Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name
This city boundary shapefile was extracted from Esri Data and Maps for ArcGIS 2014 - U.S. Populated Place Areas. This shapefile can be joined to 500 Cities city-level Data (GIS Friendly Format) in a geographic information system (GIS) to make city-level maps.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
44 sheets of data, each sheet representing a table from the database that stores the information. The order of the sheets is based on the sequence of reporting forms for the Financial Transactions Report.
Geospatial data about US Cities and Towns (Local). Export to CAD, GIS, PDF, CSV and access via API.
2017, 2016. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project census tract-level data in GIS-friendly format can be joined with census tract spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-Census-Tract-Boundaries/x7zy-2xmx) in a geographic information system (GIS) to produce maps of 27 measures at the census tract level. There are 7 measures (all teeth lost, dental visits, mammograms, Pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) in this 2019 release from the 2016 BRFSS that were the same as the 2018 release.
This dataset provides a data dictionary for PLACES and 500 Cities releases. For each measure, the data dictionary provides the measure ID, measure full and short name, measure category ID and name, year of BRFSS data used to generate the estimate by release year, and frequency BRFSS collects data about the measure.
Complete accounting of all incorporated cities, including the boundary and name of each individual city. From 2009 to 2022 CAL FIRE maintained this dataset by processing and digitally capturing annexations sent by the state Board of Equalization (BOE). In 2022 CAL FIRE began sourcing data directly from BOE, in order to allow the authoritative department provide data directly. This data is then adjusted so it resembles the previous formats.Processing includes:• Clipping the dataset to traditional state boundaries• Erasing areas that span the Bay Area (derived from calw221.gdb)• Querying for incorporated areas only• Dissolving each incorporated polygon into a single feature• Calculating the COUNTY field to remove the word 'County'Version 24_1 is based on BOE_CityCounty_20240315, and includes all annexations present in BOE_CityAnx2023_20240315. Note: The Board of Equalization represents incorporated city boundaries as extending significantly into waterways, including beyond coastal boundaries. To see the representation in its original form please reference the datasets listed above.Note: The Board of Equalization represents incorporated city boundaries is extending significantly into waterways, including beyond coastal boundaries. To see the representation in its original form please reference the datasets listed above.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
2015, 2014. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project census city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. Because some questions are only asked every other year in the BRFSS, there are 7 measures in this 2017 release from the 2014 BRFSS that were the same as the 2016 release.
This dataset tracks real-time progress toward a comprehensive City Data Inventory.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains data collected during a study "Transparency of open data ecosystems in smart cities: Definition and assessment of the maturity of transparency in 22 smart cities" (Sustainable Cities and Society (SCS), vol.82, 103906) conducted by Martin Lnenicka (University of Pardubice), Anastasija Nikiforova (University of Tartu), Mariusz Luterek (University of Warsaw), Otmane Azeroual (German Centre for Higher Education Research and Science Studies), Dandison Ukpabi (University of Jyväskylä), Visvaldis Valtenbergs (University of Latvia), Renata Machova (University of Pardubice).
This study inspects smart cities’ data portals and assesses their compliance with transparency requirements for open (government) data by means of the expert assessment of 34 portals representing 22 smart cities, with 36 features.
It being made public both to act as supplementary data for the paper and in order for other researchers to use these data in their own work potentially contributing to the improvement of current data ecosystems and build sustainable, transparent, citizen-centered, and socially resilient open data-driven smart cities.
Purpose of the expert assessment The data in this dataset were collected in the result of the applying the developed benchmarking framework for assessing the compliance of open (government) data portals with the principles of transparency-by-design proposed by Lněnička and Nikiforova (2021)* to 34 portals that can be considered to be part of open data ecosystems in smart cities, thereby carrying out their assessment by experts in 36 features context, which allows to rank them and discuss their maturity levels and (4) based on the results of the assessment, defining the components and unique models that form the open data ecosystem in the smart city context.
Methodology Sample selection: the capitals of the Member States of the European Union and countries of the European Economic Area were selected to ensure a more coherent political and legal framework. They were mapped/cross-referenced with their rank in 5 smart city rankings: IESE Cities in Motion Index, Top 50 smart city governments (SCG), IMD smart city index (SCI), global cities index (GCI), and sustainable cities index (SCI). A purposive sampling method and systematic search for portals was then carried out to identify relevant websites for each city using two complementary techniques: browsing and searching. To evaluate the transparency maturity of data ecosystems in smart cities, we have used the transparency-by-design framework (Lněnička & Nikiforova, 2021)*. The benchmarking supposes the collection of quantitative data, which makes this task an acceptability task. A six-point Likert scale was applied for evaluating the portals. Each sub-dimension was supplied with its description to ensure the common understanding, a drop-down list to select the level at which the respondent (dis)agree, and a comment to be provided, which has not been mandatory. This formed a protocol to be fulfilled on every portal. Each sub-dimension/feature was assessed using a six-point Likert scale, where strong agreement is assessed with 6 points, while strong disagreement is represented by 1 point. Each website (portal) was evaluated by experts, where a person is considered to be an expert if a person works with open (government) data and data portals daily, i.e., it is the key part of their job, which can be public officials, researchers, and independent organizations. In other words, compliance with the expert profile according to the International Certification of Digital Literacy (ICDL) and its derivation proposed in Lněnička et al. (2021)* is expected to be met. When all individual protocols were collected, mean values and standard deviations (SD) were calculated, and if statistical contradictions/inconsistencies were found, reassessment took place to ensure individual consistency and interrater reliability among experts’ answers. *Lnenicka, M., & Nikiforova, A. (2021). Transparency-by-design: What is the role of open data portals?. Telematics and Informatics, 61, 101605 *Lněnička, M., Machova, R., Volejníková, J., Linhartová, V., Knezackova, R., & Hub, M. (2021). Enhancing transparency through open government data: the case of data portals and their features and capabilities. Online Information Review.
Test procedure (1) perform an assessment of each dimension using sub-dimensions, mapping out the achievement of each indicator (2) all sub-dimensions in one dimension are aggregated, and then the average value is calculated based on the number of sub-dimensions – the resulting average stands for a dimension value - eight values per portal (3) the average value from all dimensions are calculated and then mapped to the maturity level – this value of each portal is also used to rank the portals.
Description of the data in this data set Sheet#1 "comparison_overall" provides results by portal Sheet#2 "comparison_category" provides results by portal and category Sheet#3 "category_subcategory" provides list of categories and its elements
Format of the file .xls
Licenses or restrictions CC-BY
For more info, see README.txt
2016, 2015. Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. 500 cities project city-level data in GIS-friendly format can be joined with city spatial data (https://chronicdata.cdc.gov/500-Cities/500-Cities-City-Boundaries/n44h-hy2j) in a geographic information system (GIS) to produce maps of 27 measures at the city-level. There are 4 measures (high blood pressure, taking high blood pressure medication, high cholesterol, cholesterol screening) in this 2018 release from the 2015 BRFSS that were the same as the 2017 release.
