100+ datasets found
  1. Variable Message Signal annotated images for object detection

    • zenodo.org
    zip
    Updated Oct 2, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gonzalo de las Heras de Matías; Gonzalo de las Heras de Matías; Javier Sánchez-Soriano; Javier Sánchez-Soriano; Enrique Puertas; Enrique Puertas (2022). Variable Message Signal annotated images for object detection [Dataset]. http://doi.org/10.5281/zenodo.5904211
    Explore at:
    zipAvailable download formats
    Dataset updated
    Oct 2, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gonzalo de las Heras de Matías; Gonzalo de las Heras de Matías; Javier Sánchez-Soriano; Javier Sánchez-Soriano; Enrique Puertas; Enrique Puertas
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    If you use this dataset, please cite this paper: Puertas, E.; De-Las-Heras, G.; Sánchez-Soriano, J.; Fernández-Andrés, J. Dataset: Variable Message Signal Annotated Images for Object Detection. Data 2022, 7, 41. https://doi.org/10.3390/data7040041

    This dataset consists of Spanish road images taken from inside a vehicle, as well as annotations in XML files in PASCAL VOC format that indicate the location of Variable Message Signals within them. Also, a CSV file is attached with information regarding the geographic position, the folder where the image is located, and the text in Spanish. This can be used to train supervised learning computer vision algorithms, such as convolutional neural networks. Throughout this work, the process followed to obtain the dataset, image acquisition, and labeling, and its specifications are detailed. The dataset is constituted of 1216 instances, 888 positives, and 328 negatives, in 1152 jpg images with a resolution of 1280x720 pixels. These are divided into 576 real images and 576 images created from the data-augmentation technique. The purpose of this dataset is to help in road computer vision research since there is not one specifically for VMSs.

    The folder structure of the dataset is as follows:

    • vms_dataset/
      • data.csv
      • real_images/
        • imgs/
        • annotations/
      • data-augmentation/
        • imgs/
        • annotations/

    In which:

    • data.csv: Each row contains the following information separated by commas (,): image_name, x_min, y_min, x_max, y_max, class_name, lat, long, folder, text.
    • real_images: Images extracted directly from the videos.
    • data-augmentation: Images created using data-augmentation
    • imgs: Image files in .jpg format.
    • annotations: Annotation files in .xml format.
  2. n

    Data from: Exploring deep learning techniques for wild animal behaviour...

    • data.niaid.nih.gov
    • search.dataone.org
    • +1more
    zip
    Updated Feb 22, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ryoma Otsuka; Naoya Yoshimura; Kei Tanigaki; Shiho Koyama; Yuichi Mizutani; Ken Yoda; Takuya Maekawa (2024). Exploring deep learning techniques for wild animal behaviour classification using animal-borne accelerometers [Dataset]. http://doi.org/10.5061/dryad.2ngf1vhwk
    Explore at:
    zipAvailable download formats
    Dataset updated
    Feb 22, 2024
    Dataset provided by
    Nagoya University
    Osaka University
    Authors
    Ryoma Otsuka; Naoya Yoshimura; Kei Tanigaki; Shiho Koyama; Yuichi Mizutani; Ken Yoda; Takuya Maekawa
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    Machine learning‐based behaviour classification using acceleration data is a powerful tool in bio‐logging research. Deep learning architectures such as convolutional neural networks (CNN), long short‐term memory (LSTM) and self‐attention mechanisms as well as related training techniques have been extensively studied in human activity recognition. However, they have rarely been used in wild animal studies. The main challenges of acceleration‐based wild animal behaviour classification include data shortages, class imbalance problems, various types of noise in data due to differences in individual behaviour and where the loggers were attached and complexity in data due to complex animal‐specific behaviours, which may have limited the application of deep learning techniques in this area. To overcome these challenges, we explored the effectiveness of techniques for efficient model training: data augmentation, manifold mixup and pre‐training of deep learning models with unlabelled data, using datasets from two species of wild seabirds and state‐of‐the‐art deep learning model architectures. Data augmentation improved the overall model performance when one of the various techniques (none, scaling, jittering, permutation, time‐warping and rotation) was randomly applied to each data during mini‐batch training. Manifold mixup also improved model performance, but not as much as random data augmentation. Pre‐training with unlabelled data did not improve model performance. The state‐of‐the‐art deep learning models, including a model consisting of four CNN layers, an LSTM layer and a multi‐head attention layer, as well as its modified version with shortcut connection, showed better performance among other comparative models. Using only raw acceleration data as inputs, these models outperformed classic machine learning approaches that used 119 handcrafted features. Our experiments showed that deep learning techniques are promising for acceleration‐based behaviour classification of wild animals and highlighted some challenges (e.g. effective use of unlabelled data). There is scope for greater exploration of deep learning techniques in wild animal studies (e.g. advanced data augmentation, multimodal sensor data use, transfer learning and self‐supervised learning). We hope that this study will stimulate the development of deep learning techniques for wild animal behaviour classification using time‐series sensor data.

