Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.
Facebook
TwitterThis dataset is a cleaned and preprocessed version of the original Netflix Movies and TV Shows dataset available on Kaggle. All cleaning was done using Microsoft Excel — no programming involved.
🎯 What’s Included: - Cleaned Excel file (standardized columns, proper date format, removed duplicates/missing values) - A separate "formulas_used.txt" file listing all Excel formulas used during cleaning (e.g., TRIM, CLEAN, DATE, SUBSTITUTE, TEXTJOIN, etc.) - Columns like 'date_added' have been properly formatted into DMY structure - Multi-valued columns like 'listed_in' are split for better analysis - Null values replaced with “Unknown” for clarity - Duration field broken into numeric + unit components
🔍 Dataset Purpose: Ideal for beginners and analysts who want to: - Practice data cleaning in Excel - Explore Netflix content trends - Analyze content by type, country, genre, or date added
📁 Original Dataset Credit: The base version was originally published by Shivam Bansal on Kaggle: https://www.kaggle.com/shivamb/netflix-shows
📌 Bonus: You can find a step-by-step cleaning guide and the same dataset on GitHub as well — along with screenshots and formulas documentation.
Facebook
TwitterAhoy, data enthusiasts! Join us for a hands-on workshop where you will hoist your sails and navigate through the Statistics Canada website, uncovering hidden treasures in the form of data tables. With the wind at your back, you’ll master the art of downloading these invaluable Stats Can datasets while braving the occasional squall of data cleaning challenges using Excel with your trusty captains Vivek and Lucia at the helm.
Facebook
TwitterThe main objectives of the survey were: - To obtain weights for the revision of the Consumer Price Index (CPI) for Funafuti; - To provide information on the nature and distribution of household income, expenditure and food consumption patterns; - To provide data on the household sector's contribution to the National Accounts - To provide information on economic activity of men and women to study gender issues - To undertake some poverty analysis
National, including Funafuti and Outer islands
All the private household are included in the sampling frame. In each household selected, the current resident are surveyed, and people who are usual resident but are currently away (work, health, holydays reasons, or border student for example. If the household had been residing in Tuvalu for less than one year: - but intend to reside more than 12 months => The household is included - do not intend to reside more than 12 months => out of scope
Sample survey data [ssd]
It was decided that 33% (one third) sample was sufficient to achieve suitable levels of accuracy for key estimates in the survey. So the sample selection was spread proportionally across all the island except Niulakita as it was considered too small. For selection purposes, each island was treated as a separate stratum and independent samples were selected from each. The strategy used was to list each dwelling on the island by their geographical position and run a systematic skip through the list to achieve the 33% sample. This approach assured that the sample would be spread out across each island as much as possible and thus more representative.
For details please refer to Table 1.1 of the Report.
Only the island of Niulakita was not included in the sampling frame, considered too small.
Face-to-face [f2f]
There were three main survey forms used to collect data for the survey. Each question are writen in English and translated in Tuvaluan on the same version of the questionnaire. The questionnaires were designed based on the 2004 survey questionnaire.
HOUSEHOLD FORM - composition of the household and demographic profile of each members - dwelling information - dwelling expenditure - transport expenditure - education expenditure - health expenditure - land and property expenditure - household furnishing - home appliances - cultural and social payments - holydays/travel costs - Loans and saving - clothing - other major expenditure items
INDIVIDUAL FORM - health and education - labor force (individu aged 15 and above) - employment activity and income (individu aged 15 and above): wages and salaries, working own business, agriculture and livestock, fishing, income from handicraft, income from gambling, small scale activies, jobs in the last 12 months, other income, childreen income, tobacco and alcohol use, other activities, and seafarer
DIARY (one diary per week, on a 2 weeks period, 2 diaries per household were required) - All kind of expenses - Home production - food and drink (eaten by the household, given away, sold) - Goods taken from own business (consumed, given away) - Monetary gift (given away, received, winning from gambling) - Non monetary gift (given away, received, winning from gambling)
Questionnaire Design Flaws Questionnaire design flaws address any problems with the way questions were worded which will result in an incorrect answer provided by the respondent. Despite every effort to minimize this problem during the design of the respective survey questionnaires and the diaries, problems were still identified during the analysis of the data. Some examples are provided below:
Gifts, Remittances & Donations Collecting information on the following: - the receipt and provision of gifts - the receipt and provision of remittances - the provision of donations to the church, other communities and family occasions is a very difficult task in a HIES. The extent of these activities in Tuvalu is very high, so every effort should be made to address these activities as best as possible. A key problem lies in identifying the best form (questionnaire or diary) for covering such activities. A general rule of thumb for a HIES is that if the activity occurs on a regular basis, and involves the exchange of small monetary amounts or in-kind gifts, the diary is more appropriate. On the other hand, if the activity is less infrequent, and involves larger sums of money, the questionnaire with a recall approach is preferred. It is not always easy to distinguish between the two for the different activities, and as such, both the diary and questionnaire were used to collect this information. Unfortunately it probably wasn?t made clear enough as to what types of transactions were being collected from the different sources, and as such some transactions might have been missed, and others counted twice. The effects of these problems are hopefully minimal overall.
Defining Remittances Because people have different interpretations of what constitutes remittances, the questionnaire needs to be very clear as to how this concept is defined in the survey. Unfortunately this wasn?t explained clearly enough so it was difficult to distinguish between a remittance, which should be of a more regular nature, and a one-off monetary gift which was transferred between two households.
Business Expenses Still Recorded The aim of the survey is to measure "household" expenditure, and as such, any expenditure made by a household for an item or service which was primarily used for a business activity should be excluded. It was not always clear in the questionnaire that this was the case, and as such some business expenses were included. Efforts were made during data cleaning to remove any such business expenses which would impact significantly on survey results.
Purchased goods given away as a gift When a household makes a gift donation of an item it has purchased, this is recorded in section 5 of the diary. Unfortunately it was difficult to know how to treat these items as it was not clear as to whether this item had been recorded already in section 1 of the diary which covers purchases. The decision was made to exclude all information of gifts given which were considered to be purchases, as these items were assumed to have already been recorded already in section 1. Ideally these items should be treated as a purchased gift given away, which in turn is not household consumption expenditure, but this was not possible.
