Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
CodeParrot 🦜 Dataset Cleaned
What is it?
A dataset of Python files from Github. This is the deduplicated version of the codeparrot.
Processing
The original dataset contains a lot of duplicated and noisy data. Therefore, the dataset was cleaned with the following steps:
Deduplication Remove exact matches
Filtering Average line length < 100 Maximum line length < 1000 Alpha numeric characters fraction > 0.25 Remove auto-generated files (keyword search)
For… See the full description on the dataset page: https://huggingface.co/datasets/codeparrot/codeparrot-clean.
The EPA GitHub repository PAU4ChemAs as described in the README.md file, contains Python scripts written to build the PAU dataset modules (technologies, capital and operating costs, and chemical prices) for tracking chemical flows transfers, releases estimation, and identification of potential occupation exposure scenarios in pollution abatement units (PAUs). These PAUs are employed for on-site chemical end-of-life management. The folder datasets contains the outputs for each framework step. The Chemicals_in_categories.csv contains the chemicals for the TRI chemical categories. The EPA GitHub repository PAU_case_study as described in its readme.md entry, contains the Python scripts to run the manuscript case study for designing the PAUs, the data-driven models, and the decision-making module for chemicals of concern and tracking flow transfers at the end-of-life stage. The data was obtained by means of data engineering using different publicly-available databases. The properties of chemicals were obtained using the GitHub repository Properties_Scraper, while the PAU dataset using the repository PAU4Chem. Finally, the EPA GitHub repository Properties_Scraper contains a Python script to massively gather information about exposure limits and physical properties from different publicly-available sources: EPA, NOAA, OSHA, and the institute for Occupational Safety and Health of the German Social Accident Insurance (IFA). Also, all GitHub repositories describe the Python libraries required for running their code, how to use them, the obtained outputs files after running the Python script modules, and the corresponding EPA Disclaimer. This dataset is associated with the following publication: Hernandez-Betancur, J.D., M. Martin, and G.J. Ruiz-Mercado. A data engineering framework for on-site end-of-life industrial operations. JOURNAL OF CLEANER PRODUCTION. Elsevier Science Ltd, New York, NY, USA, 327: 129514, (2021).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):
Label Data type Description
isogramy int The order of isogramy, e.g. "2" is a second order isogram
length int The length of the word in letters
word text The actual word/isogram in ASCII
source_pos text The Part of Speech tag from the original corpus
count int Token count (total number of occurences)
vol_count int Volume count (number of different sources which contain the word)
count_per_million int Token count per million words
vol_count_as_percent int Volume count as percentage of the total number of volumes
is_palindrome bool Whether the word is a palindrome (1) or not (0)
is_tautonym bool Whether the word is a tautonym (1) or not (0)
The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:
Label
Data type
Description
!total_1grams
int
The total number of words in the corpus
!total_volumes
int
The total number of volumes (individual sources) in the corpus
!total_isograms
int
The total number of isograms found in the corpus (before compacting)
!total_palindromes
int
How many of the isograms found are palindromes
!total_tautonyms
int
How many of the isograms found are tautonyms
The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ApacheJIT: A Large Dataset for Just-In-Time Defect Prediction
This archive contains the ApacheJIT dataset presented in the paper "ApacheJIT: A Large Dataset for Just-In-Time Defect Prediction" as well as the replication package. The paper is submitted to MSR 2022 Data Showcase Track.
The datasets are available under directory dataset. There are 4 datasets in this directory.
In addition to the dataset, we also provide the scripts using which we built the dataset. These scripts are written in Python 3.8. Therefore, Python 3.8 or above is required. To set up the environment, we have provided a list of required packages in file requirements.txt. Additionally, one filtering step requires GumTree [1]. For Java, GumTree requires Java 11. For other languages, external tools are needed. Installation guide and more details can be found here.
The scripts are comprised of Python scripts under directory src and Python notebooks under directory notebooks. The Python scripts are mainly responsible for conducting GitHub search via GitHub search API and collecting commits through PyDriller Package [2]. The notebooks link the fixed issue reports with their corresponding fixing commits and apply some filtering steps. The bug-inducing candidates then are filtered again using gumtree.py script that utilizes the GumTree package. Finally, the remaining bug-inducing candidates are combined with the clean commits in the dataset_construction notebook to form the entire dataset.
More specifically, git_token.py handles GitHub API token that is necessary for requests to GitHub API. Script collector.py performs GitHub search. Tracing changed lines and git annotate is done in gitminer.py using PyDriller. Finally, gumtree.py applies 4 filtering steps (number of lines, number of files, language, and change significance).
References:
Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin Monperrus. 2014. Fine-grained and accurate source code differencing. In ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,Vasteras, Sweden - September 15 - 19, 2014. 313–324
Davide Spadini, Maurício Aniche, and Alberto Bacchelli. 2018. PyDriller: Python Framework for Mining Software Repositories. In Proceedings of the 2018 26th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering(Lake Buena Vista, FL, USA)(ESEC/FSE2018). Association for Computing Machinery, New York, NY, USA, 908–911
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.