    This abstract is cited from the original article "Exploring deep learning techniques for wild animal behaviour classification using animal-borne accelerometers" in Methods in Ecology and Evolution (Otsuka et al., 2024).Please see README for the details of the datasets.

  3. H

    Data from: Data augmentation for disruption prediction via robust surrogate...

    • dataverse.harvard.edu
    • osti.gov
    Updated Aug 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Katharina Rath, David Rügamer, Bernd Bischl, Udo von Toussaint, Cristina Rea, Andrew Maris, Robert Granetz, Christopher G. Albert (2024). Data augmentation for disruption prediction via robust surrogate models [Dataset]. http://doi.org/10.7910/DVN/FMJCAD
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Aug 31, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Katharina Rath, David Rügamer, Bernd Bischl, Udo von Toussaint, Cristina Rea, Andrew Maris, Robert Granetz, Christopher G. Albert
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    The goal of this work is to generate large statistically representative datasets to train machine learning models for disruption prediction provided by data from few existing discharges. Such a comprehensive training database is important to achieve satisfying and reliable prediction results in artificial neural network classifiers. Here, we aim for a robust augmentation of the training database for multivariate time series data using Student-t process regression. We apply Student-t process regression in a state space formulation via Bayesian filtering to tackle challenges imposed by outliers and noise in the training data set and to reduce the computational complexity. Thus, the method can also be used if the time resolution is high. We use an uncorrelated model for each dimension and impose correlations afterwards via coloring transformations. We demonstrate the efficacy of our approach on plasma diagnostics data of three different disruption classes from the DIII-D tokamak. To evaluate if the distribution of the generated data is similar to the training data, we additionally perform statistical analyses using methods from time series analysis, descriptive statistics, and classic machine learning clustering algorithms.

  4. f

    Table1_Enhancing biomechanical machine learning with limited data:...

    • frontiersin.figshare.com
    pdf
    Updated Feb 14, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich (2024). Table1_Enhancing biomechanical machine learning with limited data: generating realistic synthetic posture data using generative artificial intelligence.pdf [Dataset]. http://doi.org/10.3389/fbioe.2024.1350135.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 14, 2024
    Dataset provided by
    Frontiers
    Authors
    Carlo Dindorf; Jonas Dully; Jürgen Konradi; Claudia Wolf; Stephan Becker; Steven Simon; Janine Huthwelker; Frederike Werthmann; Johanna Kniepert; Philipp Drees; Ulrich Betz; Michael Fröhlich
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Objective: Biomechanical Machine Learning (ML) models, particularly deep-learning models, demonstrate the best performance when trained using extensive datasets. However, biomechanical data are frequently limited due to diverse challenges. Effective methods for augmenting data in developing ML models, specifically in the human posture domain, are scarce. Therefore, this study explored the feasibility of leveraging generative artificial intelligence (AI) to produce realistic synthetic posture data by utilizing three-dimensional posture data.Methods: Data were collected from 338 subjects through surface topography. A Variational Autoencoder (VAE) architecture was employed to generate and evaluate synthetic posture data, examining its distinguishability from real data by domain experts, ML classifiers, and Statistical Parametric Mapping (SPM). The benefits of incorporating augmented posture data into the learning process were exemplified by a deep autoencoder (AE) for automated feature representation.Results: Our findings highlight the challenge of differentiating synthetic data from real data for both experts and ML classifiers, underscoring the quality of synthetic data. This observation was also confirmed by SPM. By integrating synthetic data into AE training, the reconstruction error can be reduced compared to using only real data samples. Moreover, this study demonstrates the potential for reduced latent dimensions, while maintaining a reconstruction accuracy comparable to AEs trained exclusively on real data samples.Conclusion: This study emphasizes the prospects of harnessing generative AI to enhance ML tasks in the biomechanics domain.