Some key items missed in the Questionnaire Although not a big issue, some key expenditure items were omitted from the questionnaire when it would have been best to collect them via this schedule. A key example being electric fans which many households in Tuvalu own.
Consistency of the data: - each questionnaire was checked by the supervisor during and after the collection - before data entry, all the questionnaire were coded - the CSPRo data entry system included inconsistency checks which allow the NSO staff to point some errors and to correct them with imputation estimation from their own knowledge (no time for double entry), 4 data entry operators. - after data entry, outliers were identified in order to check their consistency.
All data entry, including editing, edit checks and queries, was done using CSPro (Census Survey Processing System) with additional data editing and cleaning taking place in Excel.
The staff from the CSD was responsible for undertaking the coding and data entry, with assistance from an additional four temporary staff to help produce results in a more timely manner.
Although enumeration didn't get completed until mid June, the coding and data entry commenced as soon as forms where available from Funafuti, which was towards the end of March. The coding and data entry was then completed around the middle of July.
A visit from an SPC consultant then took place to undertake initial cleaning of the data, primarily addressing missing data items and missing schedules. Once the initial data cleaning was undertaken in CSPro, data was transferred to Excel where it was closely scrutinized to check that all responses were sensible. In the cases where unusual values were identified, original forms were consulted for these households and modifications made to the data if required.
Despite the best efforts being made to clean the data file in preparation for the analysis, no doubt errors will still exist in the data, due to its size and complexity. Having said this, they are not expected to have significant impacts on the survey results.
Under-Reporting and Incorrect Reporting as a result of Poor Field Work Procedures The most crucial stage of any survey activity, whether it be a population census or a survey such as a HIES is the fieldwork. It is crucial for intense checking to take place in the field before survey forms are returned to the office for data processing. Unfortunately, it became evident during the cleaning of the data that fieldwork wasn?t checked as thoroughly as required, and as such some unexpected values appeared in the questionnaires, as well as unusual results appearing in the diaries. Efforts were made to indentify the main issues which would have the greatest impact on final results, and this information was modified using local knowledge, to a more reasonable answer, when required.
Data Entry Errors Data entry errors are always expected, but can be kept to a minimum with
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Netflix is a popular streaming service that offers a vast catalog of movies, TV shows, and original contents. This dataset is a cleaned version of the original version which can be found here. The data consist of contents added to Netflix from 2008 to 2021. The oldest content is as old as 1925 and the newest as 2021. This dataset will be cleaned with PostgreSQL and visualized with Tableau. The purpose of this dataset is to test my data cleaning and visualization skills. The cleaned data can be found below and the Tableau dashboard can be found here .
We are going to: 1. Treat the Nulls 2. Treat the duplicates 3. Populate missing rows 4. Drop unneeded columns 5. Split columns Extra steps and more explanation on the process will be explained through the code comments
--View dataset
SELECT *
FROM netflix;
--The show_id column is the unique id for the dataset, therefore we are going to check for duplicates
SELECT show_id, COUNT(*)
FROM netflix
GROUP BY show_id
ORDER BY show_id DESC;
--No duplicates
--Check null values across columns
SELECT COUNT(*) FILTER (WHERE show_id IS NULL) AS showid_nulls,
COUNT(*) FILTER (WHERE type IS NULL) AS type_nulls,
COUNT(*) FILTER (WHERE title IS NULL) AS title_nulls,
COUNT(*) FILTER (WHERE director IS NULL) AS director_nulls,
COUNT(*) FILTER (WHERE movie_cast IS NULL) AS movie_cast_nulls,
COUNT(*) FILTER (WHERE country IS NULL) AS country_nulls,
COUNT(*) FILTER (WHERE date_added IS NULL) AS date_addes_nulls,
COUNT(*) FILTER (WHERE release_year IS NULL) AS release_year_nulls,
COUNT(*) FILTER (WHERE rating IS NULL) AS rating_nulls,
COUNT(*) FILTER (WHERE duration IS NULL) AS duration_nulls,
COUNT(*) FILTER (WHERE listed_in IS NULL) AS listed_in_nulls,
COUNT(*) FILTER (WHERE description IS NULL) AS description_nulls
FROM netflix;
We can see that there are NULLS.
director_nulls = 2634
movie_cast_nulls = 825
country_nulls = 831
date_added_nulls = 10
rating_nulls = 4
duration_nulls = 3
The director column nulls is about 30% of the whole column, therefore I will not delete them. I will rather find another column to populate it. To populate the director column, we want to find out if there is relationship between movie_cast column and director column
-- Below, we find out if some directors are likely to work with particular cast
WITH cte AS
(
SELECT title, CONCAT(director, '---', movie_cast) AS director_cast
FROM netflix
)
SELECT director_cast, COUNT(*) AS count
FROM cte
GROUP BY director_cast
HAVING COUNT(*) > 1
ORDER BY COUNT(*) DESC;
With this, we can now populate NULL rows in directors
using their record with movie_cast
UPDATE netflix
SET director = 'Alastair Fothergill'
WHERE movie_cast = 'David Attenborough'
AND director IS NULL ;
--Repeat this step to populate the rest of the director nulls
--Populate the rest of the NULL in director as "Not Given"
UPDATE netflix
SET director = 'Not Given'
WHERE director IS NULL;
--When I was doing this, I found a less complex and faster way to populate a column which I will use next
Just like the director column, I will not delete the nulls in country. Since the country column is related to director and movie, we are going to populate the country column with the director column
--Populate the country using the director column
SELECT COALESCE(nt.country,nt2.country)
FROM netflix AS nt
JOIN netflix AS nt2
ON nt.director = nt2.director
AND nt.show_id <> nt2.show_id
WHERE nt.country IS NULL;
UPDATE netflix
SET country = nt2.country
FROM netflix AS nt2
WHERE netflix.director = nt2.director and netflix.show_id <> nt2.show_id
AND netflix.country IS NULL;
--To confirm if there are still directors linked to country that refuse to update
SELECT director, country, date_added
FROM netflix
WHERE country IS NULL;
--Populate the rest of the NULL in director as "Not Given"
UPDATE netflix
SET country = 'Not Given'
WHERE country IS NULL;
The date_added rows nulls is just 10 out of over 8000 rows, deleting them cannot affect our analysis or visualization
--Show date_added nulls
SELECT show_id, date_added
FROM netflix_clean
WHERE date_added IS NULL;
--DELETE nulls
DELETE F...
