https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On September 20, 2021, the following has been updated: The use of analytic dataset as a source.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.
https://www.icpsr.umich.edu/web/ICPSR/studies/37145/termshttps://www.icpsr.umich.edu/web/ICPSR/studies/37145/terms
Conducted by the National Association of County and City Health Officials (NACCHO), the purpose of this survey of local health departments (LHDs) was to advance and support the development of a database for LHDs to describe and understand their structure, function, and capacities. A core set of questions was submitted to every LHD. In addition, some LHDs received one of two randomly assigned modules of supplemental questions. Data from the National Profile of Local Health Departments survey are used by: LHD staff members to compare their LHD or those within their states to others nationwide; Policymakers at the local, state, and federal levels to inform public health policy and support projects to improve local public health practice; Universities to educate future public health workforce members about LHDs; Researchers to address questions about public health practice; andNACCHO staff to develop programs and resources that meet the needs of LHDs and to advocate effectively for LHDs. Data included as part of this collection includes the Restricted-Use (Restricted-Use Level 2) data of the National Profile of Local Health Departments 2016 study. The dataset includes 1930 cases for 1116 variables.
Washington’s PMP was created (RCW 70.225 (2007)) to improve patient care and to stop prescription drug misuse by collecting dispensing records for Schedule II, III, IV and V drugs, and by making the information available to medical providers and pharmacists as a patient care tool. Program rules, WAC 246-470, took effect August 27, 2011. The program started data collection from all dispensers October 7, 2011.
Under RCW 70.225.040(5)(a), the department is authorized to publish public data after removing information that could be used directly or indirectly to identify individual patients, requestors, dispensers, prescribers, and persons who received prescriptions from dispensers. The data available here are de-identified, and exclude patient, prescriber, and dispenser related information in alignment with program rules WAC 246-470-080. No requestor information is available here.
Prescriptions excluded from PMP include those dispensed outside of WA State, those prescribed for less than or equal to 24 hours, those administered or given to a patient in the hospital, and those dispensed from a Department of Corrections pharmacy (unless an offender is released with a prescription), an Opioid Treatment Program, and some federally operated pharmacies (Indian Health Services and Veterans Affairs report voluntarily since 2015).
Further information on collection and management of PMP data at DOH can be found at www.doh.wa.gov/pmp/data.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set is the originally reported numbers by the facility. This data set may contain data anomalies due to data key entries.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.
The "COVID-19 Reported Patient Impact and Hospital Capacity by Facility" dataset from the U.S. Department of Health & Human Services, filtered for Connecticut. View the full dataset and detailed metadata here: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/anag-cw7u The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Friday to Thursday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities. The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities. For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-20 means the average/sum/coverage of the elements captured from that given facility starting and including Friday, November 20, 2020, and ending and including reports for Thursday, November 26, 2020. Reported elements include an append of either “_coverage”, “_sum”, or “_avg”. A “_coverage” append denotes how many times the facility reported that element during that collection week. A “_sum” append denotes the sum of the reports provided for that facility for that element during that collection week. A “_avg” append is the average of the reports provided for that facility for that element during that collection week. The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”. This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020. Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect. For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied. On May 3, 2021, the following fields have been added to this data set. hhs_ids previous_day_admission_adult_covid_confirmed_7_day_coverage previous_day_admission_pediatric_covid_confirmed_7_day_coverage previous_day_admission_adult_covid_suspected_7_day_coverage previous_day_admission_pediatric_covid_suspected_7_day_coverage previous_week_personnel_covid_vaccinated_doses_administered_7_day_sum total_personnel_covid_vaccinated_doses_none_7_day_sum total_personnel_covid_vaccinated_doses_one_7_day_sum total_personnel_covid_vaccinated_doses_all_7_day_sum previous_week_patients_covid_vaccinated_doses_one_7_day_sum previous_week_patients_covid_vaccinated_doses_all_7_day_sum On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added. To see the numbers as reported by the facilities, go to: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number report
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
Note: This dataset has been limited to show metrics for Ramsey County, Minnesota.
This dataset represents COVID-19 hospitalization data and metrics aggregated to county or county-equivalent, for all counties or county-equivalents (including territories) in the United States. COVID-19 hospitalization data are reported to CDC’s National Healthcare Safety Network, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN and included in this dataset represent aggregated counts and include metrics capturing information specific to COVID-19 hospital admissions, and inpatient and ICU bed capacity occupancy.
Reporting information: As of December 15, 2022, COVID-19 hospital data are required to be reported to NHSN, which monitors national and local trends in healthcare system stress, capacity, and community disease levels for approximately 6,000 hospitals in the United States. Data reported by hospitals to NHSN represent aggregated counts and include metrics capturing information specific to hospital capacity, occupancy, hospitalizations, and admissions. Prior to December 15, 2022, hospitals reported data directly to the U.S. Department of Health and Human Services (HHS) or via a state submission for collection in the HHS Unified Hospital Data Surveillance System (UHDSS). While CDC reviews these data for errors and corrects those found, some reporting errors might still exist within the data. To minimize errors and inconsistencies in data reported, CDC removes outliers before calculating the metrics. CDC and partners work with reporters to correct these errors and update the data in subsequent weeks. Many hospital subtypes, including acute care and critical access hospitals, as well as Veterans Administration, Defense Health Agency, and Indian Health Service hospitals, are included in the metric calculations provided in this report. Psychiatric, rehabilitation, and religious non-medical hospital types are excluded from calculations. Data are aggregated and displayed for hospitals with the same Centers for Medicare and Medicaid Services (CMS) Certification Number (CCN), which are assigned by CMS to counties based on the CMS Provider of Services files. Full details on COVID-19 hospital data reporting guidance can be found here: https://www.hhs.gov/sites/default/files/covid-19-faqs-hospitals-hospital-laboratory-acute-care-facility-data-reporting.pdf
Calculation of county-level hospital metrics: County-level hospital data are derived using calculations performed at the Health Service Area (HSA) level. An HSA is defined by CDC’s National Center for Health Statistics as a geographic area containing at least one county which is self-contained with respect to the population’s provision of routine hospital care. Every county in the United States is assigned to an HSA, and each HSA must contain at least one hospital. Therefore, use of HSAs in the calculation of local hospital metrics allows for more accurate characterization of the relationship between health care utilization and health status at the local level. Data presented at the county-level represent admissions, hospital inpatient and ICU bed capacity and occupancy among hospitals within the selected HSA. Therefore, admissions, capacity, and occupancy are not limited to residents of the selected HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA. For all county-level hospital metrics listed below the values are calculated first for the entire HSA, and then the HSA-level value is then applied to each county within the HSA.