  5. i

    Enhanced Cardiovascular Disease Dataset with Data Augmentation

    • ieee-dataport.org
    Updated Jun 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jose Lopez Saynes (2025). Enhanced Cardiovascular Disease Dataset with Data Augmentation [Dataset]. https://ieee-dataport.org/documents/enhanced-cardiovascular-disease-dataset-data-augmentation
    Explore at:
    Dataset updated
    Jun 29, 2025
    Authors
    Jose Lopez Saynes
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    physical

  6. f

    EDA augmentation parameters.

    • plos.figshare.com
    xls
    Updated Sep 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rodrigo Gutiérrez Benítez; Alejandra Segura Navarrete; Christian Vidal-Castro; Claudia Martínez-Araneda (2024). EDA augmentation parameters. [Dataset]. http://doi.org/10.1371/journal.pone.0310707.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Sep 26, 2024
    Dataset provided by
    PLOS ONE
    Authors
    Rodrigo Gutiérrez Benítez; Alejandra Segura Navarrete; Christian Vidal-Castro; Claudia Martínez-Araneda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Over the last ten years, social media has become a crucial data source for businesses and researchers, providing a space where people can express their opinions and emotions. To analyze this data and classify emotions and their polarity in texts, natural language processing (NLP) techniques such as emotion analysis (EA) and sentiment analysis (SA) are employed. However, the effectiveness of these tasks using machine learning (ML) and deep learning (DL) methods depends on large labeled datasets, which are scarce in languages like Spanish. To address this challenge, researchers use data augmentation (DA) techniques to artificially expand small datasets. This study aims to investigate whether DA techniques can improve classification results using ML and DL algorithms for sentiment and emotion analysis of Spanish texts. Various text manipulation techniques were applied, including transformations, paraphrasing (back-translation), and text generation using generative adversarial networks, to small datasets such as song lyrics, social media comments, headlines from national newspapers in Chile, and survey responses from higher education students. The findings show that the Convolutional Neural Network (CNN) classifier achieved the most significant improvement, with an 18% increase using the Generative Adversarial Networks for Sentiment Text (SentiGan) on the Aggressiveness (Seriousness) dataset. Additionally, the same classifier model showed an 11% improvement using the Easy Data Augmentation (EDA) on the Gender-Based Violence dataset. The performance of the Bidirectional Encoder Representations from Transformers (BETO) also improved by 10% on the back-translation augmented version of the October 18 dataset, and by 4% on the EDA augmented version of the Teaching survey dataset. These results suggest that data augmentation techniques enhance performance by transforming text and adapting it to the specific characteristics of the dataset. Through experimentation with various augmentation techniques, this research provides valuable insights into the analysis of subjectivity in Spanish texts and offers guidance for selecting algorithms and techniques based on dataset features.

  7. S

    Synthetic Data Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-platform-1939818
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 9, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Synthetic Data Platform market is experiencing robust growth, driven by the increasing need for data privacy, escalating data security concerns, and the rising demand for high-quality training data for AI and machine learning models. The market's expansion is fueled by several key factors: the growing adoption of AI across various industries, the limitations of real-world data availability due to privacy regulations like GDPR and CCPA, and the cost-effectiveness and efficiency of synthetic data generation. We project a market size of approximately $2 billion in 2025, with a Compound Annual Growth Rate (CAGR) of 25% over the forecast period (2025-2033). This rapid expansion is expected to continue, reaching an estimated market value of over $10 billion by 2033. The market is segmented based on deployment models (cloud, on-premise), data types (image, text, tabular), and industry verticals (healthcare, finance, automotive). Major players are actively investing in research and development, fostering innovation in synthetic data generation techniques and expanding their product offerings to cater to diverse industry needs. Competition is intense, with companies like AI.Reverie, Deep Vision Data, and Synthesis AI leading the charge with innovative solutions. However, several challenges remain, including ensuring the quality and fidelity of synthetic data, addressing the ethical concerns surrounding its use, and the need for standardization across platforms. Despite these challenges, the market is poised for significant growth, driven by the ever-increasing need for large, high-quality datasets to fuel advancements in artificial intelligence and machine learning. The strategic partnerships and acquisitions in the market further accelerate the innovation and adoption of synthetic data platforms. The ability to generate synthetic data tailored to specific business problems, combined with the increasing awareness of data privacy issues, is firmly establishing synthetic data as a key component of the future of data management and AI development.

  8. Data archive for paper "Copula-based synthetic data augmentation for...

    • zenodo.org
    zip
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    David Meyer; David Meyer (2022). Data archive for paper "Copula-based synthetic data augmentation for machine-learning emulators" [Dataset]. http://doi.org/10.5281/zenodo.5081927
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 15, 2022
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    David Meyer; David Meyer
    Description

    Overview

    This is the data archive for paper “Copula-based synthetic data augmentation for machine-learning emulators”. It contains the paper’s data archive with all model outputs as well as the Singularity image.

    For the Python tool used to generate the synthetic data, please refer to the Synthia repository.

    Requirements

    *Although PBS in not a strict requirement, it is required to run all helper scripts as included in this repository. Please note that depending on your specific system settings and resource availability, you may need to modify PBS parameters at the top of submit scripts stored in the hpc directory (e.g. #PBS -lwalltime=72:00:00).

    Usage

    To reproduce the results from the experiments described in the paper, first fit all copula models to the reduced NWP-SAF dataset with:

    qsub hpc/fit.sh

    then, to generate synthetic data, run all machine learning model configurations, and compute the relevant statistics use:

    qsub hpc/stats.sh
    qsub hpc/ml_control.sh
    qsub hpc/ml_synth.sh

    Finally, to plot all artifacts included in the paper use:

    qsub hpc/plot.sh

    Licence

    Code released under MIT license. Data released under CC BY 4.0.

  9. i

    Data from: Equidistant and Uniform Data Augmentation for 3D Objects

    • ieee-dataport.org
    Updated Jan 6, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alexander Morozov (2022). Equidistant and Uniform Data Augmentation for 3D Objects [Dataset]. https://ieee-dataport.org/documents/equidistant-and-uniform-data-augmentation-3d-objects
    Explore at:
    Dataset updated
    Jan 6, 2022
    Authors
    Alexander Morozov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    many methods exist to augment a 3D object

  10. i

    Data from: Regularization for Unconditional Image Diffusion Models via...

    • ieee-dataport.org
    Updated Jun 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kensuke NAKAMURA (2025). Regularization for Unconditional Image Diffusion Models via Shifted Data Augmentation [Dataset]. https://ieee-dataport.org/documents/regularization-unconditional-image-diffusion-models-shifted-data-augmentation
    Explore at:
    Dataset updated
    Jun 22, 2025
    Authors
    Kensuke NAKAMURA
    Description

    it often causes leakage

  11. S

    Synthetic Data Generation Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 16, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Generation Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-generation-1124388
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jun 16, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The synthetic data generation market is experiencing explosive growth, driven by the increasing need for high-quality data in various applications, including AI/ML model training, data privacy compliance, and software testing. The market, currently estimated at $2 billion in 2025, is projected to experience a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $10 billion by 2033. This significant expansion is fueled by several key factors. Firstly, the rising adoption of artificial intelligence and machine learning across industries demands large, high-quality datasets, often unavailable due to privacy concerns or data scarcity. Synthetic data provides a solution by generating realistic, privacy-preserving datasets that mirror real-world data without compromising sensitive information. Secondly, stringent data privacy regulations like GDPR and CCPA are compelling organizations to explore alternative data solutions, making synthetic data a crucial tool for compliance. Finally, the advancements in generative AI models and algorithms are improving the quality and realism of synthetic data, expanding its applicability in various domains. Major players like Microsoft, Google, and AWS are actively investing in this space, driving further market expansion. The market segmentation reveals a diverse landscape with numerous specialized solutions. While large technology firms dominate the broader market, smaller, more agile companies are making significant inroads with specialized offerings focused on specific industry needs or data types. The geographical distribution is expected to be skewed towards North America and Europe initially, given the high concentration of technology companies and early adoption of advanced data technologies. However, growing awareness and increasing data needs in other regions are expected to drive substantial market growth in Asia-Pacific and other emerging markets in the coming years. The competitive landscape is characterized by a mix of established players and innovative startups, leading to continuous innovation and expansion of market applications. This dynamic environment indicates sustained growth in the foreseeable future, driven by an increasing recognition of synthetic data's potential to address critical data challenges across industries.