Facebook
TwitterAttribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.
retail_store_sales.csv| Column Name | Description | Example Values |
|---|---|---|
Transaction ID | A unique identifier for each transaction. Always present and unique. | TXN_1234567 |
Customer ID | A unique identifier for each customer. 25 unique customers. | CUST_01 |
Category | The category of the purchased item. | Food, Furniture |
Item | The name of the purchased item. May contain missing values or None. | Item_1_FOOD, None |
Price Per Unit | The static price of a single unit of the item. May contain missing or None values. | 4.00, None |
Quantity | The quantity of the item purchased. May contain missing or None values. | 1, None |
Total Spent | The total amount spent on the transaction. Calculated as Quantity * Price Per Unit. | 8.00, None |
Payment Method | The method of payment used. May contain missing or invalid values. | Cash, Credit Card |
Location | The location where the transaction occurred. May contain missing or invalid values. | In-store, Online |
Transaction Date | The date of the transaction. Always present and valid. | 2023-01-15 |
Discount Applied | Indicates if a discount was applied to the transaction. May contain missing values. | True, False, None |
The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_EHE | Blender | 5.0 |
| Item_2_EHE | Microwave | 6.5 |
| Item_3_EHE | Toaster | 8.0 |
| Item_4_EHE | Vacuum Cleaner | 9.5 |
| Item_5_EHE | Air Purifier | 11.0 |
| Item_6_EHE | Electric Kettle | 12.5 |
| Item_7_EHE | Rice Cooker | 14.0 |
| Item_8_EHE | Iron | 15.5 |
| Item_9_EHE | Ceiling Fan | 17.0 |
| Item_10_EHE | Table Fan | 18.5 |
| Item_11_EHE | Hair Dryer | 20.0 |
| Item_12_EHE | Heater | 21.5 |
| Item_13_EHE | Humidifier | 23.0 |
| Item_14_EHE | Dehumidifier | 24.5 |
| Item_15_EHE | Coffee Maker | 26.0 |
| Item_16_EHE | Portable AC | 27.5 |
| Item_17_EHE | Electric Stove | 29.0 |
| Item_18_EHE | Pressure Cooker | 30.5 |
| Item_19_EHE | Induction Cooktop | 32.0 |
| Item_20_EHE | Water Dispenser | 33.5 |
| Item_21_EHE | Hand Blender | 35.0 |
| Item_22_EHE | Mixer Grinder | 36.5 |
| Item_23_EHE | Sandwich Maker | 38.0 |
| Item_24_EHE | Air Fryer | 39.5 |
| Item_25_EHE | Juicer | 41.0 |
| Item Code | Item Name | Price |
|---|---|---|
| Item_1_FUR | Office Chair | 5.0 |
| Item_2_FUR | Sofa | 6.5 |
| Item_3_FUR | Coffee Table | 8.0 |
| Item_4_FUR | Dining Table | 9.5 |
| Item_5_FUR | Bookshelf | 11.0 |
| Item_6_FUR | Bed F... |
Facebook
TwitterThis layer visualizes over 60,000 commercial flight paths. The data was obtained from openflights.org, and was last updated in June 2014. The site states, "The third-party that OpenFlights uses for route data ceased providing updates in June 2014. The current data is of historical value only. As of June 2014, the OpenFlights/Airline Route Mapper Route Database contains 67,663 routes between 3,321 airports on 548 airlines spanning the globe. Creating and maintaining this database has required and continues to require an immense amount of work. We need your support to keep this database up-to-date."To donate, visit the site and click the PayPal link.Routes were created using the XY-to-line tool in ArcGIS Pro, inspired by Kenneth Field's work, and following a modified methodology from Michael Markieta (www.spatialanalysis.ca/2011/global-connectivity-mapping-out-flight-routes).Some cleanup was required in the original data, including adding missing location data for several airports and some missing IATA codes. Before performing the point to line conversion, the key to preserving attributes in the original data is a combination of the INDEX and MATCH functions in Microsoft Excel. Example function: =INDEX(Airlines!$B$2:$B$6200,MATCH(Routes!$A2,Airlines!$D$2:Airlines!$D$6200,0))
Facebook
TwitterAs the U.S. Environmental Protection Agency (EPA) pursues its mission to protect human health and the environment, we actively work with communities and local partners all over America to limit the risk of exposure to contaminants that might have negative health impacts. We have been working in Dallas, Texas, at the Lane Plating Works, Inc. Superfund Site to identify and understand any potential risks to human health or the environment and to mitigate those risks.
In March 2016, the EPA performed a Removal Assessment based on previous investigations conducted by the Texas Commission on Environmental Quality (TCEQ). Based on EPA and TCEQ investigations, it was determined that the Site presented a threat to public health or the environment or the welfare of the United States. EPA conducted additional sampling events from 2016 to 2022 to determine the extent of site-related contaminants of concern (COC) in soil and air. Site COCs in soil included hexavalent chromium, lead, mercury, arsenic, cadmium, and chromium present at concentrations exceeding EPA cleanup levels. Air samples collected from inside the former plating facility EPA exhibited hexavalent chromium levels above health-based standards. Asbestos was identified to be present in the former plating facility. The contaminants identified at the site present a threat to human health and the environment.
EPA completed the final removal assessment in September 2022. The EPA collected 1,060 samples during the assessments, including 712 soil samples. The overall highest detection levels found in soil and dates are as follows:
Hexavalent Chromium: 5,620 mg/Kg in April 2016 Lead: 24,500 mg/Kg in April 2016 Mercury: 839 mg/Kg in June 2022 Arsenic: 25.9 mg/Kg in September 2022
The EPA Site-specific COCs and cleanup levels in soil are:
Hexavalent Chromium: 30 mg/Kg Lead: 400 mg/Kg Mercury: 11 mg/Kg Arsenic: 35 mg/Kg
Based on the analytical data from air and soil samples collected, it was determined that the Lane Plating Site does pose a threat to public health and the environment. The Environmental Protection Agency authorized a Time-Critical Removal Action to begin in November 2022. During the course of the Time-Critical Removal Action, perimeter air monitoring will be conducted on site and EPA will notify the community if there are exceedances to the particulate site action level.
Facebook
TwitterThe General Household Survey-Panel (GHS-Panel) is implemented in collaboration with the World Bank Living Standards Measurement Study (LSMS) team as part of the Integrated Surveys on Agriculture (ISA) program. The objectives of the GHS-Panel include the development of an innovative model for collecting agricultural data, interinstitutional collaboration, and comprehensive analysis of welfare indicators and socio-economic characteristics. The GHS-Panel is a nationally representative survey of approximately 5,000 households, which are also representative of the six geopolitical zones. The 2018/19 is the fourth round of the survey with prior rounds conducted in 2010/11, 2012/13, and 2015/16. GHS-Panel households were visited twice: first after the planting season (post-planting) between July and September 2018 and second after the harvest season (post-harvest) between January and February 2019.
National, the survey covered all the 36 states and Federal Capital Territory (FCT).
Households, Individuals, Agricultural plots, Communites
Sample survey data [ssd]
The original GHS-Panel sample of 5,000 households across 500 enumeration areas (EAs) and was designed to be representative at the national level as well as at the zonal level. The complete sampling information for the GHS-Panel is described in the Basic Information Document for GHS-Panel 2010/2011. However, after a nearly a decade of visiting the same households, a partial refresh of the GHS-Panel sample was implemented in Wave 4. For the partial refresh of the sample, a new set of 360 EAs were randomly selected which consisted of 60 EAs per zone. The refresh EAs were selected from the same sampling frame as the original GHS-Panel sample in 2010 (the "master frame").
A listing of all households was conducted in the 360 EAs and 10 households were randomly selected in each EA, resulting in a total refresh sample of approximated 3,600 households. In addition to these 3,600 refresh households, a subsample of the original 5,000 GHS-Panel households from 2010 were selected to be included in the new sample. This "long panel" sample was designed to be nationally representative to enable continued longitudinal analysis for the sample going back to 2010. The long panel sample consisted of 159 EAs systematically selected across the 6 geopolitical Zones. The systematic selection ensured that the distribution of EAs across the 6 Zones (and urban and rural areas within) is proportional to the original GHS-Panel sample.
Interviewers attempted to interview all households that originally resided in the 159 EAs and were successfully interviewed in the previous visit in 2016. This includes households that had moved away from their original location in 2010. In all, interviewers attempted to interview 1,507 households from the original panel sample. The combined sample of refresh and long panel EAs consisted of 519 EAs. The total number of households that were successfully interviewed in both visits was 4,976.
While the combined sample generally maintains both national and Zonal representativeness of the original GHS-Panel sample, the security situation in the North East of Nigeria prevented full coverage of the Zone. Due to security concerns, rural areas of Borno state were fully excluded from the refresh sample and some inaccessible urban areas were also excluded. Security concerns also prevented interviewers from visiting some communities in other parts of the country where conflict events were occurring. Refresh EAs that could not be accessed were replaced with another randomly selected EA in the Zone so as not to compromise the sample size. As a result, the combined sample is representative of areas of Nigeria that were accessible during 2018/19. The sample will not reflect conditions in areas that were undergoing conflict during that period. This compromise was necessary to ensure the safety of interviewers.
Computer Assisted Personal Interview [capi]
CAPI: For the first time in GHS-Panel, the Wave four exercise was conducted using Computer Assisted Person Interview (CAPI) techniques. All the questionnaires, household, agriculture and community questionnaires were implemented in both the post-planting and post-harvest visits of Wave 4 using the CAPI software, Survey Solutions. The Survey Solutions software was developed and maintained by the Survey Unit within the Development Economics Data Group (DECDG) at the World Bank. Each enumerator was given tablets which they used to conduct the interviews. Overall, implementation of survey using Survey Solutions CAPI was highly successful, as it allowed for timely availability of the data from completed interviews. DATA COMMUNICATION SYSTEM: The data communication system used in Wave 4 was highly automated. Each field team was given a mobile modem allow for internet connectivity and daily synchronization of their tablet. This ensured that head office in Abuja has access to the data in real-time. Once the interview is completed and uploaded to the server, the data is first reviewed by the Data Editors.
The data is also downloaded from the server, and Stata dofile was run on the downloaded data to check for additional errors that were not captured by the Survey Solutions application. An excel error file is generated following the running of the Stata dofile on the raw dataset. Information contained in the excel error files are communicated back to respective field interviewers for action by the interviewers. This action is done on a daily basis throughout the duration of the survey, both in the post-planting and post-harvest. DATA CLEANING: The data cleaning process was done in three main stages. The first stage was to ensure proper quality control during the fieldwork. This was achieved in part by incorporating validation and consistency checks into the Survey Solutions application used for the data collection and designed to highlight many of the errors that occurred during the fieldwork. The second stage cleaning involved the use of Data Editors and Data Assistants (Headquarters in Survey Solutions). As indicated above, once the interview is completed and uploaded to the server, the Data Editors review completed interview for inconsistencies and extreme values. Depending on the outcome, they can either approve or reject the case. If rejected, the case goes back to the respective interviewer's tablet upon synchronization. Special care was taken to see that the households included in the data matched with the selected sample and where there were differences, these were properly assessed and documented.
The agriculture data were also checked to ensure that the plots identified in the main sections merged with the plot information identified in the other sections. Additional errors observed were compiled into error reports that were regularly sent to the teams. These errors were then corrected based on re-visits to the household on the instruction of the supervisor. The data that had gone through this first stage of cleaning was then approved by the Data Editor. After the Data Editor's approval of the interview on Survey Solutions server, the Headquarters also reviews and depending on the outcome, can either reject or approve. The third stage of cleaning involved a comprehensive review of the final raw data following the first and second stage cleaning. Every variable was examined individually for (1) consistency with other sections and variables, (2) out of range responses, and (3) outliers. However, special care was taken to avoid making strong assumptions when resolving potential errors. Some minor errors remain in the data where the diagnosis and/or solution were unclear to the data cleaning team.