The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).
The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.
This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.
The dataset is gathered on Sep. 17th 2020 from GitHub. It has more than 5.2K Python repositories and 4.2M type annotations. The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This is the BBC news dataset (cleaned version) which I have uploaded after my previous dataset post. The original dataset downloaded from the UCI Machine Learning Repository was unclean. The dataset was cleaned by extracting the keywords from the description column into the noisy 'keys' column data.
The BBC news dataset consists of the following data 1. # - News ID. 2. descr - description/detail of the news provided. 3. tags - the tags/keywords related to the corresponding news in the 'descr' label.
klib library enables us to quickly visualize missing data, perform data cleaning, visualize data distribution plot, visualize correlation plot and visualize categorical column values. klib is a Python library for importing, cleaning, analyzing and preprocessing data. Explanations on key functionalities can be found on Medium / TowardsDataScience in the examples section or on YouTube (Data Professor).
Original Github repo
https://raw.githubusercontent.com/akanz1/klib/main/examples/images/header.png" alt="klib Header">
!pip install klib
import klib
import pandas as pd
df = pd.DataFrame(data)
# klib.describe functions for visualizing datasets
- klib.cat_plot(df) # returns a visualization of the number and frequency of categorical features
- klib.corr_mat(df) # returns a color-encoded correlation matrix
- klib.corr_plot(df) # returns a color-encoded heatmap, ideal for correlations
- klib.dist_plot(df) # returns a distribution plot for every numeric feature
- klib.missingval_plot(df) # returns a figure containing information about missing values
Take a look at this starter notebook.
Further examples, as well as applications of the functions can be found here.
Pull requests and ideas, especially for further functions are welcome. For major changes or feedback, please open an issue first to discuss what you would like to change. Take a look at this Github repo.
This dataset was created by Eric R.
The dataset is gathered on Sep. 17th 2020 from GitHub. It has clean and complete versions (from v0.7): The clean version has 5.1K type-checked Python repositories and 1.2M type annotations. The complete version has 5.2K Python repositories and 3.3M type annotations. The dataset's source files are type-checked using mypy (clean version). The dataset is also de-duplicated using the CD4Py tool. Check out the README.MD file for the description of the dataset. Notable changes to each version of the dataset are documented in CHANGELOG.md. The dataset's scripts and utilities are available on its GitHub repository. {"references": ["A. Mir, E. Latoskinas and G. Gousios, "ManyTypes4Py: A Benchmark Python Dataset for Machine Learning-Based Type Inference," in 2021 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), 2021 pp. 585-589. doi: 10.1109/MSR52588.2021.00079"]}
Description: Dive into the world of exceptional cinema with our meticulously curated dataset, "IMDb's Gems Unveiled." This dataset is a result of an extensive data collection effort based on two critical criteria: IMDb ratings exceeding 7 and a substantial number of votes, surpassing 10,000. The outcome? A treasure trove of 4070 movies meticulously selected from IMDb's vast repository.
What sets this dataset apart is its richness and diversity. With more than 20 data points meticulously gathered for each movie, this collection offers a comprehensive insight into each cinematic masterpiece. Our data collection process leveraged the power of Selenium and Pandas modules, ensuring accuracy and reliability.
Cleaning this vast dataset was a meticulous task, combining both Excel and Python for optimum precision. Analysis is powered by Pandas, Matplotlib, and NLTK, enabling to uncover hidden patterns, trends, and themes within the realm of cinema.
Note: The data is collected as of April 2023. Future versions of this analysis include Movie recommendation system Please do connect for any queries, All Love, No Hate.
Automatically describing images using natural sentences is an essential task to visually impaired people's inclusion on the Internet. Although there are many datasets in the literature, most of them contain only English captions, whereas datasets with captions described in other languages are scarce.
PraCegoVer arose on the Internet, stimulating users from social media to publish images, tag #PraCegoVer and add a short description of their content. Inspired by this movement, we have proposed the #PraCegoVer, a multi-modal dataset with Portuguese captions based on posts from Instagram. It is the first large dataset for image captioning in Portuguese with freely annotated images.
Dataset Structure
containing the images. The file dataset.json comprehends a list of json objects with the attributes:
user: anonymized user that made the post;
filename: image file name;
raw_caption: raw caption;
caption: clean caption;
date: post date.
Each instance in dataset.json is associated with exactly one image in the images directory whose filename is pointed by the attribute filename. Also, we provide a sample with five instances, so the users can download the sample to get an overview of the dataset before downloading it completely.