  12. Data from: Prediction of blood-brain barrier penetrating peptides based on...

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    application/x-rar
    Updated Apr 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zhifeng Gu; Yuduo Hao; Tianyu Wang; Peiling Cai; Yang Zhang; Kejun Deng; Hao Lin; Hao Lv (2024). Prediction of blood-brain barrier penetrating peptides based on data augmentation with Augur [Dataset]. http://doi.org/10.6084/m9.figshare.25466461.v4
    Explore at:
    application/x-rarAvailable download formats
    Dataset updated
    Apr 5, 2024
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Zhifeng Gu; Yuduo Hao; Tianyu Wang; Peiling Cai; Yang Zhang; Kejun Deng; Hao Lin; Hao Lv
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The blood-brain barrier serves as a critical interface between the bloodstream and brain tissue, mainly composed of pericytes, neurons, endothelial cells, and tightly connected basal membranes. It plays a pivotal role in safeguarding brain from harmful substances, thus protecting the integrity of the nervous system and preserving overall brain homeostasis. However, this remarkable selective transmission also poses a formidable challenge in the realm of central nervous system diseases treatment, hindering the delivery of large-molecule drugs into the brain. In response to this challenge, many researchers have devoted themselves to developing drug delivery systems capable of breaching the blood-brain barrier. Among these, blood-brain barrier penetrating peptides have emerged as promising candidates. These peptides had the advantages of high biosafety, ease of synthesis, and exceptional penetration efficiency, making them an effective drug delivery solution. While previous studies have developed a few prediction models for B3PPs, their performance has often been hampered by issue of limited positive data.In this study, we present Augur, a novel prediction model using borderline-SMOTE-based data augmentation and machine learning. we extract highly interpretable physicochemical properties of blood-brain barrier penetrating peptides while solving the issues of small sample size and imbalance of positive and negative samples. Experimental results demonstrate the superior prediction performance of Augur with an AUC value of 0.932 on the training set and 0.931 on the independent test set.This newly developed Augur model demonstrates superior performance in predicting blood-brain barrier penetrating peptides, offering valuable insights for drug development targeting neurological disorders. This breakthrough may enhance the efficiency of peptide-based drug discovery and pave the way for innovative treatment strategies for central nervous system diseases.

  13. Data from: MedMNIST-C: Comprehensive benchmark and improved classifier...

    • zenodo.org
    • data.niaid.nih.gov
    zip
    Updated Jul 31, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Francesco Di Salvo; Francesco Di Salvo; Sebastian Doerrich; Sebastian Doerrich; Christian Ledig; Christian Ledig (2024). MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions [Dataset]. http://doi.org/10.5281/zenodo.11471504
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jul 31, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Francesco Di Salvo; Francesco Di Salvo; Sebastian Doerrich; Sebastian Doerrich; Christian Ledig; Christian Ledig
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Abstract: The integration of neural-network-based systems into clinical practice is limited by challenges related to domain generalization and robustness. The computer vision community established benchmarks such as ImageNet-C as a fundamental prerequisite to measure progress towards those challenges. Similar datasets are largely absent in the medical imaging community which lacks a comprehensive benchmark that spans across imaging modalities and applications. To address this gap, we create and open-source MedMNIST-C, a benchmark dataset based on the MedMNIST+ collection, covering 12 datasets and 9 imaging modalities. We simulate task and modality-specific image corruptions of varying severity to comprehensively evaluate the robustness of established algorithms against real-world artifacts and distribution shifts. We further provide quantitative evidence that our simple-to-use artificial corruptions allow for highly performant, lightweight data augmentation to enhance model robustness. Unlike traditional, generic augmentation strategies, our approach leverages domain knowledge, exhibiting significantly higher robustness when compared to widely adopted methods. By introducing MedMNIST-C and open-sourcing the corresponding library allowing for targeted data augmentations, we contribute to the development of increasingly robust methods tailored to the challenges of medical imaging. The code is available at github.com/francescodisalvo05/medmnistc-api.

    This work has been accepted at the Workshop on Advancing Data Solutions in Medical Imaging AI @ MICCAI 2024 [preprint].

    Note: Due to space constraints, we have uploaded all datasets except TissueMNIST-C. However, it can be reproduced via our APIs.

    Usage: We recommend using the demo code and tutorials available on our GitHub repository.

    Citation: If you find this work useful, please consider citing us:

    @article{disalvo2024medmnist,
     title={MedMNIST-C: Comprehensive benchmark and improved classifier robustness by simulating realistic image corruptions},
     author={Di Salvo, Francesco and Doerrich, Sebastian and Ledig, Christian},
     journal={arXiv preprint arXiv:2406.17536},
     year={2024}
    }

    Disclaimer: This repository is inspired by MedMNIST APIs and the ImageNet-C repository. Thus, please also consider citing MedMNIST, the respective source datasets (described here), and ImageNet-C.