Facebook
TwitterWe describe a bibliometric network characterizing co-authorship collaborations in the entire Italian academic community. The network, consisting of 38,220 nodes and 507,050 edges, is built upon two distinct data sources: faculty information provided by the Italian Ministry of University and Research and publications available in Semantic Scholar. Both nodes and edges are associated with a large variety of semantic data, including gender, bibliometric indexes, authors' and publications' research fields, and temporal information. While linking data between the two original sources posed many challenges, the network has been carefully validated to assess its reliability and to understand its graph-theoretic characteristics. By resembling several features of social networks, our dataset can be profitably leveraged in experimental studies in the wide social network analytics domain as well as in more specific bibliometric contexts. , The proposed network is built starting from two distinct data sources:
the entire dataset dump from Semantic Scholar (with particular emphasis on the authors and papers datasets) the entire list of Italian faculty members as maintained by Cineca (under appointment by the Italian Ministry of University and Research).
By means of a custom name-identity recognition algorithm (details are available in the accompanying paper published in Scientific Data), the names of the authors in the Semantic Scholar dataset have been mapped against the names contained in the Cineca dataset and authors with no match (e.g., because of not being part of an Italian university) have been discarded. The remaining authors will compose the nodes of the network, which have been enriched with node-related (i.e., author-related) attributes. In order to build the network edges, we leveraged the papers dataset from Semantic Scholar: specifically, any two authors are said to be connected if there is at least one pap..., , # Data cleaning and enrichment through data integration: networking the Italian academia
https://doi.org/10.5061/dryad.wpzgmsbwj
Manuscript published in Scientific Data with DOI .
This repository contains two main data files:
edge_data_AGG.csv, the full network in comma-separated edge list format (this file contains mainly temporal co-authorship information);Coauthorship_Network_AGG.graphml, the full network in GraphML format. along with several supplementary data, listed below, useful only to build the network (i.e., for reproducibility only):
University-City-match.xlsx, an Excel file that maps the name of a university against the city where its respective headquarter is located;Areas-SS-CINECA-match.xlsx, an Excel file that maps the research areas in Cineca against the research areas in Semantic Scholar.The `Coauthorship_Networ...
Facebook
TwitterSurveys from Carpentries style workshops the results of which are presented in the accompanying manuscript.
Pre- and post-workshop surveys for each workshop (Introduction to R, Intermediate R, Data Wrangling in R, Data Visualization in R) were collected via Google Form.
The surveys administered for the fall 2018, spring 2019 academic year are included as pre_workshop_survey and post_workshop_assessment PDF files.
The raw versions of these data are included in the Excel files ending in survey_raw or assessment_raw.
The data files whose name includes survey contain raw data from pre-workshop surveys and the data files whose name includes assessment contain raw data from the post-workshop assessment survey.
The annotated RMarkdown files used to clean the pre-workshop surveys and post-workshop assessments are included as workshop_survey_cleaning and workshop_assessment_cleaning, r...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The National Health and Nutrition Examination Survey (NHANES) provides data and have considerable potential to study the health and environmental exposure of the non-institutionalized US population. However, as NHANES data are plagued with multiple inconsistencies, processing these data is required before deriving new insights through large-scale analyses. Thus, we developed a set of curated and unified datasets by merging 614 separate files and harmonizing unrestricted data across NHANES III (1988-1994) and Continuous (1999-2018), totaling 135,310 participants and 5,078 variables. The variables conveydemographics (281 variables),dietary consumption (324 variables),physiological functions (1,040 variables),occupation (61 variables),questionnaires (1444 variables, e.g., physical activity, medical conditions, diabetes, reproductive health, blood pressure and cholesterol, early childhood),medications (29 variables),mortality information linked from the National Death Index (15 variables),survey weights (857 variables),environmental exposure biomarker measurements (598 variables), andchemical comments indicating which measurements are below or above the lower limit of detection (505 variables).csv Data Record: The curated NHANES datasets and the data dictionaries includes 23 .csv files and 1 excel file.The curated NHANES datasets involves 20 .csv formatted files, two for each module with one as the uncleaned version and the other as the cleaned version. The modules are labeled as the following: 1) mortality, 2) dietary, 3) demographics, 4) response, 5) medications, 6) questionnaire, 7) chemicals, 8) occupation, 9) weights, and 10) comments."dictionary_nhanes.csv" is a dictionary that lists the variable name, description, module, category, units, CAS Number, comment use, chemical family, chemical family shortened, number of measurements, and cycles available for all 5,078 variables in NHANES."dictionary_harmonized_categories.csv" contains the harmonized categories for the categorical variables.“dictionary_drug_codes.csv” contains the dictionary for descriptors on the drugs codes.“nhanes_inconsistencies_documentation.xlsx” is an excel file that contains the cleaning documentation, which records all the inconsistencies for all affected variables to help curate each of the NHANES modules.R Data Record: For researchers who want to conduct their analysis in the R programming language, only cleaned NHANES modules and the data dictionaries can be downloaded as a .zip file which include an .RData file and an .R file.“w - nhanes_1988_2018.RData” contains all the aforementioned datasets as R data objects. We make available all R scripts on customized functions that were written to curate the data.“m - nhanes_1988_2018.R” shows how we used the customized functions (i.e. our pipeline) to curate the original NHANES data.Example starter codes: The set of starter code to help users conduct exposome analysis consists of four R markdown files (.Rmd). We recommend going through the tutorials in order.“example_0 - merge_datasets_together.Rmd” demonstrates how to merge the curated NHANES datasets together.“example_1 - account_for_nhanes_design.Rmd” demonstrates how to conduct a linear regression model, a survey-weighted regression model, a Cox proportional hazard model, and a survey-weighted Cox proportional hazard model.“example_2 - calculate_summary_statistics.Rmd” demonstrates how to calculate summary statistics for one variable and multiple variables with and without accounting for the NHANES sampling design.“example_3 - run_multiple_regressions.Rmd” demonstrates how run multiple regression models with and without adjusting for the sampling design.