Metric details: Time period: data for the previous MMWR week (Sunday-Saturday) will update weekly on Thursdays as soon as they are reviewed and verified, usually before 8 pm ET. Updates will occur the following day when reporting coincides with a federal holiday. Note: Weekly updates might be delayed due to delays in reporting. All data are provisional. Because these provisional counts are subject to change, including updates to data reported previously, adjustments can occur. Data may be updated since original publication due to delays in reporting (to account for data received after a given Thursday publication) or data quality corrections. New hospital admissions (count): Total number of admissions of patients with laboratory-confirmed COVID-19 in the previous week (including both adult and pediatric admissions) in the entire jurisdiction New Hospital Admissions Rate Value (Admissions per 100k): Total number of new admissions of patients with laboratory-confirmed COVID-19 in the past week (including both adult and pediatric admissions) for the entire jurisdiction divided by 2019 intercensal population estimate for that jurisdiction multiplied by 100,000. (Note: This metric is used to determine each county’s COVID-19 Hospital Admissions Level for a given week). New COVID-19 Hospital Admissions Rate Level: qualitative value of new COVID-19 hospital admissions rate level [Low, Medium, High, Insufficient Data] New hospital admissions percent change from prior week: Percent change in the current weekly total new admissions of patients with laboratory-confirmed COVID-19 per 100,000 population compared with the prior week. New hospital admissions percent change from prior week level: Qualitative value of percent change in hospital admissions rate from prior week [Substantial decrease, Moderate decrease, Stable, Moderate increase, Substantial increase, Insufficient data] COVID-19 Inpatient Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 (including both adult and pediatric patients) within the in the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (patients hospitalized with confirmed COVID-19) and denominators (staffed inpatient beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 Inpatient Bed Occupancy Level: Qualitative value of inpatient beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 Inpatient Bed Occupancy percent change from prior week: The absolute change in the percent of staffed inpatient beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed inpatient beds in the past week, compared with the prior week, in the entire jurisdiction. COVID-19 ICU Bed Occupancy Value: Percentage of all staffed inpatient beds occupied by adult patients with confirmed COVID-19 within the entire jurisdiction is calculated as an average of valid daily values within the past week (e.g., if only three valid values, the average of those three is taken). Averages are separately calculated for the daily numerators (adult patients hospitalized with confirmed COVID-19) and denominators (staffed adult ICU beds). The average percentage can then be taken as the ratio of these two values for the entire jurisdiction. COVID-19 ICU Bed Occupancy Level: Qualitative value of ICU beds occupied by COVID-19 patients level [Minimal, Low, Moderate, Substantial, High, Insufficient data] COVID-19 ICU Bed Occupancy percent change from prior week: The absolute change in the percent of staffed ICU beds occupied by patients with laboratory-confirmed COVID-19 represents the week-over-week absolute difference between the average occupancy of patients with confirmed COVID-19 in staffed adult ICU beds for the past week, compared with the prior week, in the in the entire jurisdiction. For all metrics, if there are no data in the specified locality for a given week, the metric value is displayed as “insufficient data”.
The National Health Interview Survey (NHIS) is the principal source of information on the health of the civilian noninstitutionalized population of the United States and is one of the major data collection programs of the National Center for Health Statistics (NCHS) which is part of the Centers for Disease Control and Prevention (CDC). The National Health Survey Act of 1956 provided for a continuing survey and special studies to secure accurate and current statistical information on the amount, distribution, and effects of illness and disability in the United States and the services rendered for or because of such conditions. The survey referred to in the Act, now called the National Health Interview Survey, was initiated in July 1957. Since 1960, the survey has been conducted by NCHS, which was formed when the National Health Survey and the National Vital Statistics Division were combined. NHIS data are used widely throughout the Department of Health and Human Services (DHHS) to monitor trends in illness and disability and to track progress toward achieving national health objectives. The data are also used by the public health research community for epidemiologic and policy analysis of such timely issues as characterizing those with various health problems, determining barriers to accessing and using appropriate health care, and evaluating Federal health programs. The NHIS also has a central role in the ongoing integration of household surveys in DHHS. The designs of two major DHHS national household surveys have been or are linked to the NHIS. The National Survey of Family Growth used the NHIS sampling frame in its first five cycles and the Medical Expenditure Panel Survey currently uses half of the NHIS sampling frame. Other linkage includes linking NHIS data to death certificates in the National Death Index (NDI). While the NHIS has been conducted continuously since 1957, the content of the survey has been updated about every 10-15 years. In 1996, a substantially revised NHIS questionnaire began field testing. This revised questionnaire, described in detail below, was implemented in 1997 and has improved the ability of the NHIS to provide important health information.
Florida COVID-19 Case Line data, exported from the Florida Department of Health GIS Layer on date seen in file name. Archived by the University of South Florida Libraries, Digital Heritage and Humanities Collections. Contact: LibraryGIS@usf.edu. Starting on 4/6/2021, the Florida Department of Health (FDOH) changed the way they provide COVID-19 caseline data. Beginning with this date the caseline data is being archived as two separate files, one for 2020 and one for 2021. The 2021 file will only include data from 1/1/2021 onward. In addition, FDOH has added two Object ID fields to their dataset. These caseline data are being preserved as they are provided by the FDOH, with a daily archive captured by the USF Libraries DHHC.Please Cite Our GIS HUB. If you are a researcher or other utilizing our Florida COVID-19 HUB as a tool or accessing and utilizing the data provided herein, please provide an acknowledgement of such in any publication or re-publication. The following citation is suggested: University of South Florida Libraries, Digital Heritage and Humanities Collections. 2021. Florida COVID-19 Hub. Available at https://covid19-usflibrary.hub.arcgis.com/. https://doi.org/10.5038/USF-COVID-19-GISLive FDOH Data Source: https://www.arcgis.com/home/item.html?id=7a0c74a551904761812dc6b8bd620ee1 or Direct Download at: https://open-fdoh.hub.arcgis.com/datasets/7a0c74a551904761812dc6b8bd620ee1_0.