  14. S

    Synthetic Data Tool Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Synthetic Data Tool Report [Dataset]. https://www.datainsightsmarket.com/reports/synthetic-data-tool-1990451
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Aug 10, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The synthetic data tool market is experiencing rapid growth, driven by the increasing need for high-quality data to train machine learning models, especially in sectors grappling with data privacy regulations and data scarcity. The market, currently estimated at $2 billion in 2025, is projected to experience a robust Compound Annual Growth Rate (CAGR) of 25% through 2033, reaching an estimated $12 billion. This expansion is fueled by several key trends: the rising adoption of AI and machine learning across industries, the growing concerns around data privacy (GDPR, CCPA, etc.), and the increasing complexity of data annotation requirements. Companies are increasingly turning to synthetic data to overcome the limitations of real-world datasets, creating more robust and ethically sound AI solutions. The market is segmented based on various factors including data type (image, text, tabular), application (healthcare, finance, autonomous vehicles), and deployment (cloud, on-premise). While challenges remain, including the complexity of generating high-fidelity synthetic data and ensuring its representativeness of real-world data, these hurdles are being addressed through ongoing innovations in generative models and data augmentation techniques. The competitive landscape is dynamic, with numerous players ranging from established technology companies to emerging startups. Key players like Datagen, Parallel Domain, and Synthesis AI are leading the charge with their innovative solutions, while smaller players are focusing on niche applications and specific data types. The market's geographical distribution is expected to be heavily concentrated in North America and Europe initially, due to the higher adoption of AI and stricter data privacy regulations. However, growth in Asia-Pacific and other regions is anticipated as AI adoption expands globally and the value proposition of synthetic data becomes more widely understood. The historical period (2019-2024) showcased a steady incline in market adoption, paving the way for the significant growth predicted in the forecast period (2025-2033). Further segmentation based on the aforementioned factors will reveal specific opportunities and areas for future market expansion.

  15. S

    Synthetic Data Solution Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Synthetic Data Solution Report [Dataset]. https://www.marketreportanalytics.com/reports/synthetic-data-solution-54761
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The synthetic data solution market is experiencing robust growth, driven by increasing demand for data privacy compliance (GDPR, CCPA), the need for large, diverse datasets for AI/ML model training, and the rising costs and difficulties associated with obtaining real-world data. The market, currently estimated at $2 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033, reaching an estimated $12 billion by 2033. This expansion is fueled by several key trends, including the maturation of synthetic data generation techniques, the increasing adoption of cloud-based solutions offering scalability and cost-effectiveness, and the growing recognition of synthetic data's crucial role in overcoming data bias and enhancing model accuracy. Key application areas driving this growth are financial services, where synthetic data helps in fraud detection and risk management, and the retail sector, benefiting from improved customer segmentation and personalized marketing strategies. The medical industry also presents a significant opportunity, with synthetic data enabling the development of innovative diagnostic tools and personalized treatments while protecting patient privacy. The competitive landscape is dynamic, with established players like Baidu competing alongside innovative startups such as LightWheel AI and Hanyi Innovation Technology. While the North American market currently holds a significant share, the Asia-Pacific region, particularly China and India, is poised for substantial growth due to increasing digitalization and the burgeoning AI market. Challenges remain, however, including the need to ensure the quality and realism of synthetic data and the ongoing development of robust validation and verification methods. Overcoming these hurdles will be crucial to unlocking the full potential of this rapidly evolving market. On-premises solutions are currently more prevalent, but the shift towards cloud-based solutions is expected to accelerate, driven by the benefits of scalability and accessibility.