Facebook
TwitterVersion 5 release notes:
Removes support for SPSS and Excel data.Changes the crimes that are stored in each file. There are more files now with fewer crimes per file. The files and their included crimes have been updated below.
Adds in agencies that report 0 months of the year.Adds a column that indicates the number of months reported. This is generated summing up the number of unique months an agency reports data for. Note that this indicates the number of months an agency reported arrests for ANY crime. They may not necessarily report every crime every month. Agencies that did not report a crime with have a value of NA for every arrest column for that crime.Removes data on runaways.
Version 4 release notes:
Changes column names from "poss_coke" and "sale_coke" to "poss_heroin_coke" and "sale_heroin_coke" to clearly indicate that these column includes the sale of heroin as well as similar opiates such as morphine, codeine, and opium. Also changes column names for the narcotic columns to indicate that they are only for synthetic narcotics.
Version 3 release notes:
Add data for 2016.Order rows by year (descending) and ORI.Version 2 release notes:
Fix bug where Philadelphia Police Department had incorrect FIPS county code.
The Arrests by Age, Sex, and Race data is an FBI data set that is part of the annual Uniform Crime Reporting (UCR) Program data. This data contains highly granular data on the number of people arrested for a variety of crimes (see below for a full list of included crimes). The data sets here combine data from the years 1980-2015 into a single file. These files are quite large and may take some time to load.
All the data was downloaded from NACJD as ASCII+SPSS Setup files and read into R using the package asciiSetupReader. All work to clean the data and save it in various file formats was also done in R. For the R code used to clean this data, see here. https://github.com/jacobkap/crime_data. If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
I did not make any changes to the data other than the following. When an arrest column has a value of "None/not reported", I change that value to zero. This makes the (possible incorrect) assumption that these values represent zero crimes reported. The original data does not have a value when the agency reports zero arrests other than "None/not reported." In other words, this data does not differentiate between real zeros and missing values. Some agencies also incorrectly report the following numbers of arrests which I change to NA: 10000, 20000, 30000, 40000, 50000, 60000, 70000, 80000, 90000, 100000, 99999, 99998.
To reduce file size and make the data more manageable, all of the data is aggregated yearly. All of the data is in agency-year units such that every row indicates an agency in a given year. Columns are crime-arrest category units. For example, If you choose the data set that includes murder, you would have rows for each agency-year and columns with the number of people arrests for murder. The ASR data breaks down arrests by age and gender (e.g. Male aged 15, Male aged 18). They also provide the number of adults or juveniles arrested by race. Because most agencies and years do not report the arrestee's ethnicity (Hispanic or not Hispanic) or juvenile outcomes (e.g. referred to adult court, referred to welfare agency), I do not include these columns.
To make it easier to merge with other data, I merged this data with the Law Enforcement Agency Identifiers Crosswalk (LEAIC) data. The data from the LEAIC add FIPS (state, county, and place) and agency type/subtype. Please note that some of the FIPS codes have leading zeros and if you open it in Excel it will automatically delete those leading zeros.
I created 9 arrest categories myself. The categories are:
Total Male JuvenileTotal Female JuvenileTotal Male AdultTotal Female AdultTotal MaleTotal FemaleTotal JuvenileTotal AdultTotal ArrestsAll of these categories are based on the sums of the sex-age categories (e.g. Male under 10, Female aged 22) rather than using the provided age-race categories (e.g. adult Black, juvenile Asian). As not all agencies report the race data, my method is more accurate. These categories also make up the data in the "simple" version of the data. The "simple" file only includes the above 9 columns as the arrest data (all other columns in the data are just agency identifier columns). Because this "simple" data set need fewer columns, I include all offenses.
As the arrest data is very granular, and each category of arrest is its own column, there are dozens of columns per crime. To keep the data somewhat manageable, there are nine different files, eight which contain different crimes and the "simple" file. Each file contains the data for all years. The eight categories each have crimes belonging to a major crime category and do not overlap in crimes other than with the index offenses. Please note that the crime names provided below are not the same as the column names in the data. Due to Stata limiting column names to 32 characters maximum, I have abbreviated the crime names in the data. The files and their included crimes are:
Index Crimes
MurderRapeRobberyAggravated AssaultBurglaryTheftMotor Vehicle TheftArsonAlcohol CrimesDUIDrunkenness
LiquorDrug CrimesTotal DrugTotal Drug SalesTotal Drug PossessionCannabis PossessionCannabis SalesHeroin or Cocaine PossessionHeroin or Cocaine SalesOther Drug PossessionOther Drug SalesSynthetic Narcotic PossessionSynthetic Narcotic SalesGrey Collar and Property CrimesForgeryFraudStolen PropertyFinancial CrimesEmbezzlementTotal GamblingOther GamblingBookmakingNumbers LotterySex or Family CrimesOffenses Against the Family and Children
Other Sex Offenses
ProstitutionRapeViolent CrimesAggravated AssaultMurderNegligent ManslaughterRobberyWeapon Offenses
Other CrimesCurfewDisorderly ConductOther Non-trafficSuspicion
VandalismVagrancy
Simple
This data set has every crime and only the arrest categories that I created (see above).
If you have any questions, comments, or suggestions please contact me at jkkaplan6@gmail.com.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Data Collection
The sentiment data used in this project was collected manually. The dataset, stored in an Excel file (Sentiment.xlsx), includes text samples with corresponding sentiment labels. Details about the manual data collection process, sources, and criteria are explained in the data collection section of the code.
Data Cleaning
Before training the sentiment analysis model, the collected data undergoes a cleaning process. The clean_text function is applied to each… See the full description on the dataset page: https://huggingface.co/datasets/DineshKumar1329/Sentiment_Analysis.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Analyzing Coffee Shop Sales: Excel Insights 📈
In my first Data Analytics Project, I Discover the secrets of a fictional coffee shop's success with my data-driven analysis. By Analyzing a 5-sheet Excel dataset, I've uncovered valuable sales trends, customer preferences, and insights that can guide future business decisions. 📊☕
DATA CLEANING 🧹
• REMOVED DUPLICATES OR IRRELEVANT ENTRIES: Thoroughly eliminated duplicate records and irrelevant data to refine the dataset for analysis.
