-2033). This growth is primarily attributed to the increasing demand for high-quality annotated data for training machine learning and artificial intelligence (AI) models. Data annotation involves labeling and classifying data, making it easier for AI models to understand and interpret complex information. Key drivers of the market include the rapid adoption of AI and machine learning across various industries, the increasing availability of unstructured data, and government initiatives to promote data annotation and AI development. The market is segmented by type (image annotation, text annotation, voice annotation, video annotation, others) and application (autonomous driving, smart healthcare, smart security, financial risk control, social media, others). The image annotation segment is expected to hold a significant market share due to its wide application in industries such as manufacturing, healthcare, and retail. The autonomous driving application segment is projected to witness substantial growth due to the increasing adoption of self-driving vehicles. Key industry players include BasicFinder, Jingdong Weigong, Alibaba Cloud, Appen (MatrixGo), Baidu, Longmao Data, Magic Data, Toloka AI, iFlytek, MindFlow, Huawei Cloud, DataBaker, Shujiajia, Human Signal, among others. The market is expected to witness significant growth in regions such as North America, Europe, and Asia Pacific due to the presence of major technology companies and the increasing demand for AI and machine learning solutions in these regions.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Annotation Tools Market size was valued at USD 0.03 Billion in 2024 and is projected to reach USD 4.04 Billion by 2032, growing at a CAGR of 25.5% during the forecasted period 2026 to 2032.Global Data Annotation Tools Market DriversThe market drivers for the Data Annotation Tools Market can be influenced by various factors. These may include:Rapid Growth in AI and Machine Learning: The demand for data annotation tools to label massive datasets for training and validation purposes is driven by the rapid growth of AI and machine learning applications across a variety of industries, including healthcare, automotive, retail, and finance.Increasing Data Complexity: As data kinds like photos, videos, text, and sensor data become more complex, more sophisticated annotation tools are needed to handle a variety of data formats, annotations, and labeling needs. This will spur market adoption and innovation.Quality and Accuracy Requirements: Training accurate and dependable AI models requires high-quality annotated data. Organizations can attain enhanced annotation accuracy and consistency by utilizing data annotation technologies that come with sophisticated annotation algorithms, quality control measures, and human-in-the-loop capabilities.Applications Specific to Industries: The development of specialized annotation tools for particular industries, like autonomous vehicles, medical imaging, satellite imagery analysis, and natural language processing, is prompted by their distinct regulatory standards and data annotation requirements.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 3.49(USD Billion) |
| MARKET SIZE 2025 | 3.91(USD Billion) |
| MARKET SIZE 2035 | 12.0(USD Billion) |
| SEGMENTS COVERED | Annotation Type, Application, End Use Industry, Service Model, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Increasing demand for labeled data, Growth in AI adoption across industries, Rising need for data accuracy, Expansion of machine learning applications, Cost-effective outsourcing solutions |
| MARKET FORECAST UNITS | USD Billion |
| KEY COMPANIES PROFILED | V7 Labs, Cogito, DataRobot, Mighty AI, Synthego, Anyvision, CloudFactory, Clarifai, Deep Vision, Zegami, iMerit, Trained AI, Scale AI, Samasource, Appen, Lionbridge |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Rising demand for AI datasets, Expansion in autonomous vehicle sector, Growth of computer vision applications, Increased focus on data privacy, Advancements in machine learning technologies |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 11.8% (2025 - 2035) |
Facebook
TwitterThis is a dataset containing audio tags for a number of 3930 audio files of the TAU Urban Acoustic Scenes 2019 development dataset (airport, public square, and park). The files were annotated using a web-based tool, with multiple annotators providing labels for each file.
The dataset contains annotations for 3930 files, annotated with the following tags:
announcement jingle
announcement speech
adults talking
birds singing
children voices
dog barking
footsteps
music
siren
traffic noise
The annotation procedure and processing is presented in the paper:
Irene Martin-Morato, Annamaria Mesaros. What is the ground truth? Reliability of multi-annotator data for audio tagging, 29th European Signal Processing Conference, EUSIPCO 2021
The dataset contains the following:
raw annotations provided by 133 annotators, multiple opinions per audio file
MATS_labels_full_annotations.yaml
content formatted as:
- filename: file1.wav
annotations:
- annotator_id: ann_1
tags:
- tag1
- tag2
- annotator_id: ann_3
tags:
- tag1
- filename: file3.wav
...
processed annotations using different methods, as presented in the accompanying paper
MATS_labels_majority_vote.csv
MATS_labels_union.csv
MATS_labels_mace100.csv
MATS_labels_mace100_competence60
content formatted as:
filename [tab] tag1,tag2,tag3
The audio files can be downloaded from https://zenodo.org/record/2589280 and are covered by their own license.