  16. A

    Artificial Intelligence Synthetic Data Service Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Artificial Intelligence Synthetic Data Service Report [Dataset]. https://www.datainsightsmarket.com/reports/artificial-intelligence-synthetic-data-service-525726
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Jun 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Artificial Intelligence (AI) Synthetic Data Service market is experiencing rapid growth, driven by the increasing need for high-quality data to train and validate AI models, especially in sectors with data scarcity or privacy concerns. The market, estimated at $2 billion in 2025, is projected to expand significantly over the next decade, achieving a Compound Annual Growth Rate (CAGR) of approximately 30% from 2025 to 2033. This robust growth is fueled by several key factors: the escalating adoption of AI across various industries, the rising demand for robust and unbiased AI models, and the growing awareness of data privacy regulations like GDPR, which restrict the use of real-world data. Furthermore, advancements in synthetic data generation techniques, enabling the creation of more realistic and diverse datasets, are accelerating market expansion. Major players like Synthesis, Datagen, Rendered, Parallel Domain, Anyverse, and Cognata are actively shaping the market landscape through innovative solutions and strategic partnerships. The market is segmented by data type (image, text, time-series, etc.), application (autonomous driving, healthcare, finance, etc.), and deployment model (cloud, on-premise). Despite the significant growth potential, certain restraints exist. The high cost of developing and deploying synthetic data generation solutions can be a barrier to entry for smaller companies. Additionally, ensuring the quality and realism of synthetic data remains a crucial challenge, requiring continuous improvement in algorithms and validation techniques. Overcoming these limitations and fostering wider adoption will be key to unlocking the full potential of the AI Synthetic Data Service market. The historical period (2019-2024) likely saw a lower CAGR due to initial market development and technology maturation, before experiencing the accelerated growth projected for the forecast period (2025-2033). Future growth will heavily depend on further technological advancements, decreasing costs, and increasing industry awareness of the benefits of synthetic data.

  17. f

    Data_Sheet_1_Deep learning-based Alzheimer's disease detection:...

    • frontiersin.figshare.com
    pdf
    Updated Sep 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rosanna Turrisi; Alessandro Verri; Annalisa Barla (2024). Data_Sheet_1_Deep learning-based Alzheimer's disease detection: reproducibility and the effect of modeling choices.PDF [Dataset]. http://doi.org/10.3389/fncom.2024.1360095.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Sep 20, 2024
    Dataset provided by
    Frontiers
    Authors
    Rosanna Turrisi; Alessandro Verri; Annalisa Barla
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    IntroductionMachine Learning (ML) has emerged as a promising approach in healthcare, outperforming traditional statistical techniques. However, to establish ML as a reliable tool in clinical practice, adherence to best practices in data handling, and modeling design and assessment is crucial. In this work, we summarize and strictly adhere to such practices to ensure reproducible and reliable ML. Specifically, we focus on Alzheimer's Disease (AD) detection, a challenging problem in healthcare. Additionally, we investigate the impact of modeling choices, including different data augmentation techniques and model complexity, on overall performance.MethodsWe utilize Magnetic Resonance Imaging (MRI) data from the ADNI corpus to address a binary classification problem using 3D Convolutional Neural Networks (CNNs). Data processing and modeling are specifically tailored to address data scarcity and minimize computational overhead. Within this framework, we train 15 predictive models, considering three different data augmentation strategies and five distinct 3D CNN architectures with varying convolutional layers counts. The augmentation strategies involve affine transformations, such as zoom, shift, and rotation, applied either concurrently or separately.ResultsThe combined effect of data augmentation and model complexity results in up to 10% variation in prediction accuracy. Notably, when affine transformation are applied separately, the model achieves higher accuracy, regardless the chosen architecture. Across all strategies, the model accuracy exhibits a concave behavior as the number of convolutional layers increases, peaking at an intermediate value. The best model reaches excellent performance both on the internal and additional external testing set.DiscussionsOur work underscores the critical importance of adhering to rigorous experimental practices in the field of ML applied to healthcare. The results clearly demonstrate how data augmentation and model depth—often overlooked factors– can dramatically impact final performance if not thoroughly investigated. This highlights both the necessity of exploring neglected modeling aspects and the need to comprehensively report all modeling choices to ensure reproducibility and facilitate meaningful comparisons across studies.

  18. audiomentations

    • kaggle.com
    Updated Jan 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HyeongChan Kim (2023). audiomentations [Dataset]. https://www.kaggle.com/kozistr/audiomentations/code
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 10, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    HyeongChan Kim
    Description

    Audiomentations

    A Python library for audio data augmentation. Inspired by albumentations. Useful for machine learning.