Download Instructions
If you just want to have an overview of the dataset structure, you can download sample.tar.gz. But, if you want to use the dataset, or any of its subsets (63k and 173k), you must download all the files and run the following commands to uncompress and join the files:
cat images.tar.gz.part* > images.tar.gz tar -xzvf images.tar.gz
Alternatively, you can download the entire dataset from the terminal using the python script download_dataset.py available in PraCegoVer repository. In this case, first, you have to download the script and create an access token here. Then, you can run the following command to download and uncompress the image files:
python download_dataset.py --access_token=
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Copies of Anaconda 3 Jupyter Notebooks and Python script for holistic and clustered analysis of "The Impact of COVID-19 on Technical Services Units" survey results. Data was analyzed holistically using cleaned and standardized survey results and by library type clusters. To streamline data analysis in certain locations, an off-shoot CSV file was created so data could be standardized without compromising the integrity of the parent clean file. Three Jupyter Notebooks/Python scripts are available in relation to this project: COVID_Impact_TechnicalServices_HolisticAnalysis (a holistic analysis of all survey data) and COVID_Impact_TechnicalServices_LibraryTypeAnalysis (a clustered analysis of impact by library type, clustered files available as part of the Dataverse for this project).
Making Byzantine Computational Musicology FAIR - a working example This is the repository for the Making Byzantine Computational Musicology FAIR - a working example project. We have submitted a short paper for this. In this repository, there is a folder with the dataset, the data package schemas in YAML file, as well as the python code (main.py) for describing and validating the data. Upon acceptance of the paper, the accepted draft will also be uploaded.
Machine learning approaches are often trained and evaluated with datasets that require a clear separation between positive and negative examples. This approach overly simplifies the natural subjectivity present in many tasks and content items. It also obscures the inherent diversity in human perceptions and opinions. Often tasks that attempt to preserve the variance in content and diversity in humans are quite expensive and laborious. To fill in this gap and facilitate more in-depth model performance analyses we propose the DICES dataset - a unique dataset with diverse perspectives on safety of AI generated conversations. We focus on the task of safety evaluation of conversational AI systems. The DICES dataset contains detailed demographics information about each rater, extremely high replication of unique ratings per conversation to ensure statistical significance of further analyses and encodes rater votes as distributions across different demographics to allow for in-depth explorations of different rating aggregation strategies.
This dataset is well suited to observe and measure variance, ambiguity and diversity in the context of safety of conversational AI. The dataset is accompanied by a paper describing a set of metrics that show how rater diversity influences the safety perception of raters from different geographic regions, ethnicity groups, age groups and genders. The goal of the DICES dataset is to be used as a shared benchmark for safety evaluation of conversational AI systems.
CONTENT WARNING: This dataset contains adversarial examples of conversations that may be offensive.
To use this dataset:
import tensorflow_datasets as tfds
ds = tfds.load('dices', split='train')
for ex in ds.take(4):
print(ex)
See the guide for more informations on tensorflow_datasets.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
We processed a unified trajectory dataset for automated vehicles' longitudinal behavior from 14 distinct sources. The extraction and cleaning of the dataset contains the following three steps - 1. extraction of longitudinal trajectory data, 2. general data cleaning, and 3. data-specific cleaning. The dataset obtained from step 2 and step 3 are named as the longitudinal trajectory data and car-following trajectory data. We also analyzed and validated the data by multiple methods. The obtained datasets are provided in this repo. The Python code used to analyze the datasets can be found at https://github.com/CATS-Lab/Filed-Experiment-Data-ULTra-AV. We hope this dataset can benefit the study of microscopic longitudinal AV behaviors.
The provided Python code is a comprehensive analysis of sales data for a business that involves the merging of monthly sales data, cleaning and augmenting the dataset, and performing various analytical tasks. Here's a breakdown of the code:
Data Preparation and Merging:
The code begins by importing necessary libraries and filtering out warnings. It merges sales data from 12 months into a single file named "all_data.csv." Data Cleaning:
Rows with NaN values are dropped, and any entries starting with 'Or' in the 'Order Date' column are removed. Columns like 'Quantity Ordered' and 'Price Each' are converted to numeric types for further analysis. Data Augmentation:
Additional columns such as 'Month,' 'Sales,' and 'City' are added to the dataset. The 'City' column is derived from the 'Purchase Address' column. Analysis:
Several analyses are conducted, answering questions such as: The best month for sales and total earnings. The city with the highest number of sales. The ideal time for advertisements based on the number of orders per hour. Products that are often sold together. The best-selling products and their correlation with price. Visualization:
Bar charts and line plots are used for visualizing the analysis results, making it easier to interpret trends and patterns. Matplotlib is employed for creating visualizations. Summary:
The code concludes with a comprehensive visualization that combines the quantity ordered and average price for each product, shedding light on product performance. This code is structured to offer insights into sales patterns, customer behavior, and product performance, providing valuable information for strategic decision-making in the business.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Modern research projects incorporate data from several sources, and new insights are increasingly driven by the ability to interpret data in the context of other data. Glue is an interactive environment built on top of the standard Python science stack to visualize relationships within and between datasets. With Glue, users can load and visualize multiple related datasets simultaneously. Users specify the logical connections that exist between data, and Glue transparently uses this information as needed to enable visualization across files. This functionality makes it trivial, for example, to interactively overplot catalogs on top of images. The central philosophy behind Glue is that the structure of research data is highly customized and problem-specific. Glue aims to accommodate this and simplify the "data munging" process, so that researchers can more naturally explore what their data have to say. The result is a cleaner scientific workflow, faster interaction with data, and an easier avenue to insight.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically