CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
A messy data for demonstrating "how to clean data using spreadsheet". This dataset was intentionally formatted to be messy, for the purpose of demonstration. It was collated from here - https://openafrica.net/dataset/historic-and-projected-rainfall-and-runoff-for-4-lake-victoria-sub-regions
Ahoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.
The main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis
National, including Funafuti and Outer islands
All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope
Sample survey data [ssd]
It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.
For details please refer to Table 1.1 of the Report.
Only the island of Niulakita was not included in the sampling frame, considered too small.
Face-to-face [f2f]
There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.
HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items
INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer
DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)
Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:
Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.
Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.
Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.
Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.
Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.
Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.
All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.
The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.
Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.
A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.
Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.
Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.
Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This collection contains the 17 anonymised datasets from the RAAAP-2 international survey of research management and administration professional undertaken in 2019. To preserve anonymity the data are presented in 17 datasets linked only by AnalysisRegionofEmployment, as many of the textual responses, even though redacted to remove institutional affiliation could be used to identify some individuals if linked to the other data. Each dataset is presented in the original SPSS format, suitable for further analyses, as well as an Excel equivalent for ease of viewing. There are additional files in this collection showing the the questionnaire and the mappings to the datasets together with the SPSS scripts used to produce the datasets. These data follow on from, but re not directly linked to the first RAAAP survey undertaken in 2016, data from which can also be found in FigShare Errata (16/5/23) an error in v13 of the main Data Cleansing syntax file (now updated to v14) meant that two variables were missing their value labels (the underlying codes were correct) - a new version (SPSS & Excel) of the Main Dataset has been updated
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This Kaggle dataset comes from an output dataset that powers my March Madness Data Analysis dashboard in Domo. - Click here to view this dashboard: Dashboard Link - Click here to view this dashboard features in a Domo blog post: Hoops, Data, and Madness: Unveiling the Ultimate NCAA Dashboard
This dataset offers one the most robust resource you will find to discover key insights through data science and data analytics using historical NCAA Division 1 men's basketball data. This data, sourced from KenPom, goes as far back as 2002 and is updated with the latest 2025 data. This dataset is meticulously structured to provide every piece of information that I could pull from this site as an open-source tool for analysis for March Madness.
Key features of the dataset include: - Historical Data: Provides all historical KenPom data from 2002 to 2025 from the Efficiency, Four Factors (Offense & Defense), Point Distribution, Height/Experience, and Misc. Team Stats endpoints from KenPom's website. Please note that the Height/Experience data only goes as far back as 2007, but every other source contains data from 2002 onward. - Data Granularity: This dataset features an individual line item for every NCAA Division 1 men's basketball team in every season that contains every KenPom metric that you can possibly think of. This dataset has the ability to serve as a single source of truth for your March Madness analysis and provide you with the granularity necessary to perform any type of analysis you can think of. - 2025 Tournament Insights: Contains all seed and region information for the 2025 NCAA March Madness tournament. Please note that I will continually update this dataset with the seed and region information for previous tournaments as I continue to work on this dataset.
These datasets were created by downloading the raw CSV files for each season for the various sections on KenPom's website (Efficiency, Offense, Defense, Point Distribution, Summary, Miscellaneous Team Stats, and Height). All of these raw files were uploaded to Domo and imported into a dataflow using Domo's Magic ETL. In these dataflows, all of the column headers for each of the previous seasons are standardized to the current 2025 naming structure so all of the historical data can be viewed under the exact same field names. All of these cleaned datasets are then appended together, and some additional clean up takes place before ultimately creating the intermediate (INT) datasets that are uploaded to this Kaggle dataset. Once all of the INT datasets were created, I joined all of the tables together on the team name and season so all of these different metrics can be viewed under one single view. From there, I joined an NCAAM Conference & ESPN Team Name Mapping table to add a conference field in its full length and respective acronyms they are known by as well as the team name that ESPN currently uses. Please note that this reference table is an aggregated view of all of the different conferences a team has been a part of since 2002 and the different team names that KenPom has used historically, so this mapping table is necessary to map all of the teams properly and differentiate the historical conferences from their current conferences. From there, I join a reference table that includes all of the current NCAAM coaches and their active coaching lengths because the active current coaching length typically correlates to a team's success in the March Madness tournament. I also join another reference table to include the historical post-season tournament teams in the March Madness, NIT, CBI, and CIT tournaments, and I join another reference table to differentiate the teams who were ranked in the top 12 in the AP Top 25 during week 6 of the respective NCAA season. After some additional data clean-up, all of this cleaned data exports into the "DEV _ March Madness" file that contains the consolidated view of all of this data.
This dataset provides users with the flexibility to export data for further analysis in platforms such as Domo, Power BI, Tableau, Excel, and more. This dataset is designed for users who wish to conduct their own analysis, develop predictive models, or simply gain a deeper understanding of the intricacies that result in the excitement that Division 1 men's college basketball provides every year in March. Whether you are using this dataset for academic research, personal interest, or professional interest, I hope this dataset serves as a foundational tool for exploring the vast landscape of college basketball's most riveting and anticipated event of its season.
The 2003 Agriculture Sample Census was designed to meet the data needs of a wide range of users down to district level including policy makers at local, regional and national levels, rural development agencies, funding institutions, researchers, NGOs, farmer organisations, etc. As a result the dataset is both more numerous in its sample and detailed in its scope compared to previous censuses and surveys. To date this is the most detailed Agricultural Census carried out in Africa.
The census was carried out in order to: · Identify structural changes if any, in the size of farm household holdings, crop and livestock production, farm input and implement use. It also seeks to determine if there are any improvements in rural infrastructure and in the level of agriculture household living conditions; · Provide benchmark data on productivity, production and agricultural practices in relation to policies and interventions promoted by the Ministry of Agriculture and Food Security and other stake holders. · Establish baseline data for the measurement of the impact of high level objectives of the Agriculture Sector Development Programme (ASDP), National Strategy for Growth and Reduction of Poverty (NSGRP) and other rural development programs and projects. · Obtain benchmark data that will be used to address specific issues such as: food security, rural poverty, gender, agro-processing, marketing, service delivery, etc.
Tanzania Mainland and Zanzibar
Large scale, small scale and community farms.
Census/enumeration data [cen]
The Mainland sample consisted of 3,221 villages. These villages were drawn from the National Master Sample (NMS) developed by the National Bureau of Statistics (NBS) to serve as a national framework for the conduct of household based surveys in the country. The National Master Sample was developed from the 2002 Population and Housing Census. The total Mainland sample was 48,315 agricultural households. In Zanzibar a total of 317 enumeration areas (EAs) were selected and 4,755 agriculture households were covered. Nationwide, all regions and districts were sampled with the exception of three urban districts (two from Mainland and one from Zanzibar).
In both Mainland and Zanzibar, a stratified two stage sample was used. The number of villages/EAs selected for the first stage was based on a probability proportional to the number of villages in each district. In the second stage, 15 households were selected from a list of farming households in each selected Village/EA, using systematic random sampling, with the village chairpersons assisting to locate the selected households.
Face-to-face [f2f]
The census covered agriculture in detail as well as many other aspects of rural development and was conducted using three different questionnaires: • Small scale questionnaire • Community level questionnaire • Large scale farm questionnaire
The small scale farm questionnaire was the main census instrument and it includes questions related to crop and livestock production and practices; population demographics; access to services, resources and infrastructure; and issues on poverty, gender and subsistence versus profit making production unit.
The community level questionnaire was designed to collect village level data such as access and use of common resources, community tree plantation and seasonal farm gate prices.
The large scale farm questionnaire was administered to large farms either privately or corporately managed.
Questionnaire Design The questionnaires were designed following user meetings to ensure that the questions asked were in line with users data needs. Several features were incorporated into the design of the questionnaires to increase the accuracy of the data: • Where feasible all variables were extensively coded to reduce post enumeration coding error. • The definitions for each section were printed on the opposite page so that the enumerator could easily refer to the instructions whilst interviewing the farmer. • The responses to all questions were placed in boxes printed on the questionnaire, with one box per character. This feature made it possible to use scanning and Intelligent Character Recognition (ICR) technologies for data entry. • Skip patterns were used to reduce unnecessary and incorrect coding of sections which do not apply to the respondent. • Each section was clearly numbered, which facilitated the use of skip patterns and provided a reference for data type coding for the programming of CSPro, SPSS and the dissemination applications.
Data processing consisted of the following processes: · Data entry · Data structure formatting · Batch validation · Tabulation
Data Entry Scanning and ICR data capture technology for the small holder questionnaire were used on the Mainland. This not only increased the speed of data entry, it also increased the accuracy due to the reduction of keystroke errors. Interactive validation routines were incorporated into the ICR software to track errors during the verification process. The scanning operation was so successful that it is highly recommended for adoption in future censuses/surveys. In Zanzibar all data was entered manually using CSPro.