    official : https://github.com/iver56/audiomentations

  19. A

    Artificial Intelligence Data Services Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated May 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Artificial Intelligence Data Services Report [Dataset]. https://www.datainsightsmarket.com/reports/artificial-intelligence-data-services-1462849
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    May 22, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Artificial Intelligence (AI) Data Services market is experiencing robust growth, driven by the increasing adoption of AI across various sectors. The market, estimated at $25 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 20% from 2025 to 2033, reaching an impressive $100 billion by 2033. This expansion is fueled by several key factors: the escalating demand for high-quality data to train and improve AI algorithms; the rise of sophisticated AI applications in healthcare, finance, and autonomous vehicles; and the emergence of innovative data annotation and labeling techniques. Furthermore, the growing availability of cloud-based AI data services is lowering barriers to entry for businesses of all sizes, fostering broader market participation. Major players like Baidu, Alibaba, Tencent, and IBM are actively shaping the market landscape through strategic investments and technological advancements. However, the market also faces certain challenges. Data privacy and security concerns are paramount, necessitating robust compliance frameworks and security measures. The heterogeneity of data formats and the need for consistent data quality across various applications pose significant hurdles. Moreover, the scarcity of skilled professionals proficient in AI data management and annotation limits the industry's growth potential. Despite these restraints, the overall market outlook remains highly optimistic, underpinned by ongoing technological innovation and increasing industry investment in AI data infrastructure. The segmentation of the market includes various services such as data annotation, data augmentation, data synthesis, and data labeling, each catering to specific AI application needs.

  20. H

    Replication Data for: "Variational Autoencoder-Regulated Data Augmentation...

    • dataverse.harvard.edu
    Updated Feb 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Akm Ashiquzzaman (2025). Replication Data for: "Variational Autoencoder-Regulated Data Augmentation for Precise Estimation of Organic Pollutant in Water with Deeplearning Neural Network" [Dataset]. http://doi.org/10.7910/DVN/ITMJW2
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 25, 2025
    Dataset provided by
    Harvard Dataverse
    Authors
    Akm Ashiquzzaman
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    To monitor organics in water, potassium hydrogen phthalate (KHP, acidic salt compound) solution at 50 different concentrations (1, 2, 3, 4, … 50 mg/L) was prepared as a standard sample for TOC testing by dissolving KHP powder (C8H5KO4) in Deionized Water (DI). The absorbance of the test sample was determined after measuring the dark signals to determine the noise originating from both the detector and reference signals of the DI water. The light intensity that passed through the KHP sample was monitored to obtain absorbance values

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Gonzalo de las Heras de Matías; Gonzalo de las Heras de Matías; Javier Sánchez-Soriano; Javier Sánchez-Soriano; Enrique Puertas; Enrique Puertas (2022). Variable Message Signal annotated images for object detection [Dataset]. http://doi.org/10.5281/zenodo.5904211
Organization logo

Variable Message Signal annotated images for object detection

Explore at:
5 scholarly articles cite this dataset (View in Google Scholar)
zipAvailable download formats
Dataset updated
Oct 2, 2022
Dataset provided by
Zenodohttp://zenodo.org/
Authors
Gonzalo de las Heras de Matías; Gonzalo de las Heras de Matías; Javier Sánchez-Soriano; Javier Sánchez-Soriano; Enrique Puertas; Enrique Puertas
License

Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically

Description

If you use this dataset, please cite this paper: Puertas, E.; De-Las-Heras, G.; Sánchez-Soriano, J.; Fernández-Andrés, J. Dataset: Variable Message Signal Annotated Images for Object Detection. Data 2022, 7, 41. https://doi.org/10.3390/data7040041

This dataset consists of Spanish road images taken from inside a vehicle, as well as annotations in XML files in PASCAL VOC format that indicate the location of Variable Message Signals within them. Also, a CSV file is attached with information regarding the geographic position, the folder where the image is located, and the text in Spanish. This can be used to train supervised learning computer vision algorithms, such as convolutional neural networks. Throughout this work, the process followed to obtain the dataset, image acquisition, and labeling, and its specifications are detailed. The dataset is constituted of 1216 instances, 888 positives, and 328 negatives, in 1152 jpg images with a resolution of 1280x720 pixels. These are divided into 576 real images and 576 images created from the data-augmentation technique. The purpose of this dataset is to help in road computer vision research since there is not one specifically for VMSs.

The folder structure of the dataset is as follows:

  • vms_dataset/
    • data.csv
    • real_images/
      • imgs/
      • annotations/
    • data-augmentation/
      • imgs/
      • annotations/

In which:

  • data.csv: Each row contains the following information separated by commas (,): image_name, x_min, y_min, x_max, y_max, class_name, lat, long, folder, text.
  • real_images: Images extracted directly from the videos.
  • data-augmentation: Images created using data-augmentation
  • imgs: Image files in .jpg format.
  • annotations: Annotation files in .xml format.
Search
Clear search
Close search
Google apps
Main menu