12 datasets found
  1. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    Updated Feb 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    Dataset updated
    Feb 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Canada, United States, Global
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

    What will be the Size of the Data Science Platform Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

    How is this Data Science Platform Industry segmented?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

  2. Employment Of India CLeaned and Messy Data

    • kaggle.com
    Updated Apr 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    SONIA SHINDE (2025). Employment Of India CLeaned and Messy Data [Dataset]. https://www.kaggle.com/datasets/soniaaaaaaaa/employment-of-india-cleaned-and-messy-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Apr 7, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    SONIA SHINDE
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    India
    Description

    This dataset presents a dual-version representation of employment-related data from India, crafted to highlight the importance of data cleaning and transformation in any real-world data science or analytics project.

    🔹 Dataset Composition:

    It includes two parallel datasets: 1. Messy Dataset (Raw) – Represents a typical unprocessed dataset often encountered in data collection from surveys, databases, or manual entries. 2. Cleaned Dataset – This version demonstrates how proper data preprocessing can significantly enhance the quality and usability of data for analytical and visualization purposes.

    Each record captures multiple attributes related to individuals in the Indian job market, including: - Age Group
    - Employment Status (Employed/Unemployed)
    - Monthly Salary (INR)
    - Education Level
    - Industry Sector
    - Years of Experience
    - Location
    - Perceived AI Risk
    - Date of Data Recording

    Transformations & Cleaning Applied:

    The raw dataset underwent comprehensive transformations to convert it into its clean, analysis-ready form: - Missing Values: Identified and handled using either row elimination (where critical data was missing) or imputation techniques. - Duplicate Records: Identified using row comparison and removed to prevent analytical skew. - Inconsistent Formatting: Unified inconsistent naming in columns (like 'monthly_salary_(inr)' → 'Monthly Salary (INR)'), capitalization, and string spacing. - Incorrect Data Types: Converted columns like salary from string/object to float for numerical analysis. - Outliers: Detected and handled based on domain logic and distribution analysis. - Categorization: Converted numeric ages into grouped age categories for comparative analysis. - Standardization: Uniform labels for employment status, industry names, education, and AI risk levels were applied for visualization clarity.

    Purpose & Utility:

    This dataset is ideal for learners and professionals who want to understand: - The impact of messy data on visualization and insights - How transformation steps can dramatically improve data interpretation - Practical examples of preprocessing techniques before feeding into ML models or BI tools

    It's also useful for: - Training ML models with clean inputs
    - Data storytelling with visual clarity
    - Demonstrating reproducibility in data cleaning pipelines

    By examining both the messy and clean datasets, users gain a deeper appreciation for why “garbage in, garbage out” rings true in the world of data science.

  3. US Deep Learning Market Analysis, Size, and Forecast 2025-2029

    • technavio.com
    Updated Jul 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
    Explore at:
    Dataset updated
    Jul 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    United States
    Description

    Snapshot img

    US Deep Learning Market Size 2025-2029

    The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

    The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 
    
    
    However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

    In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    End-user
    
      Security
      Automotive
      Healthcare
      Retail and commerce
      Others
    
    
    Geography
    
      North America
    
        US
    

    By Application Insights

    The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

    Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates

  4. C

    Consumer Sentiment Analysis Solution Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Consumer Sentiment Analysis Solution Report [Dataset]. https://www.archivemarketresearch.com/reports/consumer-sentiment-analysis-solution-53567
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 8, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The Consumer Sentiment Analysis Solution market is experiencing robust growth, projected to reach a market size of $1254.1 million in 2025. While a precise CAGR is unavailable, considering the rapid technological advancements in AI and the increasing reliance on data-driven decision-making across various sectors, a conservative estimate would place the CAGR between 15% and 20% for the forecast period (2025-2033). This growth is fueled by several key drivers. The increasing availability of large datasets, coupled with sophisticated AI and machine learning algorithms, allows for highly accurate sentiment analysis. Businesses across sectors—from government agencies to small and medium enterprises (SMEs) and large corporations—are leveraging these solutions to understand public opinion, improve customer experience, and gain a competitive edge. Furthermore, the expansion of social media and online platforms provides a vast pool of readily accessible data for analysis. The market is segmented by deployment model (SaaS, PaaS, IaaS) and application (government, SMEs, large enterprises), with SaaS currently dominating due to its scalability and cost-effectiveness. Geographic expansion is also a key driver, with North America, Europe, and Asia-Pacific regions showing strong potential for growth. However, challenges remain, including data privacy concerns, the need for sophisticated data cleansing and preprocessing techniques, and the potential for algorithmic bias. Addressing these concerns is crucial for sustainable and ethical growth in the consumer sentiment analysis market. The competitive landscape is characterized by a blend of established technology giants (IBM Watson, Salesforce, Adobe Experience Cloud) and specialized analytics providers (Authenticx, Lexalytics, Brandwatch). The presence of both large and small players fosters innovation and ensures a diverse range of solutions catering to specific business needs. The continued advancement of natural language processing (NLP) techniques, integration with other business intelligence tools, and the development of more sophisticated sentiment analysis models will further drive market expansion in the coming years. Furthermore, the rising demand for real-time sentiment analysis in various applications like brand monitoring, market research, and risk management promises to fuel significant market growth throughout the forecast period.