Prior to scanning, all questionnaires underwent a manual cleaning exercise. This involved checking that the questionnaire had a full set of pages, correct identification and good handwriting. A score was given to each questionnaire based on the legibility and the completeness of enumeration. This score will be used to assess the quality of enumeration and supervision in order to select the best field staff for future censuses/surveys.
CSPro was used for data entry of all Large Scale Farm and community based questionnaires due to the relatively small number of questionnaires. It was also used to enter data from the 2,880 small holder questionnaires that were rejected by the ICR extraction application.
Data Structure Formatting A program was developed in visual basic to automatically alter the structure of the output from the scanning/extraction process in order to harmonise it with the manually entered data. The program automatically checked and changed the number of digits for each variable, the record type code, the number of questionnaires in the village, the consistency of the Village ID Code and saved the data of one village in a file named after the village code.
Batch Validation A batch validation program was developed in order to identify inconsistencies within a questionnaire. This is in addition to the interactive validation during the ICR extraction process. The procedures varied from simple range checking within each variable to the more complex checking between variables. It took six months to screen, edit and validate the data from the smallholder questionnaires. After the long process of data cleaning, tabulations were prepared based on a pre-designed tabulation plan.
Tabulations Statistical Package for Social Sciences (SPSS) was used to produce the Census tabulations and Microsoft Excel was used to organize the tables and compute additional indicators. Excel was also used to produce charts while ArcView and Freehand were used for the maps.
Analysis and Report Preparation The analysis in this report focuses on regional comparisons, time series and national production estimates. Microsoft Excel was used to produce charts; ArcView and Freehand were used for maps, whereas Microsoft Word was used to compile the report.
Data Quality A great deal of emphasis was placed on data quality throughout the whole exercise from planning, questionnaire design, training, supervision, data entry, validation and cleaning/editing. As a result of this, it is believed that the census is highly accurate and representative of what was experienced at field level during the Census year. With very few exceptions, the variables in the questionnaire are within the norms for Tanzania and they follow expected time series trends when compared to historical data. Standard Errors and Coefficients of Variation for the main variables are presented in the Technical Report (Volume I).
The Sampling Error found on page (21) up to page (22) in the Technical Report for Agriculture Sample Census Survey 2002-2003
Analyzing sales data is essential for any business looking to make informed decisions and optimize its operations. In this project, we will utilize Microsoft Excel and Power Query to conduct a comprehensive analysis of Superstore sales data. Our primary objectives will be to establish meaningful connections between various data sheets, ensure data quality, and calculate critical metrics such as the Cost of Goods Sold (COGS) and discount values. Below are the key steps and elements of this analysis:
1- Data Import and Transformation:
2- Data Quality Assessment:
3- Calculating COGS:
4- Discount Analysis:
5- Sales Metrics:
6- Visualization:
7- Report Generation:
Throughout this analysis, the goal is to provide a clear and comprehensive understanding of the Superstore's sales performance. By using Excel and Power Query, we can efficiently manage and analyze the data, ensuring that the insights gained contribute to the store's growth and success.
As the U.S. Environmental Protection Agency (EPA) pursues its mission to protect human health and the environment, we actively work with communities and local partners all over America to limit the risk of exposure to contaminants that might have negative health impacts. We have been working in Dallas, Texas, at the Lane Plating Works, Inc. Superfund Site to identify and understand any potential risks to human health or the environment and to mitigate those risks.
In March 2016, the EPA performed a Removal Assessment based on previous investigations conducted by the Texas Commission on Environmental Quality (TCEQ). Based on EPA and TCEQ investigations, it was determined that the Site presented a threat to public health or the environment or the welfare of the United States. EPA conducted additional sampling events from 2016 to 2022 to determine the extent of site-related contaminants of concern (COC) in soil and air. Site COCs in soil included hexavalent chromium, lead, mercury, arsenic, cadmium, and chromium present at concentrations exceeding EPA cleanup levels. Air samples collected from inside the former plating facility EPA exhibited hexavalent chromium levels above health-based standards. Asbestos was identified to be present in the former plating facility. The contaminants identified at the site present a threat to human health and the environment.