Archives for this data layer begin on 5/11/2020. Archived data was exported directly from the live FDOH layer into the archive by the University of South Florida Libraries - Digital Heritage and Humanities Collection.For data definitions please visit the following box folder: https://usf.box.com/s/vfjwbczkj73ucj19yvwz53at6v6w614hData definition files names include the relative date they were published. The below information was taken from ancillary documents associated with the original layer from the Florida Department of Health. This data table represents all laboratory-confirmed cases of COVID-19 in Florida tabulated from the previous day's totals by the Florida Department of Health. Persons Under Investigation/Surveillance (PUI):Essentially, PUIs are any person who has been or is waiting to be tested. This includes: persons who are considered high-risk for COVID-19 due to recent travel, contact with a known case, exhibiting symptoms of COVID-19 as determined by a healthcare professional, or some combination thereof. PUI’s also include people who meet laboratory testing criteria based on symptoms and exposure, as well as confirmed cases with positive test results. PUIs include any person who is or was being tested, including those with negative and pending results.All PUIs fit into one of three residency types:1. Florida residents tested in Florida2. Non-Florida residents tested in Florida 3. Florida residents tested outside of Florida Florida Residents Tested Elsewhere: The total number of Florida residents with positive COVID-19 test results who were tested outsideof Florida, and were not exposed/infectious in Florida. Non-Florida Residents Tested in Florida: The total number of people with positive COVID-19 test results who were tested, exposed, and/or infectious while in Florida, but are legal residents of another state.Table Guide for Records of Confirmed Positive Cases of COVID-19"County": The Florida county where the individual with COVID-19's case has been processed. "Jurisdiction" of the case:"FL resident" -- a resident of Florida"Non-FL resident" -- someone who resides outside of Florida "Travel_Related": Whether or not the positive case of COVID-19 is designated as related to recent travel by the individual. "No" -- Case designated as not being a risk related to recent travel"Unknown" -- Case designated where a travel-related designation has not yet been made."Yes" -- Case is designated as travel-related for a person who recently traveled overseas or to an area with community"Origin": Where the person likely contracted the virus before arriving / returning to Florida."EDvisit": Whether or not an individual who tested positive for coronavirus visited and was admitted to an Emergency Department related to health conditions surrounding COVID-19."No" -- Individual was not admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Unknown" -- It is unknown whether the individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19"Yes" -- Individual was admitted to an emergency department relating to health conditions surrounding the contraction of COVID-19“Hospitalized”: Whether or not a patient who receives a positive laboratory confirmed test for COVID-19 receives inpatient care at a hospital at any time during illness. These people may no longer be hospitalized. This information does not indicate that a COVID-19 positive person is currently hospitalized, only that they have been hospitalized for health conditions relating to COVID-19 at some point during their illness. "No" -- Individual was not admitted for inpatient care at a hospital at any time during illness "Unknown" -- It is unknown whether the individual was admitted for inpatient care at a hospital at any time during illness "Yes" -- Individual was admitted for inpatient care at a hospital at some point during the illness "Died": Whether or not the individual who tested positive for COVID-19 died as a result of health complications from the viral infection. "NA" -- Not applicable / resident has not died "Yes" -- Individual died of a health complication resulting from COVID-19 "Contact": Whether the person contracted COVID-19 from contact with current or previously confirmedcases."No" -- Case with no known contact with current or previously confirmed cases"Yes" -- Case with known contact with current or previously confirmed cases"Unknown" -- Case where contact with current or previous confirmedcases is not known or under investigation"Case_": The date the positive laboratory result was received in the Department of Health’s database system and became a “confirmed case.” This is not the date a person contracted the virus, became symptomatic, or was treated. Florida does not create a case or count suspected/probable cases in the case counts without a confirmed-positive lab result. "EventDate": When the individual reported likely first experiencing symptoms related to COVID-19. "ChartDate": Also the date the positive laboratory result for an individual was received in the Department ofHealth’s database system and became a recorded, “confirmed case” of COVID-19 in the state. Data definitions updated by the FDOH on 5/13/2020.
The Department of Health Professions Healthcare Workforce Data Center works to improve the data collection and measurement of Virginia’s healthcare workforce through regular assessment of workforce supply and demand issues among the over 62 professions and the over 500,000 practitioners licensed in Virginia by DHP. DHP healthcare workforce data is provided online to ensure accessibility of the findings among healthcare decision makers, hospital systems, academic institutions and constituents statewide.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 12 elements for all COVID-19 cases shared with CDC and includes demographics, any exposure history, disease severity indicators and outcomes, presence of any underlying medical conditions and risk behaviors, and no geographic data.
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
The deidentified data in the “COVID-19 Case Surveillance Public Use Data” include demographic characteristics, any exposure history, disease severity indicators and outcomes, clinical data, laboratory diagnostic test results, and presence of any underlying medical conditions and risk behaviors. All data elements can be found on the COVID-19 case report form located at www.cdc.gov/coronavirus/2019-ncov/downloads/pui-form.pdf.
COVID-19 case reports have been routinely submitted using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19 included. Current versions of these case definitions are available here: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/.
All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for laboratory-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. Case reporting using this new form is ongoing among U.S. states and territories.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<5) records and indirect identifiers (e.g., date of first positive specimen). Suppression includes rare combinations of demographic characteristics (sex, age group, race/ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
For questions, please contact Ask SRRG (eocevent394@cdc.gov).
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The previous datasets about COVID-19 in Turkey that I have been using are not maintained and well structured and have some additional derived columns. So, I have decided to create my own dataset directly from the published posts on the Instagram page of the Republic of Turkey Ministry of Health.