• FIXED STRUCTURAL ERRORS: Rectified any inconsistencies or structural issues within the data to ensure uniformity and accuracy.
• CHECKED FOR DATA CONSISTENCY: Verified the integrity and coherence of the dataset by identifying and resolving any inconsistencies or discrepancies.
DATA MANIPULATION 🛠️
• UTILIZED LOOKUPS: Used Excel's lookup functions for efficient data retrieval and analysis.
• IMPLEMENTED INDEX MATCH: Leveraged the Index Match function to perform advanced data searches and matches.
• APPLIED SUMIFS FUNCTIONS: Utilized SumIFs to calculate totals based on specified criteria.
• CALCULATED PROFITS: Used relevant formulas and techniques to determine profit margins and insights from the data.
PIVOTING THE DATA 𝄜
• CREATED PIVOT TABLES: Utilized Excel's PivotTable feature to pivot the data for in-depth analysis.
• FILTERED DATA: Utilized pivot tables to filter and analyze specific subsets of data, enabling focused insights. Specially used in “PEAK HOURS” and “TOP 3 PRODUCTS” charts.
VISUALIZATION 📊
• KEY INSIGHTS: Unveiled the grand total sales revenue while also analyzing the average bill per person, offering comprehensive insights into the coffee shop's performance and customer spending habits.
• SALES TREND ANALYSIS: Used Line chart to compute total sales across various time intervals, revealing valuable insights into evolving sales trends.
• PEAK HOUR ANALYSIS: Leveraged Clustered Column chart to identify peak sales hours, shedding light on optimal operating times and potential staffing needs.
• TOP 3 PRODUCTS IDENTIFICATION: Utilized Clustered Bar chart to determine the top three coffee types, facilitating strategic decisions regarding inventory management and marketing focus.
*I also used a Timeline to visualize chronological data trends and identify key patterns over specific times.
While it's a significant milestone for me, I recognize that there's always room for growth and improvement. Your feedback and insights are invaluable to me as I continue to refine my skills and tackle future projects. I'm eager to hear your thoughts and suggestions on how I can make my next endeavor even more impactful and insightful.
THANKS TO: WsCube Tech Mo Chen Alex Freberg
TOOLS USED: Microsoft Excel
Facebook
TwitterA Knowledge, Attitudes and Practices (KAP) survey was conducted in Ajuong Thok and Pamir Refugee Camps in October 2019 to determine the current Water, Sanitation and Hygiene (WASH) conditions as well as hygiene attitudes and practices within the households (HHs) surveyed. The assessment utilized a systematic random sampling method, and a total of 1,474 HHs (735 HHs in Ajuong Thok and 739 HHs in Pamir) were surveyed using mobile data collection (MDC) within a period of 21 days. Data was cleaned and analyzed in Excel. The summary of the results is presented in this report.
The findings show that the overall average number of liters of water per person per day was 23.4, in both Ajuong Thok and Pamir Camps, which was slightly higher than the recommended United Nations High Commissioner for Refugees (UNHCR) minimum standard of at least 20 liters of water available per person per day. This is a slight improvement from the 21 liters reported the previous year. The average HH size was six people. Women comprised 83% of the surveyed respondents and males 17%. Almost all the respondents were refugees, constituting 99.5% (n=1,466). The refugees were aware of the key health and hygiene practices, possibly as a result of routine health and hygiene messages delivered to them by Samaritan´s Purse (SP) and other health partners. Most refugees had knowledge about keeping the water containers clean, washing hands during critical times, safe excreta disposal and disease prevention.
Ajuong Thok and Pamir Refugee Camps
Households
All households in Ajuong Thok and Pamir Refugee Camps
Sample survey data [ssd]
Households were selected using systematic random sampling. Enumerators systematically walked through the camp block by block, row by row, in such a way as to pass each HH. Within blocks, enumerators started at one corner, then systematically used the sampling interval as they walked up and down each of the rows throughout the block, covering every block in Ajuong Thok and Pamir.
In each location, the first HH sampled in a block was generated using an Excel tool customized by UNHCR which generated a Random Start and Sampling Interval.
Face-to-face [f2f]
The survey questionnaire used to collect the data consists of the following sections: - Demographics - Water collection and storage - Drinking water hygiene - Hygiene - Sanitation - Messaging - Distribution (NFI) - Diarrhea prevalence, knowledge and health seeking behaviour - Menstrual hygiene
The data collected was uploaded to a server at the end of each day. IFormBuilder generated a Microsoft (MS) Excel spreadsheet dataset which was then cleaned and analyzed using MS Excel.
Given that SP is currently implementing a WASH program in Ajuong Thok and Pamir, the assessment data collected in these camps will not only serve as the endline for UNHCR 2018 programming but also as the baseline for 2019 programming.
Data was anonymized through decoding and local suppression.
Facebook
Twitter🧾 All Chhattisgarh Dry Cleaning Shop Database – Verified & Updated Contact Directory in ExcelThe All Chhattisgarh Dry Cleaning Shop Database is a detailed, verified, and regularly updated Excel directory of professional dry cleaners and laundry service providers across Chhattisgarh. This powerf...
Facebook
TwitterThe harmonized data set on health, created and published by the ERF, is a subset of Iraq Household Socio Economic Survey (IHSES) 2012. It was derived from the household, individual and health modules, collected in the context of the above mentioned survey. The sample was then used to create a harmonized health survey, comparable with the Iraq Household Socio Economic Survey (IHSES) 2007 micro data set.