EPA completed the final removal assessment in September 2022. The EPA collected 1,060 samples during the assessments, including 712 soil samples. The overall highest detection levels found in soil and dates are as follows:
Hexavalent Chromium: 5,620 mg/Kg in April 2016 Lead: 24,500 mg/Kg in April 2016 Mercury: 839 mg/Kg in June 2022 Arsenic: 25.9 mg/Kg in September 2022
The EPA Site-specific COCs and cleanup levels in soil are:
Hexavalent Chromium: 30 mg/Kg Lead: 400 mg/Kg Mercury: 11 mg/Kg Arsenic: 35 mg/Kg
Based on the analytical data from air and soil samples collected, it was determined that the Lane Plating Site does pose a threat to public health and the environment. The Environmental Protection Agency authorized a Time-Critical Removal Action to begin in November 2022. During the course of the Time-Critical Removal Action, perimeter air monitoring will be conducted on site and EPA will notify the community if there are exceedances to the particulate site action level.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Over the last 20 years, statistics preparation has become vital for a broad range of scientific fields, and statistics coursework has been readily incorporated into undergraduate and graduate programs. However, a gap remains between the computational skills taught in statistics service courses and those required for the use of statistics in scientific research. Ten years after the publication of "Computing in the Statistics Curriculum,'' the nature of statistics continues to change, and computing skills are more necessary than ever for modern scientific researchers. In this paper, we describe research on the design and implementation of a suite of data science workshops for environmental science graduate students, providing students with the skills necessary to retrieve, view, wrangle, visualize, and analyze their data using reproducible tools. These workshops help to bridge the gap between the computing skills necessary for scientific research and the computing skills with which students leave their statistics service courses. Moreover, though targeted to environmental science graduate students, these workshops are open to the larger academic community. As such, they promote the continued learning of the computational tools necessary for working with data, and provide resources for incorporating data science into the classroom.
Methods Surveys from Carpentries style workshops the results of which are presented in the accompanying manuscript.
Pre- and post-workshop surveys for each workshop (Introduction to R, Intermediate R, Data Wrangling in R, Data Visualization in R) were collected via Google Form.
The surveys administered for the fall 2018, spring 2019 academic year are included as pre_workshop_survey and post_workshop_assessment PDF files.
The raw versions of these data are included in the Excel files ending in survey_raw or assessment_raw.
The data files whose name includes survey contain raw data from pre-workshop surveys and the data files whose name includes assessment contain raw data from the post-workshop assessment survey.
The annotated RMarkdown files used to clean the pre-workshop surveys and post-workshop assessments are included as workshop_survey_cleaning and workshop_assessment_cleaning, respectively.
The cleaned pre- and post-workshop survey data are included in the Excel files ending in clean.
The summaries and visualizations presented in the manuscript are included in the analysis annotated RMarkdown file.
In the beginning, the case was just data for a company that did not indicate any useful information that would help decision-makers. In this case, after collecting a number of revenues and expenses over the months.
Needed to know the answers to a number of questions to make important decisions based on intuition-free data.
The Questions:-
About Rev. & Exp.
- What is the total sales and profit for the whole period? And What Total products sold? And What is Net profit?
- In which month was the highest percentage of revenue achieved? And in the same month, what is the largest day have amount of revenue?
- In which month was the highest percentage of expenses achieved? And in the same month, what is the largest day have amount of exp.?
- What is the extent of the change in expenditures for each month?
Percentage change in net profit over the months?
About Distribution
- What is the number of products sold each month in the largest state?
-The top 3 largest states buying products during the two years?
Comparison
- Between Sales Method by Sales?
- Between Men and Women’s Product by Sales?
- Between Retailer by Profit?
What I did? - Understanding the data - preprocessing and clean the data - Solve The problems in the cleaning like missing data or false type data - querying the data and make some calculations like "COGS" with power query "Excel". - Modeling and make some measures on the data with power pivot "Excel" - After finishing processing and preparation, I made Some Pivot tables to answers the questions. - Last, I made a dashboard with Power BI to visualize The Results.
A Knowledge, Attitudes and Practices (KAP) survey was conducted in Ajuong Thok and Pamir Refugee Camps in October 2019 to determine the current Water, Sanitation and Hygiene (WASH) conditions as well as hygiene attitudes and practices within the households (HHs) surveyed. The assessment utilized a systematic random sampling method, and a total of 1,474 HHs (735 HHs in Ajuong Thok and 739 HHs in Pamir) were surveyed using mobile data collection (MDC) within a period of 21 days. Data was cleaned and analyzed in Excel. The summary of the results is presented in this report.