  5. f

    Data Sheet 6_Prediction of outpatient rehabilitation patient preferences and...

    • frontiersin.figshare.com
    docx
    Updated Jan 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Xuehui Fan; Ruixue Ye; Yan Gao; Kaiwen Xue; Zeyu Zhang; Jing Xu; Jingpu Zhao; Jun Feng; Yulong Wang (2025). Data Sheet 6_Prediction of outpatient rehabilitation patient preferences and optimization of graded diagnosis and treatment based on XGBoost machine learning algorithm.docx [Dataset]. http://doi.org/10.3389/frai.2024.1473837.s007
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jan 15, 2025
    Dataset provided by
    Frontiers
    Authors
    Xuehui Fan; Ruixue Ye; Yan Gao; Kaiwen Xue; Zeyu Zhang; Jing Xu; Jingpu Zhao; Jun Feng; Yulong Wang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundThe Department of Rehabilitation Medicine is key to improving patients’ quality of life. Driven by chronic diseases and an aging population, there is a need to enhance the efficiency and resource allocation of outpatient facilities. This study aims to analyze the treatment preferences of outpatient rehabilitation patients by using data and a grading tool to establish predictive models. The goal is to improve patient visit efficiency and optimize resource allocation through these predictive models.MethodsData were collected from 38 Chinese institutions, including 4,244 patients visiting outpatient rehabilitation clinics. Data processing was conducted using Python software. The pandas library was used for data cleaning and preprocessing, involving 68 categorical and 12 continuous variables. The steps included handling missing values, data normalization, and encoding conversion. The data were divided into 80% training and 20% test sets using the Scikit-learn library to ensure model independence and prevent overfitting. Performance comparisons among XGBoost, random forest, and logistic regression were conducted using metrics, including accuracy and receiver operating characteristic (ROC) curves. The imbalanced learning library’s SMOTE technique was used to address the sample imbalance during model training. The model was optimized using a confusion matrix and feature importance analysis, and partial dependence plots (PDP) were used to analyze the key influencing factors.ResultsXGBoost achieved the highest overall accuracy of 80.21% with high precision and recall in Category 1. random forest showed a similar overall accuracy. Logistic Regression had a significantly lower accuracy, indicating difficulties with nonlinear data. The key influencing factors identified include distance to medical institutions, arrival time, length of hospital stay, and specific diseases, such as cardiovascular, pulmonary, oncological, and orthopedic conditions. The tiered diagnosis and treatment tool effectively helped doctors assess patients’ conditions and recommend suitable medical institutions based on rehabilitation grading.ConclusionThis study confirmed that ensemble learning methods, particularly XGBoost, outperform single models in classification tasks involving complex datasets. Addressing class imbalance and enhancing feature engineering can further improve model performance. Understanding patient preferences and the factors influencing medical institution selection can guide healthcare policies to optimize resource allocation, improve service quality, and enhance patient satisfaction. Tiered diagnosis and treatment tools play a crucial role in helping doctors evaluate patient conditions and make informed recommendations for appropriate medical care.

  6. Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029:...

    • technavio.com
    Updated May 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Synthetic Data Generation Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/synthetic-data-generation-market-analysis
    Explore at:
    Dataset updated
    May 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States
    Description

    Snapshot img

    Synthetic Data Generation Market Size 2025-2029

    The synthetic data generation market size is forecast to increase by USD 4.39 billion, at a CAGR of 61.1% between 2024 and 2029.