----> Overview of the Iraq Household Socio Economic Survey (IHSES) 2012:
Iraq is considered a leader in household expenditure and income surveys where the first was conducted in 1946 followed by surveys in 1954 and 1961. After the establishment of Central Statistical Organization, household expenditure and income surveys were carried out every 3-5 years in (1971/ 1972, 1976, 1979, 1984/ 1985, 1988, 1993, 2002 / 2007). Implementing the cooperation between CSO and WB, Central Statistical Organization (CSO) and Kurdistan Region Statistics Office (KRSO) launched fieldwork on IHSES on 1/1/2012. The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
The survey has six main objectives. These objectives are:
The raw survey data provided by the Statistical Office were then harmonized by the Economic Research Forum, to create a comparable version with the 2006/2007 Household Socio Economic Survey in Iraq. Harmonization at this stage only included unifying variables' names, labels and some definitions. See: Iraq 2007 & 2012- Variables Mapping & Availability Matrix.pdf provided in the external resources for further information on the mapping of the original variables on the harmonized ones, in addition to more indications on the variables' availability in both survey years and relevant comments.
National coverage: Covering a sample of urban, rural and metropolitan areas in all the governorates including those in Kurdistan Region.
1- Household/family. 2- Individual/person.
The survey was carried out over a full year covering all governorates including those in Kurdistan Region.
Sample survey data [ssd]
----> Design:
Sample size was (25488) household for the whole Iraq, 216 households for each district of 118 districts, 2832 clusters each of which includes 9 households distributed on districts and governorates for rural and urban.
----> Sample frame:
Listing and numbering results of 2009-2010 Population and Housing Survey were adopted in all the governorates including Kurdistan Region as a frame to select households, the sample was selected in two stages: Stage 1: Primary sampling unit (blocks) within each stratum (district) for urban and rural were systematically selected with probability proportional to size to reach 2832 units (cluster). Stage two: 9 households from each primary sampling unit were selected to create a cluster, thus the sample size of total survey clusters was 25488 households distributed on the governorates, 216 households in each district.
----> Sampling Stages:
In each district, the sample was selected in two stages: Stage 1: based on 2010 listing and numbering frame 24 sample points were selected within each stratum through systematic sampling with probability proportional to size, in addition to the implicit breakdown urban and rural and geographic breakdown (sub-district, quarter, street, county, village and block). Stage 2: Using households as secondary sampling units, 9 households were selected from each sample point using systematic equal probability sampling. Sampling frames of each stages can be developed based on 2010 building listing and numbering without updating household lists. In some small districts, random selection processes of primary sampling may lead to select less than 24 units therefore a sampling unit is selected more than once , the selection may reach two cluster or more from the same enumeration unit when it is necessary.
Face-to-face [f2f]
----> Preparation:
The questionnaire of 2006 survey was adopted in designing the questionnaire of 2012 survey on which many revisions were made. Two rounds of pre-test were carried out. Revision were made based on the feedback of field work team, World Bank consultants and others, other revisions were made before final version was implemented in a pilot survey in September 2011. After the pilot survey implemented, other revisions were made in based on the challenges and feedbacks emerged during the implementation to implement the final version in the actual survey.
----> Questionnaire Parts:
The questionnaire consists of four parts each with several sections: Part 1: Socio – Economic Data: - Section 1: Household Roster - Section 2: Emigration - Section 3: Food Rations - Section 4: housing - Section 5: education - Section 6: health - Section 7: Physical measurements - Section 8: job seeking and previous job
Part 2: Monthly, Quarterly and Annual Expenditures: - Section 9: Expenditures on Non – Food Commodities and Services (past 30 days). - Section 10 : Expenditures on Non – Food Commodities and Services (past 90 days). - Section 11: Expenditures on Non – Food Commodities and Services (past 12 months). - Section 12: Expenditures on Non-food Frequent Food Stuff and Commodities (7 days). - Section 12, Table 1: Meals Had Within the Residential Unit. - Section 12, table 2: Number of Persons Participate in the Meals within Household Expenditure Other Than its Members.
Part 3: Income and Other Data: - Section 13: Job - Section 14: paid jobs - Section 15: Agriculture, forestry and fishing - Section 16: Household non – agricultural projects - Section 17: Income from ownership and transfers - Section 18: Durable goods - Section 19: Loans, advances and subsidies - Section 20: Shocks and strategy of dealing in the households - Section 21: Time use - Section 22: Justice - Section 23: Satisfaction in life - Section 24: Food consumption during past 7 days
Part 4: Diary of Daily Expenditures: Diary of expenditure is an essential component of this survey. It is left at the household to record all the daily purchases such as expenditures on food and frequent non-food items such as gasoline, newspapers…etc. during 7 days. Two pages were allocated for recording the expenditures of each day, thus the roster will be consists of 14 pages.
----> Raw Data:
Data Editing and Processing: To ensure accuracy and consistency, the data were edited at the following stages: 1. Interviewer: Checks all answers on the household questionnaire, confirming that they are clear and correct. 2. Local Supervisor: Checks to make sure that questions has been correctly completed. 3. Statistical analysis: After exporting data files from excel to SPSS, the Statistical Analysis Unit uses program commands to identify irregular or non-logical values in addition to auditing some variables. 4. World Bank consultants in coordination with the CSO data management team: the World Bank technical consultants use additional programs in SPSS and STAT to examine and correct remaining inconsistencies within the data files. The software detects errors by analyzing questionnaire items according to the expected parameter for each variable.
----> Harmonized Data:
Iraq Household Socio Economic Survey (IHSES) reached a total of 25488 households. Number of households refused to response was 305, response rate was 98.6%. The highest interview rates were in Ninevah and Muthanna (100%) while the lowest rates were in Sulaimaniya (92%).
Facebook
TwitterData for manuscript “Functional morphology and efficiency of the antenna cleaner in Camponotus rufifemur ants"Excel file includes 3 data sheets. One sheet for each experiment. The corresponding figures from the manuscript are mentioned above the actual data.Manuscript data.xlsx
Facebook
TwitterData content: foreign economy and trade_ Total import and export of goods (1991-2021) Data source and processing method: The original data of foreign trade and investment of the third pole (China region) from 2015 to 2021 were obtained from the official website of the World Bank and Sina.com, and the data set of foreign trade and investment of the third pole (China region) from 1991 to 2021 was obtained through data sorting, screening and cleaning. The data started from 1991 to 2021 in Microsoft Excel (xls) format. Data quality description: excellent Data application achievements and prospects: provide effective reference as socio-economic data
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Sample data for exercises in Further Adventures in Data Cleaning.