The findings show that the overall average number of liters of water per person per day was 23.4, in both Ajuong Thok and Pamir Camps, which was slightly higher than the recommended United Nations High Commissioner for Refugees (UNHCR) minimum standard of at least 20 liters of water available per person per day. This is a slight improvement from the 21 liters reported the previous year. The average HH size was six people. Women comprised 83% of the surveyed respondents and males 17%. Almost all the respondents were refugees, constituting 99.5% (n=1,466). The refugees were aware of the key health and hygiene practices, possibly as a result of routine health and hygiene messages delivered to them by Samaritan´s Purse (SP) and other health partners. Most refugees had knowledge about keeping the water containers clean, washing hands during critical times, safe excreta disposal and disease prevention.
Ajuong Thok and Pamir Refugee Camps
Households
All households in Ajuong Thok and Pamir Refugee Camps
Sample survey data [ssd]
Households were selected using systematic random sampling. Enumerators systematically walked through the camp block by block, row by row, in such a way as to pass each HH. Within blocks, enumerators started at one corner, then systematically used the sampling interval as they walked up and down each of the rows throughout the block, covering every block in Ajuong Thok and Pamir.
In each location, the first HH sampled in a block was generated using an Excel tool customized by UNHCR which generated a Random Start and Sampling Interval.
Face-to-face [f2f]
The survey questionnaire used to collect the data consists of the following sections: - Demographics - Water collection and storage - Drinking water hygiene - Hygiene - Sanitation - Messaging - Distribution (NFI) - Diarrhea prevalence, knowledge and health seeking behaviour - Menstrual hygiene
The data collected was uploaded to a server at the end of each day. IFormBuilder generated a Microsoft (MS) Excel spreadsheet dataset which was then cleaned and analyzed using MS Excel.
Given that SP is currently implementing a WASH program in Ajuong Thok and Pamir, the assessment data collected in these camps will not only serve as the endline for UNHCR 2018 programming but also as the baseline for 2019 programming.
Data was anonymized through decoding and local suppression.
This layer visualizes over 60,000 commercial flight paths. The data was obtained from openflights.org, and was last updated in June 2014. The site states, "The third-party that OpenFlights uses for route data ceased providing updates in June 2014. The current data is of historical value only. As of June 2014, the OpenFlights/Airline Route Mapper Route Database contains 67,663 routes between 3,321 airports on 548 airlines spanning the globe. Creating and maintaining this database has required and continues to require an immense amount of work. We need your support to keep this database up-to-date."To donate, visit the site and click the PayPal link.Routes were created using the XY-to-line tool in ArcGIS Pro, inspired by Kenneth Field's work, and following a modified methodology from Michael Markieta (www.spatialanalysis.ca/2011/global-connectivity-mapping-out-flight-routes).Some cleanup was required in the original data, including adding missing location data for several airports and some missing IATA codes. Before performing the point to line conversion, the key to preserving attributes in the original data is a combination of the INDEX and MATCH functions in Microsoft Excel. Example function: =INDEX(Airlines!$B$2:$B$6200,MATCH(Routes!$A2,Airlines!$D$2:Airlines!$D$6200,0))
Version 5 release notes:
Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.
Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.
Version 4 release notes:
Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics.
Version 3 release notes:
Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes:
Fix bug where Philadelphia Police Department had incorrect FIPS county code.
The Arrests by Age, Sex, and Race data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1980-2015 into a single file. These files are quite large and may take some time to load.
All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
I did not make any changes to the data other than the following. When an arrest column has a value of "None/not reported", I change that value to zero. This makes the (possible incorrect) assumption that these values represent zero crimes reported. The original data does not have a value when the agency reports zero arrests other than "None/not reported." In other words, this data does not differentiate between real zeros and missing values. Some agencies also incorrectly report the following numbers of arrests which I change to NA: 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99999, 99998.
To reduce file size and make the data more manageable, all of the data is aggregated yearly. All of the data is in agency-year units such that every row indicates an agency in a given year. Columns are crime-arrest category units. For example, If you choose the data set that includes murder, you would have rows for each agency-year and columns with the number of people arrests for murder. The ASR data breaks down arrests by age and gender (e.g. Male aged 15, Male aged 18). They also provide the number of adults or juveniles arrested by race. Because most agencies and years do not report the arrestee's ethnicity (Hispanic or not Hispanic) or juvenile outcomes (e.g. referred to adult court, referred to welfare agency), I do not include these columns.
