73 datasets found
  1. Retail Store Sales: Dirty for Data Cleaning

    • kaggle.com
    zip
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Retail Store Sales: Dirty for Data Cleaning [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/retail-store-sales-dirty-for-data-cleaning
    Explore at:
    zip(226740 bytes)Available download formats
    Dataset updated
    Jan 18, 2025
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dirty Retail Store Sales Dataset

    Overview

    The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.

    File Information

    • File Name: retail_store_sales.csv
    • Number of Rows: 12,575
    • Number of Columns: 11

    Columns Description

    Column NameDescriptionExample Values
    Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
    Customer IDA unique identifier for each customer. 25 unique customers.CUST_01
    CategoryThe category of the purchased item.Food, Furniture
    ItemThe name of the purchased item. May contain missing values or None.Item_1_FOOD, None
    Price Per UnitThe static price of a single unit of the item. May contain missing or None values.4.00, None
    QuantityThe quantity of the item purchased. May contain missing or None values.1, None
    Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, None
    Payment MethodThe method of payment used. May contain missing or invalid values.Cash, Credit Card
    LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Online
    Transaction DateThe date of the transaction. Always present and valid.2023-01-15
    Discount AppliedIndicates if a discount was applied to the transaction. May contain missing values.True, False, None

    Categories and Items

    The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:

    Electric Household Essentials

    Item CodeItem NamePrice
    Item_1_EHEBlender5.0
    Item_2_EHEMicrowave6.5
    Item_3_EHEToaster8.0
    Item_4_EHEVacuum Cleaner9.5
    Item_5_EHEAir Purifier11.0
    Item_6_EHEElectric Kettle12.5
    Item_7_EHERice Cooker14.0
    Item_8_EHEIron15.5
    Item_9_EHECeiling Fan17.0
    Item_10_EHETable Fan18.5
    Item_11_EHEHair Dryer20.0
    Item_12_EHEHeater21.5
    Item_13_EHEHumidifier23.0
    Item_14_EHEDehumidifier24.5
    Item_15_EHECoffee Maker26.0
    Item_16_EHEPortable AC27.5
    Item_17_EHEElectric Stove29.0
    Item_18_EHEPressure Cooker30.5
    Item_19_EHEInduction Cooktop32.0
    Item_20_EHEWater Dispenser33.5
    Item_21_EHEHand Blender35.0
    Item_22_EHEMixer Grinder36.5
    Item_23_EHESandwich Maker38.0
    Item_24_EHEAir Fryer39.5
    Item_25_EHEJuicer41.0

    Furniture

    Item CodeItem NamePrice
    Item_1_FUROffice Chair5.0
    Item_2_FURSofa6.5
    Item_3_FURCoffee Table8.0
    Item_4_FURDining Table9.5
    Item_5_FURBookshelf11.0
    Item_6_FURBed F...
  2. D

    Data Cleansing For Warehouse Master Data Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Data Cleansing For Warehouse Master Data Market Research Report 2033 [Dataset]. https://dataintelo.com/report/data-cleansing-for-warehouse-master-data-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Cleansing for Warehouse Master Data Market Outlook



    According to our latest research, the global Data Cleansing for Warehouse Master Data market size was valued at USD 2.14 billion in 2024, with a robust growth trajectory projected through the next decade. The market is expected to reach USD 6.12 billion by 2033, expanding at a Compound Annual Growth Rate (CAGR) of 12.4% from 2025 to 2033. This significant growth is primarily driven by the escalating need for high-quality, accurate, and reliable data in warehouse operations, which is crucial for operational efficiency, regulatory compliance, and strategic decision-making in an increasingly digitalized supply chain ecosystem.




    One of the primary growth factors for the Data Cleansing for Warehouse Master Data market is the exponential rise in data volumes generated by modern warehouse management systems, IoT devices, and automated logistics solutions. With the proliferation of e-commerce, omnichannel retail, and globalized supply chains, warehouses are now processing vast amounts of transactional and inventory data daily. Inaccurate or duplicate master data can lead to costly errors, inefficiencies, and compliance risks. As a result, organizations are investing heavily in advanced data cleansing solutions to ensure that their warehouse master data is accurate, consistent, and up to date. This trend is further amplified by the adoption of artificial intelligence and machine learning algorithms that automate the identification and rectification of data anomalies, thereby reducing manual intervention and enhancing data integrity.




    Another critical driver is the increasing regulatory scrutiny surrounding data governance and compliance, especially in sectors such as healthcare, food and beverage, and pharmaceuticals, where traceability and data accuracy are paramount. The introduction of stringent regulations such as the General Data Protection Regulation (GDPR) in Europe, the Health Insurance Portability and Accountability Act (HIPAA) in the United States, and similar frameworks worldwide, has compelled organizations to prioritize data quality initiatives. Data cleansing tools for warehouse master data not only help organizations meet these regulatory requirements but also provide a competitive advantage by enabling more accurate forecasting, inventory optimization, and risk management. Furthermore, as organizations expand their digital transformation initiatives, the integration of disparate data sources and legacy systems underscores the importance of robust data cleansing processes.