The data collection phase is a little tedious. However, with the help of the VGG16 and Self Organizing Maps, I can manage to collect all of the posts and convert them into a spreadsheet.
The data is collected from the Instagram posts of the official ministry page. Those posts contain the following information:
1) Daily Tests 2) Daily Cases 3) Daily Deaths 4) Daily Recovered 5) Total Amount of Tests 6) Total Number of Cases 7) Total Number of Deaths 8) Total Number of Intensive Care* 9) Total Intubated Patients* 10) Total Recovered
*: Those two columns are changed into Pneumonia Ratio (which is useless at the first glance since the variance is 0 for all rows, however one can still calculate meaningful information from it) and Seriously Ill.
The data is collected by downloading all images from the Instagram page of the ministry. Get the VGG16 features (512-dim) and cluster them via Self Organizing Maps (SOM). Then, find the neuron that captures the turquoize background and information about COVID-19. Test each image if the activated neuron is "the neuron". If it is, save the image into another directory.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MHADC data to be released includes:
a) Number of consumers per month by geographical location
b) Number of service contacts per month by geographical location
c) Number of consumers by facility and target population
d) Number of service contacts by facility and target population
The "https://addhealth.cpc.unc.edu/" Target="_blank">National Longitudinal Study of Adolescent to Adult Health (Add Health) is a longitudinal study of a nationally representative sample of adolescents in grades 7-12 in the United States. The Add Health cohort has been followed into young adulthood with four in-home interviews, the most recent in 2008, when the sample was aged 24-32*. Add Health combines longitudinal survey data on respondents' social, economic, psychological and physical well-being with contextual data on the family, neighborhood, community, school, friendships, peer groups, and romantic relationships, providing unique opportunities to study how social environments and behaviors in adolescence are linked to health and achievement outcomes in young adulthood. The fourth wave of interviews expanded the collection of biological data in Add Health to understand the social, behavioral, and biological linkages in health trajectories as the Add Health cohort ages through adulthood. The fifth wave of data collection is planned to begin in 2016.
Initiated in 1994 and supported by three program project grants from the "https://www.nichd.nih.gov/" Target="_blank">Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD) with co-funding from 23 other federal agencies and foundations, Add Health is the largest, most comprehensive longitudinal survey of adolescents ever undertaken. Beginning with an in-school questionnaire administered to a nationally representative sample of students in grades 7-12, the study followed up with a series of in-home interviews conducted in 1995, 1996, 2001-02, and 2008. Other sources of data include questionnaires for parents, siblings, fellow students, and school administrators and interviews with romantic partners. Preexisting databases provide information about neighborhoods and communities.
Add Health was developed in response to a mandate from the U.S. Congress to fund a study of adolescent health, and Waves I and II focus on the forces that may influence adolescents' health and risk behaviors, including personal traits, families, friendships, romantic relationships, peer groups, schools, neighborhoods, and communities. As participants have aged into adulthood, however, the scientific goals of the study have expanded and evolved. Wave III, conducted when respondents were between 18 and 26** years old, focuses on how adolescent experiences and behaviors are related to decisions, behavior, and health outcomes in the transition to adulthood. At Wave IV, respondents were ages 24-32* and assuming adult roles and responsibilities. Follow up at Wave IV has enabled researchers to study developmental and health trajectories across the life course of adolescence into adulthood using an integrative approach that combines the social, behavioral, and biomedical sciences in its research objectives, design, data collection, and analysis.
* 52 respondents were 33-34 years old at the time of the Wave IV interview.
** 24 respondents were 27-28 years old at the time of the Wave III interview.
The Wave III public-use data are helpful in analyzing the transition between adolescence and young adulthood. Included in this dataset are data on pregnancy.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Note: Reporting of new COVID-19 Case Surveillance data will be discontinued July 1, 2024, to align with the process of removing SARS-CoV-2 infections (COVID-19 cases) from the list of nationally notifiable diseases. Although these data will continue to be publicly available, the dataset will no longer be updated.
Authorizations to collect certain public health data expired at the end of the U.S. public health emergency declaration on May 11, 2023. The following jurisdictions discontinued COVID-19 case notifications to CDC: Iowa (11/8/21), Kansas (5/12/23), Kentucky (1/1/24), Louisiana (10/31/23), New Hampshire (5/23/23), and Oklahoma (5/2/23). Please note that these jurisdictions will not routinely send new case data after the dates indicated. As of 7/13/23, case notifications from Oregon will only include pediatric cases resulting in death.
This case surveillance public use dataset has 19 elements for all COVID-19 cases shared with CDC and includes demographics, geography (county and state of residence), any exposure history, disease severity indicators and outcomes, and presence of any underlying medical conditions and risk behaviors.
Currently, CDC provides the public with three versions of COVID-19 case surveillance line-listed data: this 19 data element dataset with geography, a 12 data element public use dataset, and a 33 data element restricted access dataset.
The following apply to the public use datasets and the restricted access dataset:
Overview
The COVID-19 case surveillance database includes individual-level data reported to U.S. states and autonomous reporting entities, including New York City and the District of Columbia (D.C.), as well as U.S. territories and affiliates. On April 5, 2020, COVID-19 was added to the Nationally Notifiable Condition List and classified as “immediately notifiable, urgent (within 24 hours)” by a Council of State and Territorial Epidemiologists (CSTE) Interim Position Statement (Interim-20-ID-01). CSTE updated the position statement on August 5, 2020, to clarify the interpretation of antigen detection tests and serologic test results within the case classification (Interim-20-ID-02). The statement also recommended that all states and territories enact laws to make COVID-19 reportable in their jurisdiction, and that jurisdictions conducting surveillance should submit case notifications to CDC. COVID-19 case surveillance data are collected by jurisdictions and reported voluntarily to CDC.
For more information:
NNDSS Supports the COVID-19 Response | CDC.
COVID-19 Case Reports COVID-19 case reports are routinely submitted to CDC by public health jurisdictions using nationally standardized case reporting forms. On April 5, 2020, CSTE released an Interim Position Statement with national surveillance case definitions for COVID-19. Current versions of these case definitions are available at: https://ndc.services.cdc.gov/case-definitions/coronavirus-disease-2019-2021/. All cases reported on or after were requested to be shared by public health departments to CDC using the standardized case definitions for lab-confirmed or probable cases. On May 5, 2020, the standardized case reporting form was revised. States and territories continue to use this form.
Access Addressing Gaps in Public Health Reporting of Race and Ethnicity for COVID-19, a report from the Council of State and Territorial Epidemiologists, to better understand the challenges in completing race and ethnicity data for COVID-19 and recommendations for improvement.
To learn more about the limitations in using case surveillance data, visit FAQ: COVID-19 Data and Surveillance.
CDC’s Case Surveillance Section routinely performs data quality assurance procedures (i.e., ongoing corrections and logic checks to address data errors). To date, the following data cleaning steps have been implemented:
To prevent release of data that could be used to identify people, data cells are suppressed for low frequency (<11 COVID-19 case records with a given values). Suppression includes low frequency combinations of case month, geographic characteristics (county and state of residence), and demographic characteristics (sex, age group, race, and ethnicity). Suppressed values are re-coded to the NA answer option; records with data suppression are never removed.
COVID-19 data are available to the public as summary or aggregate count files, including total counts of cases and deaths by state and by county. These and other COVID-19 data are available from multiple public locations: COVID Data Tracker; United States COVID-19 Cases and Deaths by State; COVID-19 Vaccination Reporting Data Systems; and COVID-19 Death Data and Resources.
Notes:
March 1, 2022: The "COVID-19 Case Surveillance Public Use Data with Geography" will be updated on a monthly basis.
April 7, 2022: An adjustment was made to CDC’s cleaning algorithm for COVID-19 line level case notification data. An assumption in CDC's algorithm led to misclassifying deaths that were not COVID-19 related. The algorithm has since been revised, and this dataset update reflects corrected individual level information about death status for all cases collected to date.
June 25, 2024: An adjustment
In 2008, a group of uninsured low-income adults in Oregon was selected by lottery to be given the chance to apply for Medicaid. This lottery provides an opportunity to gauge the effects of expanding access to public health insurance on the health care use, financial strain, and health of low-income adults using a randomized controlled design. The Oregon Health Insurance Experiment follows and compares those selected in the lottery (treatment group) with those not selected (control group). The data collected and provided here include data from in-person interviews, three mail surveys, emergency department records, and administrative records on Medicaid enrollment, the initial lottery sign-up list, welfare benefits, and mortality. This data collection has seven data files: Dataset 1 contains administrative data on the lottery from the state of Oregon. These data include demographic characteristics that were recorded when individuals signed up for the lottery, date of lottery draw, and information on who was selected for the lottery, applied for the lotteried Medicaid plan if selected, and whose application for the lotteried plan was approved. Also included are Oregon mortality data for 2008 and 2009. Dataset 2 contains information from the state of Oregon on the individuals' participation in Medicaid, Supplemental Nutrition Assistance Program (SNAP), and Temporary Assistance to Needy Families (TANF). Datasets 3-5 contain the data from the initial, six month, and 12 month mail surveys, respectively. Topics covered by the surveys include demographic characteristics; health insurance, access to health care and health care utilization; health care needs, experiences, and costs; overall health status and changes in health; and depression and medical conditions and use of medications to treat them. Dataset 6 contains an analysis subset of the variables from the in-person interviews. Topics covered by the survey questionnaire include overall health, health insurance coverage, health care access, health care utilization, conditions and treatments, health behaviors, medical and dental costs, and demographic characteristics. The interviewers also obtained blood pressure and anthropometric measurements and collected dried blood spots to measure levels of cholesterol, glycated hemoglobin and C-reactive protein. Dataset 7 contains an analysis subset of the variables the study obtained for all emergency department (ED) visits to twelve hospitals in the Portland area during 2007-2009. These variables capture total hospital costs, ED costs, and the number of ED visits categorized by time of the visit (daytime weekday or nighttime and weekends), necessity of the visit (emergent, ED care needed, non-preventable; emergent, ED care needed, preventable; emergent, primary care treatable), ambulatory case sensitive status, whether or not the patient was hospitalized, and the reason for the visit (e.g., injury, abdominal pain, chest pain, headache, and mental disorders). The collection also includes a ZIP archive (Dataset 8) with Stata programs that replicate analyses reported in three articles by the principal investigators and others: Finkelstein, Amy et al "The Oregon Health Insurance Experiment: Evidence from the First Year". The Quarterly Journal of Economics. August 2012. Vol 127(3). Baicker, Katherine et al "The Oregon Experiment - Effects of Medicaid on Clinical Outcomes". New England Journal of Medicine. 2 May 2013. Vol 368(18). Taubman, Sarah et al "Medicaid Increases Emergency Department Use: Evidence from Oregon's Health Insurance Experiment". Science. 2 Jan 2014.
Objective: Assess the effectiveness of providing Logical Observation Identifiers Names and Codes (LOINC®)-to-In Vitro Diagnostic (LIVD) coding specification, required by the United States Department of Health and Human Services for SARS-CoV-2 reporting, in medical center laboratories and utilize findings to inform future United States Food and Drug Administration policy on the use of real-world evidence in regulatory decisions. Materials and Methods: We compared gaps and similarities between diagnostic test manufacturers’ recommended LOINC® codes and the LOINC® codes used in medical center laboratories for the same tests. Results: Five medical centers and three test manufacturers extracted data from laboratory information systems (LIS) for prioritized tests of interest. The data submission ranged from 74 to 532 LOINC® codes per site. Three test manufacturers submitted 15 LIVD catalogs representing 26 distinct devices, 6956 tests, and 686 LOINC® codes. We identified mismatches in how med..., Five medical centers and three test manufacturers extracted data from laboratory information systems (LIS) for prioritized tests of interest. The data submission ranged from 74 to 532 LOINC® codes per site. Three test manufacturers submitted 15 LIVD catalogs representing 26 distinct devices, 6,956 tests, and 686 LOINC® codes. We identified mismatches in how medical centers use LOINC® to encode laboratory tests compared to how test manufacturers encode the same laboratory tests. Of 331 tests available in the LIVD files, 136 (41%) were represented by a mismatched LOINC® code by the medical centers (Chi-square 45.0,4 df,p < .0001). Data Collection from Medical Center Laboratory Pilot Sites: Each medical center was asked to extract about 100 LOINC® Codes from their LIS for prioritized tests of interest focused on high-risk conditions and SARS-CoV-2. For each selected test (e.g., SARS-CoV-2 RNA COVID-19), we collected the following data elements: test names/descriptions (e.g., SARS corona...,
The 1997 Jordan Population and Family Health Survey (JPFHS) is a national sample survey carried out by the Department of Statistics (DOS) as part of its National Household Surveys Program (NHSP). The JPFHS was specifically aimed at providing information on fertility, family planning, and infant and child mortality. Information was also gathered on breastfeeding, on maternal and child health care and nutritional status, and on the characteristics of households and household members. The survey will provide policymakers and planners with important information for use in formulating informed programs and policies on reproductive behavior and health.