To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. Please note that some of the FIPS codes have leading zeros and if you open it in Excel it will automatically delete those leading zeros.
I created 9 arrest categories myself. The categories are:
Total Male JuvenileTotal Female JuvenileTotal Male AdultTotal Female AdultTotal MaleTotal FemaleTotal JuvenileTotal AdultTotal ArrestsAll of these categories are based on the sums of the sex-age categories (e.g. Male under 10, Female aged 22) rather than using the provided age-race categories (e.g. adult Black, juvenile Asian). As not all agencies report the race data, my method is more accurate. These categories also make up the data in the "simple" version of the data. The "simple" file only includes the above 9 columns as the arrest data (all other columns in the data are just agency identifier columns). Because this "simple" data set need fewer columns, I include all offenses.
As the arrest data is very granular, and each category of arrest is its own column, there are dozens of columns per crime. To keep the data somewhat manageable, there are nine different files, eight which contain different crimes and the "simple" file. Each file contains the data for all years. The eight categories each have crimes belonging to a major crime category and do not overlap in crimes other than with the index offenses. Please note that the crime names provided below are not the same as the column names in the data. Due to Stata limiting column names to 32 characters maximum, I have abbreviated the crime names in the data. The files and their included crimes are:
Index Crimes
MurderRapeRobberyAggravated AssaultBurglaryTheftMotor Vehicle TheftArsonAlcohol CrimesDUIDrunkenness
LiquorDrug CrimesTotal DrugTotal Drug SalesTotal Drug PossessionCannabis PossessionCannabis SalesHeroin or Cocaine PossessionHeroin or Cocaine SalesOther Drug PossessionOther Drug SalesSynthetic Narcotic PossessionSynthetic Narcotic SalesGrey Collar and Property CrimesForgeryFraudStolen PropertyFinancial CrimesEmbezzlementTotal GamblingOther GamblingBookmakingNumbers LotterySex or Family CrimesOffenses Against the Family and Children
Other Sex Offenses
ProstitutionRapeViolent CrimesAggravated AssaultMurderNegligent ManslaughterRobberyWeapon Offenses
Other CrimesCurfewDisorderly ConductOther Non-trafficSuspicion
VandalismVagrancy
Simple
This data set has every crime and only the arrest categories that I created (see above).
If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
Collection of data files used in the paper titled: Mechanisms of root-reinforcement in soils: an experimental methodology using four-dimensional X-ray computed tomography and digital volume correlation. Additional dataset which covers the noise study CT scans and digital volume correlation noise studies can be found in DOI: 10.5281/zenodo.3361832 Data contains the following: X-ray CT data for the interrupted direct shear tests of a soil sample containing a Willow plant. The first file is the specimen scanned unloaded, followed by seven incremental shear load steps to 20 mm shear displacement. Files are 8-bit unsigned and 1800x1800x1600px. Voxel resolution is 0.04642 mm. 20180430_HUTCH_1839_DJB_willow_C_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_A_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_B_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_C_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_D_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_E_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_F_8-bit_1800x1800x1600.raw 20180430_HUTCH_1839_DJB_willow_C_Load_G_8-bit_1800x1800x1600.raw Direct shear vs. displacement data is presented in an Excel spreadsheet: All_load_data_with_reducing_area.xlsx Normal and shear strain DVC data which has been averaged and plotted against specimen depth is presented in an Excel spreadsheet: Average_slice_vs_depth_data_all_samples_all_loads3.xlsx CT scan metadata giving information to the scan settings, voxel resolution, etc. is contained in a .zip file which consists of .xtekct and .XML files generated from the Nikon CT scanner. CT_Scan_Metadata.zip Drawings and Solidworks CAD files of the direct shear test rig are contained within the .zip file. There are a number of parts to the assembly. The file SSSB1003-5.SLDASM contains the complete assembly of the direct shear rig and will help identify the part names. The folder CAD_Drawings contains pdf documents of the part drawings. Direct_Shear_Drawings_Solidworks_Files.zip Tabulated DVC data taken at 32x32x32px subset size is contained inside a .zip file. These consist of tab separated .dat files from unloaded (data_1.dat) through incremental load steps Load A, Load B... Load G, (data_2.dat, data_3.dat... data_8.dat). The structure of the .dat file contains columns of data with each column number corresponding to the following: (1) x, (2) y (3) z, (4) vx, (5) vy, (6) vz, (7) exx, (8) eyy, (9) ezz, (10) exy, (11) exz, (12) eyz, (13) volumetric strain, (14) is valid. Columns 1-3 are subset positions in mm, 4-6 are displacements in mm, 7-9 are normal strains, 10-12 are shear strains, 13 is volumetric strain and 14 is a binary value indicating if the subset is valid. DVC_Load_Data_Willow_C.zip Tabulated DVC data applied to the load step CT data at 32, 48, 64, 96, 128 pixels is presented in the .zip files containing .dat tab separated files. The structure of the .dat files is described in the previous bullet point. These files were used to construct the noise study applied to incrementally loaded CT data by sampling regions away from the shear zone where the strain signals are close to zero. DVC_Noise_Study_Data_Load_Steps_Willow_C.zip Processed noise study data which compares the effects of DVC subset size is presented in the .xlsx file. This file contains both the controlled noise experiment data (stationary, magnification and rigid body motion) and noise study data applied to incrementally loaded data using sampled regions away from the shear zone where the strain signals are close to zero. Willow_C_Processed_Noise_study2.xlsx Tabulated data which compares the local x displacement vs depth profile from DVC and direct measurement of root position is contained in the following Excel spreadsheet file: X_Displacement_Root_and_DVC_Comparison_Willow C.xlsx
Introduction. This document provides an overview of an archive composed of four sections.
[1] An introduction (this document) which describes the scope of the project
[2] Yearly folder, from 2002 until 2010, of the coarse Microsoft Access datasets + the surveys used to collect information for each year. The word coarse does not mean the information in the Microsoft Access dataset was not corrected for mistakes; it was, but some mistakes and inconsistencies remain, such as with data on age or education. Furthermore, the coarse dataset provides disaggregated information for selected topics, which appear in summary statistics in the clean dataset. For example, in the coarse dataset one can find the different illnesses afflicting a person during the past 14 days whereas in the clean dataset only the total number of illnesses appears.
[3] A letter from the Gran Consejo Tsimane’ authorizing the public use of de-identified data collected in our studies among Tsimane’.
[4] A Microsoft Excel document with the unique identification number for each person in the panel study.
Background. During 2002-2010, a team of international researchers, surveyors, and translators gathered longitudinal (panel) data on the demography, economy, social relations, health, nutritional status, local ecological knowledge, and emotions of about 1400 native Amazonians known as Tsimane’ who lived in thirteen villages near and far from towns in the department of Beni in the Bolivian Amazon. A report titled “Too little, too late” summarizes selected findings from the study and is available to the public at the electronic library of Brandeis University:
https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926194001921
A copy of the clean, merged, and appended Stata (V17) dataset is available to the public at the following two web addresses:
[a] Brandeis University:
https://scholarworks.brandeis.edu/permalink/01BRAND_INST/1bo2f6t/alma9923926193901921
[b] Inter-university Consortium for Political and Social Research (ICPSR), University of Michigan (only available to users affiliated with institutions belonging to ICPSR)
http://www.icpsr.umich.edu/icpsrweb/ICPSR/studies/37671/utilization
Chapter 4 of the report “Too little, too late” mentioned above describes the motivation and history of the study, the difference between the coarse and clean datasets, and topics which can be examined only with coarse data.
Aims. The aims of this archive are to:
· Make available in Microsoft Access the coarse de-identified dataset [1] for each of the seven yearly surveys (2004-2010) and [2] one Access data based on quarterly surveys done during 2002 and 2003. Together, these two datasets form one longitudinal dataset of individuals, households, and villages.
· Provide guidance on how to link files within and across years, and
· Make available a Microsoft Excel file with a unique identification number to link individuals across years
The datasets in the archive.