Facebook
Twitterhttps://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy
Discover the booming Data Annotation & Labeling Tool market! Explore a comprehensive analysis revealing a $2B market in 2025, projected to reach $10B by 2033, driven by AI and ML adoption. Learn about key trends, regional insights, and leading companies shaping this rapidly evolving landscape.
Facebook
TwitterIn 2020, more than ** percent of the revenue of data annotation market were generated from English speaking regions, including the United States and the United Kingdom. The estimated data annotation market size serviced by India was around *** million U.S. dollars in the same year. Data annotation is the process of labeling data in text, video, image, and other digital file formats.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
Discover the booming Data Labeling Tools market: Explore key trends, growth drivers, and leading companies shaping the future of AI. This in-depth analysis projects significant expansion through 2033, revealing opportunities and challenges in this vital sector for machine learning. Learn more now!
Facebook
TwitterAttribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
dopanim dataset features about 15,750 animal images of 15 classes, organized into four groups of doppelganger animals and collected together with ground truth labels from iNaturalist. For approximately 10,500 of these images, 20 humans provided over 52,000 annotations with an accuracy of circa 67%.task_data.json contains data, e.g., the ground truth class labels, for each image classification task. Thereby, each task record is indexed by the iNaturalist observation index. A description of each record's entries is given in the supplementary material of the associated article.annotation_data.json contains data, e.g., likelihoods per animal class, for each obtained image annotation. Thereby, each annotation record has a unique identifier. A description of each record's entries is given in the supplementary material of the associated article.annotator_metadata.json contains metadata, e.g., self-assessed levels of knowledge and interest regarding animals, for each annotator. Thereby, each metadata record is indexed by the anonymous identifier of an annotator. A description of each record's entries is given in the supplementary material of the associated article.train.zip, valid.zip, and test.zip contain the training, validation, and test images organized into directories of the 15 animal classes.license_code and photo_license_code in each record of task_data.json. The links to each image and observation are given for further reference.annotation_data.json and annotator_metadata.json in an annotation campaign via LabelStudio and distribute them under the license CC-BY-NC 4.0.This work was funded by the ALDeep and CIL projects at the University of Kassel. Moreover, we thank Franz Götz-Hahn for his insightful comments on improving our annotation campaign. Finally, we thank the iNaturalist community for their many observations that help explore our nature's biodiversity and our annotators for their dedicated efforts in making the annotation campaign via LabelStudio possible.
Facebook
Twitterhttps://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/
Data Annotation And Labeling Market Size And Forecast
Data Annotation And Labeling Market size was valued to be USD 1080.8 Million in the year 2023 and it is expected to reach USD 8851.05 Million in 2031, growing at a CAGR of 35.10% from 2024 to 2031.
Data Annotation And Labeling Market Drivers
Increased Adoption of Artificial Intelligence (AI) and Machine Learning (ML): The demand for large volumes of high-quality labeled data to effectively train these systems is being driven by the widespread adoption of AI and ML technologies across various industries, thereby fueling the growth of the Data Annotation And Labeling Market.
Advancements in Computer Vision and Natural Language Processing: A need for annotated and labeled data to develop and enhance AI models capable of understanding and interpreting visual and textual data accurately is created by the rapid progress in fields such as computer vision and natural language processing.
Growth of Cloud Computing and Big Data: The adoption of AI and ML solutions has been facilitated by the rise of cloud computing and the availability of massive amounts of data, leading to an increased demand for data annotation and labeling services to organize and prepare this data for analysis and model training.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
## Overview
Data Annotation 4 is a dataset for object detection tasks - it contains Task Traffic annotations for 277 images.
## Getting Started
You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
## License
This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
Facebook
Twitter-Secure Implementation: NDA is signed to gurantee secure implementation and Annotated Imagery Data is destroyed upon delivery.
-Quality: Multiple rounds of quality inspections ensures high quality data output, certified with ISO9001