    The market is experiencing significant growth, driven by the escalating demand for data privacy protection. With increasing concerns over data security and the potential risks associated with using real data, synthetic data is gaining traction as a viable alternative. Furthermore, the deployment of large language models is fueling market expansion, as these models can generate vast amounts of realistic and diverse data, reducing the reliance on real-world data sources. However, high costs associated with high-end generative models pose a challenge for market participants. These models require substantial computational resources and expertise to develop and implement effectively. Companies seeking to capitalize on market opportunities must navigate these challenges by investing in research and development to create more cost-effective solutions or partnering with specialists in the field. Overall, the market presents significant potential for innovation and growth, particularly in industries where data privacy is a priority and large language models can be effectively utilized.

    What will be the Size of the Synthetic Data Generation Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the increasing demand for data-driven insights across various sectors. Data processing is a crucial aspect of this market, with a focus on ensuring data integrity, privacy, and security. Data privacy-preserving techniques, such as data masking and anonymization, are essential in maintaining confidentiality while enabling data sharing. Real-time data processing and data simulation are key applications of synthetic data, enabling predictive modeling and data consistency. Data management and workflow automation are integral components of synthetic data platforms, with cloud computing and model deployment facilitating scalability and flexibility. Data governance frameworks and compliance regulations play a significant role in ensuring data quality and security. Deep learning models, variational autoencoders (VAEs), and neural networks are essential tools for model training and optimization, while API integration and batch data processing streamline the data pipeline. Machine learning models and data visualization provide valuable insights, while edge computing enables data processing at the source. Data augmentation and data transformation are essential techniques for enhancing the quality and quantity of synthetic data. Data warehousing and data analytics provide a centralized platform for managing and deriving insights from large datasets. Synthetic data generation continues to unfold, with ongoing research and development in areas such as federated learning, homomorphic encryption, statistical modeling, and software development. The market's dynamic nature reflects the evolving needs of businesses and the continuous advancements in data technology.

    How is this Synthetic Data Generation Industry segmented?

    The synthetic data generation industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. End-userHealthcare and life sciencesRetail and e-commerceTransportation and logisticsIT and telecommunicationBFSI and othersTypeAgent-based modellingDirect modellingApplicationAI and ML Model TrainingData privacySimulation and testingOthersProductTabular dataText dataImage and video dataOthersGeographyNorth AmericaUSCanadaMexicoEuropeFranceGermanyItalyUKAPACChinaIndiaJapanRest of World (ROW)

    By End-user Insights

    The healthcare and life sciences segment is estimated to witness significant growth during the forecast period.In the rapidly evolving data landscape, the market is gaining significant traction, particularly in the healthcare and life sciences sector. With a growing emphasis on data-driven decision-making and stringent data privacy regulations, synthetic data has emerged as a viable alternative to real data for various applications. This includes data processing, data preprocessing, data cleaning, data labeling, data augmentation, and predictive modeling, among others. Medical imaging data, such as MRI scans and X-rays, are essential for diagnosis and treatment planning. However, sharing real patient data for research purposes or training machine learning algorithms can pose significant privacy risks. Synthetic data generation addresses this challenge by producing realistic medical imaging data, ensuring data privacy while enabling research

  7. f

    Explanation of features.

    • figshare.com
    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). Explanation of features. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t001
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  8. f

    Confusion matrix.

    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). Confusion matrix. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  9. XGBoost model details.

    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). XGBoost model details. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t006
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  10. f

    PHQ8_Score File.

    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). PHQ8_Score File. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  11. f

    Random forest model details.

    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). Random forest model details. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  12. f

    SVM model details.

    • plos.figshare.com
    xls
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan (2025). SVM model details. [Dataset]. http://doi.org/10.1371/journal.pone.0322299.t009
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    PLOS ONE
    Authors
    Giuliano Lorenzoni; Cristina Tavares; Nathalia Nascimento; Paulo Alencar; Donald Cowan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Context and background. Depression has affected millions of people worldwide and has become one of the most common mental disorders. Early mental disorder detection can reduce costs for public health agencies and prevent other major comorbidities. Additionally, the shortage of specialized personnel is very concerning since depression diagnosis is highly dependent on expert professionals and is time-consuming. Research problems. Recent research has evidenced that machine learning (ML) and natural language processing (NLP) tools and techniques have significantly benefited the diagnosis of depression. However, there are still several challenges in the assessment of depression detection approaches in which other conditions such as post-traumatic stress disorder (PTSD) are present. These challenges include assessing alternatives in terms of data cleaning and pre-processing techniques, feature selection, and appropriate ML classification algorithms. Purpose of the study. This paper tackles such an assessment based on a case study that compares different ML classifiers, specifically in terms of data cleaning and pre-processing, feature selection, parameter setting, and model choices. Methodology. The experimental case study is based on the Distress Analysis Interview Corpus - Wizard-of-Oz (DAIC-WOZ) dataset, which is designed to support the diagnosis of mental disorders such as depression, anxiety, and PTSD. Major findings. Besides the assessment of alternative techniques, we were able to build models with accuracy levels around 84% with Random Forest and XGBoost models, which is significantly higher than the results from the comparable literature which presented the level of accuracy of 72% from the SVM model. Conclusions. More comprehensive assessments of ML classification algorithms and NLP techniques for depression detection can advance the state of the art in terms of improved experimental settings and performance.