National
Sample survey data
SAMPLE DESIGN AND IMPLEMENTATION
The 1997 JPFHS sample was designed to produce reliable estimates of major survey variables for the country as a whole, for urban and rural areas, for the three regions (each composed of a group of governorates), and for the three major governorates, Amman, Irbid, and Zarqa.
The 1997 JPFHS sample is a subsample of the master sample that was designed using the frame obtained from the 1994 Population and Housing Census. A two-stage sampling procedure was employed. First, primary sampling units (PSUs) were selected with probability proportional to the number of housing units in the PSU. A total of 300 PSUs were selected at this stage. In the second stage, in each selected PSU, occupied housing units were selected with probability inversely proportional to the number of housing units in the PSU. This design maintains a self-weighted sampling fraction within each governorate.
UPDATING OF SAMPLING FRAME
Prior to the main fieldwork, mapping operations were carried out and the sample units/blocks were selected and then identified and located in the field. The selected blocks were delineated and the outer boundaries were demarcated with special signs. During this process, the numbers on buildings and housing units were updated, listed and documented, along with the name of the owner/tenant of the unit or household and the name of the household head. These activities took place between January 7 and February 28, 1997.
Note: See detailed description of sample design in APPENDIX A of the survey report.
Face-to-face
The 1997 JPFHS used two questionnaires, one for the household interview and the other for eligible women. Both questionnaires were developed in English and then translated into Arabic. The household questionnaire was used to list all members of the sampled households, including usual residents as well as visitors. For each member of the household, basic demographic and social characteristics were recorded and women eligible for the individual interview were identified. The individual questionnaire was developed utilizing the experience gained from previous surveys, in particular the 1983 and 1990 Jordan Fertility and Family Health Surveys (JFFHS).
The 1997 JPFHS individual questionnaire consists of 10 sections: - Respondent’s background - Marriage - Reproduction (birth history) - Contraception - Pregnancy, breastfeeding, health and immunization - Fertility preferences - Husband’s background, woman’s work and residence - Knowledge of AIDS - Maternal mortality - Height and weight of children and mothers.
Fieldwork and data processing activities overlapped. After a week of data collection, and after field editing of questionnaires for completeness and consistency, the questionnaires for each cluster were packaged together and sent to the central office in Amman where they were registered and stored. Special teams were formed to carry out office editing and coding.
Data entry started after a week of office data processing. The process of data entry, editing, and cleaning was done by means of the ISSA (Integrated System for Survey Analysis) program DHS has developed especially for such surveys. The ISSA program allows data to be edited while being entered. Data entry was completed on November 14, 1997. A data processing specialist from Macro made a trip to Jordan in November and December 1997 to identify problems in data entry, editing, and cleaning, and to work on tabulations for both the preliminary and final report.
A total of 7,924 occupied housing units were selected for the survey; from among those, 7,592 households were found. Of the occupied households, 7,335 (97 percent) were successfully interviewed. In those households, 5,765 eligible women were identified, and complete interviews were obtained with 5,548 of them (96 percent of all eligible women). Thus, the overall response rate of the 1997 JPFHS was 93 percent. The principal reason for nonresponse among the women was the failure of interviewers to find them at home despite repeated callbacks.
Note: See summarized response rates by place of residence in Table 1.1 of the survey report.
The estimates from a sample survey are subject to two types of errors: nonsampling errors and sampling errors. Nonsampling errors are the result of mistakes made in implementing data collection and data processing (such as failure to locate and interview the correct household, misunderstanding questions either by the interviewer or the respondent, and data entry errors). Although during the implementation of the 1997 JPFHS numerous efforts were made to minimize this type of error, nonsampling errors are not only impossible to avoid but also difficult to evaluate statistically.
Sampling errors, on the other hand, can be evaluated statistically. The respondents selected in the 1997 JPFHS constitute only one of many samples that could have been selected from the same population, given the same design and expected size. Each of those samples would have yielded results differing somewhat from the results of the sample actually selected. Sampling errors are a measure of the variability among all possible samples. Although the degree of variability is not known exactly, it can be estimated from the survey results.
A sampling error is usually measured in terms of the standard error for a particular statistic (mean, percentage, etc.), which is the square root of the variance. The standard error can be used to calculate confidence intervals within which the true value for the population can reasonably be assumed to fall. For example, for any given statistic calculated from a sample survey, the value of that statistic will fall within a range of plus or minus two times the standard error of that statistic in 95 percent of all possible samples of identical size and design.
If the sample of respondents had been selected as a simple random sample, it would have been possible to use straightforward formulas for calculating sampling errors. However, since the 1997 JDHS-II sample resulted from a multistage stratified design, formulae of higher complexity had to be used. The computer software used to calculate sampling errors for the 1997 JDHS-II was the ISSA Sampling Error Module, which uses the Taylor linearization method of variance estimation for survey estimates that are means or proportions. The Jackknife repeated replication method is used for variance estimation of more complex statistics, such as fertility and mortality rates.
Note: See detailed estimate of sampling error calculation in APPENDIX B of the survey report.