Paid dataset with city names, coordinates, regions, and administrative divisions of Niue. Available in Excel (.xlsx), CSV, JSON, XML, and SQL formats after purchase.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we used remote sensing data from multiple sources (time-series of Landsat and Sentinel images) to map the impervious surface area (ISA) at five-year intervals from 1990 to 2015, and then converted the results into a standardized dataset of the built-up area for 433 Chinese cities with 300,000 inhabitants or more, which were listed in the United Nations (UN) World Urbanization Prospects (WUP) database (including Mainland China, Hong Kong, Macao and Taiwan). We employed a range of spectral indices to generate the 1990–2015 ISA maps in urban areas based on remotely sensed data acquired from multiple sources. In this process, various types of auxiliary data were used to create the desired products for urban areas through manual segmentation of peri-urban and rural areas together with reference to several freely available products of urban extent derived from ISA data using automated urban–rural segmentation methods. After that, following the well-established rules adopted by the UN, we carried out the conversion to the standardized built-up area products from the 1990–2015 ISA maps in urban areas, which conformed to the definition of urban agglomeration area (UAA). Finally, we implemented data postprocessing to guarantee the spatial accuracy and temporal consistency of the final product.The standardized urban built-up area dataset (SUBAD–China) introduced here is the first product using the same definition of UAA adopted by the WUP database for 433 county and higher-level cities in China. The comparisons made with contemporary data produced by the National Bureau of Statistics of China, the World Bank and UN-habitat indicate that our results have a high spatial accuracy and good temporal consistency and thus can be used to characterize the process of urban expansion in China.The SUBAD–China contains 2,598 vector files in shapefile format containing data for all China's cities listed in the WUP database that have different urban sizes and income levels with populations over 300,000. Attached with it, we also provided the distribution of validation points for the 1990–2010 ISA products of these 433 Chinese cities in shapefile format and the confusion matrices between classified data and reference data during different time periods as a Microsoft Excel Open XML Spreadsheet (XLSX) file.Furthermore, The standardized built-up area products for such cities will be consistently updated and refined to ensure the quality of their spatiotemporal coverage and accuracy. The production of this dataset together with the usage of population counts derived from the WUP database will close some of the data gaps in the calculation of SDG11.3.1 and benefit other downstream applications relevant to a combined analysis of the spatial and socio-economic domains in urban areas.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is the complete dataset for the 500 Cities project 2019 release. This dataset includes 2017, 2016 model-based small area estimates for 27 measures of chronic disease related to unhealthy behaviors (5), health outcomes (13), and use of preventive services (9). Data were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. The project was funded by the Robert Wood Johnson Foundation (RWJF) in conjunction with the CDC Foundation. It represents a first-of-its kind effort to release information on a large scale for cities and for small areas within those cities. It includes estimates for the 500 largest US cities and approximately 28,000 census tracts within these cities. These estimates can be used to identify emerging health problems and to inform development and implementation of effective, targeted public health prevention activities. Because the small area model cannot detect effects due to local interventions, users are cautioned against using these estimates for program or policy evaluations. Data sources used to generate these measures include Behavioral Risk Factor Surveillance System (BRFSS) data (2017, 2016), Census Bureau 2010 census population data, and American Community Survey (ACS) 2013-2017, 2012-2016 estimates. Because some questions are only asked every other year in the BRFSS, there are 7 measures (all teeth lost, dental visits, mammograms, pap tests, colorectal cancer screening, core preventive services among older adults, and sleep less than 7 hours) from the 2016 BRFSS that are the same in the 2019 release as the previous 2018 release. More information about the methodology can be found at www.cdc.gov/500cities.
Paid dataset with city names, coordinates, regions, and administrative divisions of Gabon. Available in Excel (.xlsx), CSV, JSON, XML, and SQL formats after purchase.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
44 sheets of data, each sheet representing a table from the database that stores the information. The order of the sheets is based on the sequence of reporting forms for the Financial Transactions Report.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Context
The dataset tabulates the Florida City population distribution across 18 age groups. It lists the population in each age group along with the percentage population relative of the total population for Florida City. The dataset can be utilized to understand the population distribution of Florida City by age. For example, using this dataset, we can identify the largest age group in Florida City.
Key observations
The largest age group in Florida City, FL was for the group of age 5-9 years with a population of 1,729 (13.46%), according to the 2021 American Community Survey. At the same time, the smallest age group in Florida City, FL was the 85+ years with a population of 95 (0.74%). Source: U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates.
Age groups:
Variables / Data Columns
Good to know
Margin of Error
Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.
Custom data
If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.
Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.
This dataset is a part of the main dataset for Florida City Population by Age. You can refer the same here
This data contains both the Cities and Communities in San Bernardino County. Data is current as of December 2024. For questions about this dataset, please email opendata@isd.sbcounty.gov.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
All cities with a population > 1000 or seats of adm div (ca 80.000)Sources and ContributionsSources : GeoNames is aggregating over hundred different data sources. Ambassadors : GeoNames Ambassadors help in many countries. Wiki : A wiki allows to view the data and quickly fix error and add missing places. Donations and Sponsoring : Costs for running GeoNames are covered by donations and sponsoring.Enrichment:add country name