  13. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
Organization logo

Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE)

Explore at:
Dataset updated
Feb 15, 2025
Dataset provided by
TechNavio
Authors
Technavio
Time period covered
2021 - 2025
Area covered
Canada, United States, Global
Description

Snapshot img

Data Science Platform Market Size 2025-2029

The data science platform market size is forecast to increase by USD 763.9 million, at a CAGR of 40.2% between 2024 and 2029.

The market is experiencing significant growth, driven by the increasing integration of Artificial Intelligence (AI) and Machine Learning (ML) technologies. This fusion enables organizations to derive deeper insights from their data, fueling business innovation and decision-making. Another trend shaping the market is the emergence of containerization and microservices in data science platforms. This approach offers enhanced flexibility, scalability, and efficiency, making it an attractive choice for businesses seeking to streamline their data science operations. However, the market also faces challenges. Data privacy and security remain critical concerns, with the increasing volume and complexity of data posing significant risks. Ensuring robust data security and privacy measures is essential for companies to maintain customer trust and comply with regulatory requirements. Additionally, managing the complexity of data science platforms and ensuring seamless integration with existing systems can be a daunting task, requiring significant investment in resources and expertise. Companies must navigate these challenges effectively to capitalize on the market's opportunities and stay competitive in the rapidly evolving data landscape.

What will be the Size of the Data Science Platform Market during the forecast period?

Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
Request Free SampleThe market continues to evolve, driven by the increasing demand for advanced analytics and artificial intelligence solutions across various sectors. Real-time analytics and classification models are at the forefront of this evolution, with APIs integrations enabling seamless implementation. Deep learning and model deployment are crucial components, powering applications such as fraud detection and customer segmentation. Data science platforms provide essential tools for data cleaning and data transformation, ensuring data integrity for big data analytics. Feature engineering and data visualization facilitate model training and evaluation, while data security and data governance ensure data privacy and compliance. Machine learning algorithms, including regression models and clustering models, are integral to predictive modeling and anomaly detection. Statistical analysis and time series analysis provide valuable insights, while ETL processes streamline data integration. Cloud computing enables scalability and cost savings, while risk management and algorithm selection optimize model performance. Natural language processing and sentiment analysis offer new opportunities for data storytelling and computer vision. Supply chain optimization and recommendation engines are among the latest applications of data science platforms, demonstrating their versatility and continuous value proposition. Data mining and data warehousing provide the foundation for these advanced analytics capabilities.

How is this Data Science Platform Industry segmented?

The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesCloudComponentPlatformServicesEnd-userBFSIRetail and e-commerceManufacturingMedia and entertainmentOthersSectorLarge enterprisesSMEsApplicationData PreparationData VisualizationMachine LearningPredictive AnalyticsData GovernanceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyUKMiddle East and AfricaUAEAPACChinaIndiaJapanSouth AmericaBrazilRest of World (ROW)

By Deployment Insights

The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, businesses increasingly adopt solutions to gain real-time insights from their data, enabling them to make informed decisions. Classification models and deep learning algorithms are integral parts of these platforms, providing capabilities for fraud detection, customer segmentation, and predictive modeling. API integrations facilitate seamless data exchange between systems, while data security measures ensure the protection of valuable business information. Big data analytics and feature engineering are essential for deriving meaningful insights from vast datasets. Data transformation, data mining, and statistical analysis are crucial processes in data preparation and discovery. Machine learning models, including regression and clustering, are employed for model training and evaluation. Time series analysis and natural language processing are valuable tools for understanding trends and customer sen

Search
Clear search
Close search
Google apps
Main menu