Data Quality Tables - Household age distribution - Age distribution of eligible and interviewed women - Completeness of reporting - Births by calendar years - Reporting of age at death in days - Reporting of age at death in months
Note: See detailed tables in APPENDIX C of the survey report.
https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de653307https://search.gesis.org/research_data/datasearch-httpwww-da-ra-deoaip--oaioai-da-ra-de653307
Abstract (en): The Study of Women's Health Across the Nation (SWAN), is a multi-site longitudinal, epidemiologic study designed to examine the health of women during their middle years. The study examines the physical, biological, psychological, and social changes during this transitional period. The goal of SWAN's research is to help scientists, health care providers, and women learn how mid-life experiences affect health and quality of life during aging. The data include questions about doctor visits, medical conditions, medications, treatments, medical procedures, relationships, smoking, and menopause related information. The study is co-sponsored by the National Institute on Aging (NIA), the National Institute of Nursing Research (NINR), the National Institutes of Health (NIH), and the NIH Office of Research on Women's Health. The study began in 1994. Between 1999 and 2001, 2,710 of the 3,302 women that joined SWAN were seen for their third follow-up visit. The research centers are located in the following communities: Detroit, Michigan; Boston, Massachusetts; Chicago, Illinois; Oakland and Los Angeles, California; Newark, New Jersey; and Pittsburgh, Pennsylvania. SWAN participants represent five racial/ethnic groups and a variety of backgrounds and cultures. ICPSR data undergo a confidentiality review and are altered when necessary to limit the risk of disclosure. ICPSR also routinely creates ready-to-go data files along with setups in the major statistical software formats as well as standard codebooks to accompany the data. In addition to these procedures, ICPSR performed the following processing steps for this data collection: Created variable labels and/or value labels.; Created online analysis version with question text.; Checked for undocumented or out-of-range codes.. Presence of Common Scales: Raw data can be used to create CES-D and SF-36 scores. Response Rates: 16,065 completed the screening interview. 3,302 were enrolled in the longitudinal study. 2,881 completed the first follow-up visit. 2,748 completed the second follow-up visit. 2,710 completed the third follow-up visit. Datasets:DS1: Study of Womens Health Across the Nation (SWAN): Visit 03 Dataset, [United States], 1999-2001 Women age 40 through 55, living in designated geographic areas, with the ability to speak English or other designated languages (Japanese, Cantonese, or Spanish), who had the cognitive ability to provide verbal informed consent, and had membership in a specific site's targeted ethnic group. Smallest Geographic Unit: None Site-specific sampling frames were used and encompassed a range of types, including lists of households, telephone numbers, and individual names of women. 2019-05-29 This data collection has been enhanced in the following ways. The title of the study was updated to match current ICPSR standards. Variable labels have been revised to spell out abbreviations and acronyms, and to correct prior misspellings. The variables in the dataset have also been reordered to match the documentation provided by the Principal Investigator. A fuller version of the question text pertaining to individual variables was completed, and now available in the ICPSR codebook. An additional document was included in this release that lists all the publications based off of the SWAN data series. Lastly, the study is now available for online analysis.2018-08-22 The data were updated to adjust missing values.2014-02-12 This data collection is now publicly available. Funding institution(s): United States Department of Health and Human Services. National Institutes of Health (NR004061). United States Department of Health and Human Services. National Institutes of Health. National Institute on Aging (AG012495, AG012505, AG012539, AG012546, AG012553, AG012554). United States Department of Health and Human Services. National Institutes of Health. National Institute of Nursing Research (AG012535). United States Department of Health and Human Services. National Institutes of Health. Office of Research on Women's Health (AG012531). face-to-face interview self-enumerated questionnaire
Note: This dataset is no longer being updated as of September 1, 2023. This dataset includes information on the number of tests of individuals for COVID-19 infection performed in New York State beginning March 1, 2020, when the first case of COVID-19 was identified in the state. The primary goal of publishing this dataset is to provide users timely information about local disease spread and reporting of positive cases. The data will be updated daily, reflecting tests completed by 12:00 am (midnight) the day of the update (i.e., all tests reported by the end of the day on the day before the update).
Note: On November 14, 2020, only 14 hours of laboratory data was collected and shared. A 2:00 pm cutoff time was implemented, allowing the NYSDOH to enhance data quality reviews. All other published laboratory data represented 24 hours of data collection.
As of April 4, 2022, the Department of Health and Human Services (HHS) no longer requires entities conducting COVID testing to report negative or indeterminate antigen test results. This may impact the number and interpretation of total test results reported to the state and also impacts calculation of test percent positivity. Because of this, as of April 5, 2022, test percent positivity is calculated using PCR tests only. Reporting of total new daily cases (positive results) will continue to include PCR and antigen tests.
Reporting of SARS-CoV2 laboratory testing results is mandated under Part 2 of the New York State Sanitary Code. Clinical laboratories, as defined in Public Health Law (PHL) § 571 electronically report test results to the New York State Department of Health (DOH) via the Electronic Clinical Laboratory Reporting System (ECLRS). The DOH Division of Epidemiology’s Bureau of Surveillance and Data System (BSDS) monitors ECLRS reporting and ensures that all positives and negatives are accurate. Starting September 30, 2020, this data also includes pooled/batch tests reported by institutions of higher education. This is also known as surveillance testing and not performed by a clinical laboratory.
Test counts reflect those reported to DOH each day. A person may have multiple specimens tested on one day, these would be counted one time, i.e., if two specimens are collected from an individual at the same time and then evaluated, the outcome of the evaluation of those two samples to diagnose the individual is counted as a single test of one person, even though the specimens may be tested separately. Conversely, if an individual is tested on more than one day, the data will show two tests of an individual, one for each date the person was tested. An individual will only be counted positive one time.
Test counts are assigned to a county based on this order of preference: 1) the patient’s address, 2) the ordering healthcare provider/campus address, or 3) the ordering facility/campus address.
In a historical and developmental sense, the former one-year reporting on employees employed in healthcare grew during 1990/91. in the continuous collection and monitoring of data through the state Register of Health Professionals. The department maintains data on all healthcare workers and healthcare associates, and on administrative and technical staff for now only numerically, according to the number of permanent employees at the end of the year. In the future, it is intended to register employees who are not health-oriented and work in healthcare, and healthcare professionals who work outside the healthcare system can also be registered.