· Eight Microsoft Access datasets with data on a wide range of variables. Except for the Access file for 2002-2003, all the other information in each of the other Access files refers to one year. Within any Access dataset, users will find two types of files:
o Thematic files. The name of a thematic file contains the prefix tbl (e.g., 29_tbl_Demography or tbl_29_Demography). The file name (sometimes in Spanish, sometimes in English) indicates the content of the file. For example, in the Access dataset for one year, the micro file tbl_30_Ventas has all the information on sales for that year. Within each micro file, columns contain information on a variable and the name of the column indicates the content of the variable. For instance, the column heading item in the Sales file would indicate the type of good sold. The exac…
Improved hygiene depends on the accessibility and availability of effective disinfectant solutions. These disinfectant solutions are unavailable to many communities worldwide due to resource limitations, among other constraints. Safe and effective chlorine-based disinfectants can be produced via simple electrolysis of salt water, providing a low-cost and reliable option for on-site, local production of disinfectant solutions to improve sanitation and hygiene. This study reports on a system (herein called “Electro-Clean†) that can produce concentrated solutions of hypochlorous acid (HOCl) using readily available, low-cost materials. With just table salt, water, graphite welding rods, and a DC power supply, the Electro-Clean system can safely produce HOCl solutions (~1.5 liters) of up to 0.1% free chlorine (i.e.,1000 ppm) in less than two hours at low potential (5 V DC) and modest current (~5 A). Rigorous testing of free chlorine production and durability of the Electro-Clean system compo..., We conducted chemical experiments in a laboratory setting, performing each experiment in triplicate unless otherwise specified. The dataset presented here includes the raw data from these experiments. We used Excel to record the data and calculate the average and standard deviation. The file names correspond to the figures or tables in the manuscript or the Supporting Information Appendices. Detailed descriptions of the experimental methods can be found in the main manuscript., , # Low-cost, local production of a safe and effective disinfectant for resource-constrained communities
https://doi.org/10.5061/dryad.2547d7wz5
The files below contain the raw data for each figure and table present in the manuscript titled "Low-cost, local production of a safe and effective disinfectant for resource-constrained communities" and supporting information. Experimental methods and instruments used for data collection are described in the main manuscript.
All files are in Excel. Below are the descriptions of each file:Â
This file contains the raw data of batch experiments with a volume of 1.35 L. Three trials are reported here. The current, in amps, was recorded at various electrolysis times. Other measurements include the measured Free Chlorine concentration in parts per million (ppm), and pH after electrolysis.Â
At CompanyData.com (BoldData), we deliver verified, high-quality business data sourced directly from official trade registers around the world. For Saudi Arabia, we provide access to a robust database of over 781,431 registered companies, offering valuable insights into one of the Middle East’s fastest-growing and most influential economies.
Our Saudi Arabia company database includes detailed firmographic information such as company name, registration number, legal entity type, NACE codes, estimated revenue, employee size, and ownership structures. Where available, we also provide contact data, including names of key decision-makers, job titles, email addresses, and mobile numbers to support your outreach and engagement efforts.
Whether you are focused on regulatory compliance, KYC and AML checks, B2B lead generation, CRM enrichment, market analysis, or AI training, our Saudi company data offers the accuracy, structure and reliability your organization needs to make informed decisions and drive growth.
Choose how you access the data: • Tailored company lists based on your ideal criteria • Full national databases for strategic and analytical projects • Real time updates via our API • Easy-to-use formats including Excel and CSV • Enrichment services to clean, match and enhance your existing records
With access to 781,431 verified companies in over 200 countries, CompanyData.com (BoldData) combines global scale with local detail. Whether you’re entering the Saudi market or expanding across borders, we help you move forward with trusted data that supports smarter business decisions.
Rely on CompanyData.com to connect you with accurate, up-to-date company data in Saudi Arabia and beyond — enabling compliance, growth and success at every step.
I'm excited to share my recent project where I dived deep into the world of data analysis to gain valuable insights into Tata Motors' sales data for the fiscal year 2021-2022. 📈
Project Highlights:
Data Processing and Cleaning: I meticulously cleaned and processed the dataset, ensuring accuracy and reliability in the analysis.
In-Depth Analysis: Through advanced analytical techniques, I uncovered patterns, trends, and key metrics within the data, helping to reveal critical business insights.
Data Visualization: I transformed the complex sales data into clear and insightful visual representations, making it easier for stakeholders to grasp the findings.
Interactive Dashboard: I designed an interactive dashboard that allows users to explore the data dynamically, facilitating a deeper understanding of the sales performance.
Findings: Tata Motors achieved 105% growth in sales, marking an impressive 126% profit increase compared to the year 2021.
This remarkable growth not only showcases the company's resilience but also the effectiveness of their strategies and operations. It's a testament to the hard work and dedication of the entire Tata Motors team.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.