Data on health workers and health care associates are required to be submitted not only by state and county-owned health institutions, but also by all private institutions, health workers who independently perform private practice, as well as trading companies for the performance of health activities, regardless of whether they have a contract with the Croatian Institute for health insurance.
All employees are assigned a registration number (code) upon entry into the Registry's database on the day of employment. The connection with the Croatian Health Insurance Institute exists through the use of the registration number when registering, recognizing within the CEZIH system, as well as when registering prescriptions, referrals and other documents of the HZZO. that is, in monitoring and building the health information system.
As an integral part of the same, relational databases also include data on health organizational units, representing the Register of Health Institutions. Namely, in addition to data on employees, the Registry, based on the decision of the Ministry of Health on work authorization, also records basic data on health institutions, surgeries and all other types of independent health units, regardless of the contract with the Croatian Health Insurance Institute or the type of ownership. As for employees, received data on the opening, closing, change of name, address, type and activity of the health organizational unit is also updated daily.
Thus, the organizational structure of healthcare is monitored through the database, according to levels of healthcare, types of healthcare institutions, healthcare activities performed by institutions, divisions with regard to the type of ownership as well as territorial distribution.
In addition to the importance of data on human potential and space, that is, the units where health care is provided, medical equipment is also an important factor in management and planning. One part of the department's work is related to the collection of data on this material resource. In the near future, it is planned to form a Register of Medically Expensive Equipment, which would be technologically and functionally connected with the existing two registers into a whole register of resources in healthcare.
Also, the statistical research aims to include those entities that are not part of the health system, and in which health workers work, i.e. health activities are performed, such as long-term care homes, which means expanding the existing data of the Register of Health Institutions.
In the last decade, a new IT application of the Registry of Health Care Professionals was created and an even better connection with the Croatian Institute for Health Insurance, for example through the use of the so-called population register or the register of insured persons. The register continues to be the source of data and the authorized institution for the delivery of data to international bodies such as the WHO and the joint WHO/Eurostat/OECD database. Within the scope of the Department's activities are also activities in international initiatives and programs, and with regard to the problems of statistical monitoring, shortages and planning of health workers. Since 2012, we have been involved in the implementation of the "Global Code of Practice on International Recruitment of Health Personnel", a recommendation that is also an instrument in the regulation, improvement and establishment of standards in the migration process.
In the same year, the Department was involved in the work in the part of the program platform on the topic of Joint Action on European Health Workforce Planning and Forecasting.
Also, during the past years, there has been cooperation on the topic of health workers within the framework of the South-eastern Europe Health Network (SEEHN).
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
After May 3, 2024, this dataset and webpage will no longer be updated because hospitals are no longer required to report data on COVID-19 hospital admissions, and hospital capacity and occupancy data, to HHS through CDC’s National Healthcare Safety Network. Data voluntarily reported to NHSN after May 1, 2024, will be available starting May 10, 2024, at COVID Data Tracker Hospitalizations.
The following dataset provides facility-level data for hospital utilization aggregated on a weekly basis (Sunday to Saturday). These are derived from reports with facility-level granularity across two main sources: (1) HHS TeleTracking, and (2) reporting provided directly to HHS Protect by state/territorial health departments on behalf of their healthcare facilities.
The hospital population includes all hospitals registered with Centers for Medicare & Medicaid Services (CMS) as of June 1, 2020. It includes non-CMS hospitals that have reported since July 15, 2020. It does not include psychiatric, rehabilitation, Indian Health Service (IHS) facilities, U.S. Department of Veterans Affairs (VA) facilities, Defense Health Agency (DHA) facilities, and religious non-medical facilities.
For a given entry, the term “collection_week” signifies the start of the period that is aggregated. For example, a “collection_week” of 2020-11-15 means the average/sum/coverage of the elements captured from that given facility starting and including Sunday, November 15, 2020, and ending and including reports for Saturday, November 21, 2020.
Reported elements include an append of either “_coverage”, “_sum”, or “_avg”.
The file will be updated weekly. No statistical analysis is applied to impute non-response. For averages, calculations are based on the number of values collected for a given hospital in that collection week. Suppression is applied to the file for sums and averages less than four (4). In these cases, the field will be replaced with “-999,999”.
A story page was created to display both corrected and raw datasets and can be accessed at this link: https://healthdata.gov/stories/s/nhgk-5gpv
This data is preliminary and subject to change as more data become available. Data is available starting on July 31, 2020.
Sometimes, reports for a given facility will be provided to both HHS TeleTracking and HHS Protect. When this occurs, to ensure that there are not duplicate reports, deduplication is applied according to prioritization rules within HHS Protect.
For influenza fields listed in the file, the current HHS guidance marks these fields as optional. As a result, coverage of these elements are varied.
For recent updates to the dataset, scroll to the bottom of the dataset description.
On May 3, 2021, the following fields have been added to this data set.
On May 8, 2021, this data set has been converted to a corrected data set. The corrections applied to this data set are to smooth out data anomalies caused by keyed in data errors. To help determine which records have had corrections made to it. An additional Boolean field called is_corrected has been added.
On May 13, 2021 Changed vaccination fields from sum to max or min fields. This reflects the maximum or minimum number reported for that metric in a given week.
On June 7, 2021 Changed vaccination fields from max or min fields to Wednesday reported only. This reflects that the number reported for that metric is only reported on Wednesdays in a given week.
On September 20, 2021, the following has been updated: The use of analytic dataset as a source.
On January 19, 2022, the following fields have been added to this dataset:
On April 28, 2022, the following pediatric fields have been added to this dataset:
On October 24, 2022, the data includes more analytical calculations in efforts to provide a cleaner dataset. For a raw version of this dataset, please follow this link: https://healthdata.gov/Hospital/COVID-19-Reported-Patient-Impact-and-Hospital-Capa/uqq2-txqb
Due to changes in reporting requirements, after June 19, 2023, a collection week is defined as starting on a Sunday and ending on the next Saturday.