    The growing adoption of cloud-based data management solutions is also shaping the landscape of the Data Cleansing for Warehouse Master Data market. Cloud deployment offers scalability, flexibility, and cost-efficiency, making it an attractive option for both large enterprises and small and medium-sized businesses (SMEs). Cloud-based data cleansing platforms facilitate real-time data synchronization across multiple warehouse locations and business units, ensuring that master data remains consistent and actionable. This trend is expected to gain further momentum as more organizations embrace hybrid and multi-cloud strategies to support their global operations. The combination of cloud computing and advanced analytics is enabling organizations to derive deeper insights from their warehouse data, driving further investment in data cleansing technologies.




    From a regional perspective, North America currently leads the market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The high adoption rate of advanced warehouse management systems, coupled with the presence of major technology providers and a mature regulatory environment, has propelled the growth of the market in these regions. Meanwhile, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by rapid industrialization, expansion of e-commerce, and increasing investments in digital infrastructure. Latin America and the Middle East & Africa are also emerging as promising markets, supported by growing awareness of data quality issues and the need for efficient supply chain management. Overall, the global outlook for the Data Cleansing for Warehouse Master Data market remains highly positive, with strong demand anticipated across all major regions.



    Component Analysis



    The Component segment of the Data Cleansing for Warehouse Master Data market i

  3. Cafe Sales - Dirty Data for Cleaning Training

    • kaggle.com
    zip
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Cafe Sales - Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/cafe-sales-dirty-data-for-cleaning-training
    Explore at:
    zip(113510 bytes)Available download formats
    Dataset updated
    Jan 17, 2025
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dirty Cafe Sales Dataset

    Overview

    The Dirty Cafe Sales dataset contains 10,000 rows of synthetic data representing sales transactions in a cafe. This dataset is intentionally "dirty," with missing values, inconsistent data, and errors introduced to provide a realistic scenario for data cleaning and exploratory data analysis (EDA). It can be used to practice cleaning techniques, data wrangling, and feature engineering.

    File Information

    • File Name: dirty_cafe_sales.csv
    • Number of Rows: 10,000
    • Number of Columns: 8

    Columns Description

    Column NameDescriptionExample Values
    Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
    ItemThe name of the item purchased. May contain missing or invalid values (e.g., "ERROR").Coffee, Sandwich
    QuantityThe quantity of the item purchased. May contain missing or invalid values.1, 3, UNKNOWN
    Price Per UnitThe price of a single unit of the item. May contain missing or invalid values.2.00, 4.00
    Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, 12.00
    Payment MethodThe method of payment used. May contain missing or invalid values (e.g., None, "UNKNOWN").Cash, Credit Card
    LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Takeaway
    Transaction DateThe date of the transaction. May contain missing or incorrect values.2023-01-01

    Data Characteristics

    1. Missing Values:

      • Some columns (e.g., Item, Payment Method, Location) may contain missing values represented as None or empty cells.
    2. Invalid Values:

      • Some rows contain invalid entries like "ERROR" or "UNKNOWN" to simulate real-world data issues.
    3. Price Consistency:

      • Prices for menu items are consistent but may have missing or incorrect values introduced.

    Menu Items

    The dataset includes the following menu items with their respective price ranges:

    ItemPrice($)
    Coffee2
    Tea1.5
    Sandwich4
    Salad5
    Cake3
    Cookie1
    Smoothie4
    Juice3

    Use Cases

    This dataset is suitable for: - Practicing data cleaning techniques such as handling missing values, removing duplicates, and correcting invalid entries. - Exploring EDA techniques like visualizations and summary statistics. - Performing feature engineering for machine learning workflows.

    Cleaning Steps Suggestions

    To clean this dataset, consider the following steps: 1. Handle Missing Values: - Fill missing numeric values with the median or mean. - Replace missing categorical values with the mode or "Unknown."

    1. Handle Invalid Values:

      • Replace invalid entries like "ERROR" and "UNKNOWN" with NaN or appropriate values.
    2. Date Consistency:

      • Ensure all dates are in a consistent format.
      • Fill missing dates with plausible values based on nearby records.
    3. Feature Engineering:

      • Create new columns, such as Day of the Week or Transaction Month, for further analysis.

    License

    This dataset is released under the CC BY-SA 4.0 License. You are free to use, share, and adapt it, provided you give appropriate credit.

    Feedback

    If you have any questions or feedback, feel free to reach out through the dataset's discussion board on Kaggle.

  4. Data Warehousing Market Analysis North America, Europe, APAC, Middle East...

    • technavio.com
    pdf
    Updated Feb 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Warehousing Market Analysis North America, Europe, APAC, Middle East and Africa, South America - US, Germany, Canada, China, UK, Japan, France, India, Italy, South Korea - Size and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/data-warehousing-market-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 6, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Warehousing Market Size 2025-2029

    The data warehousing market size is forecast to increase by USD 32.3 billion, at a CAGR of 14% between 2024 and 2029.

    The market is experiencing significant shifts as businesses increasingly adopt cloud-based solutions and advanced storage technologies reshape the competitive landscape. The transition from on-premises to Software-as-a-Service (SaaS) models offers businesses greater flexibility, scalability, and cost savings. Simultaneously, the emergence of advanced storage technologies, such as columnar databases and in-memory storage, enables faster data processing and analysis, enhancing business intelligence capabilities. However, the market faces challenges as well. Data privacy and security risks continue to pose a significant threat, with the increasing volume and complexity of data requiring robust security measures. Ensuring data confidentiality, integrity, and availability is crucial for businesses to maintain customer trust and comply with regulatory requirements. Companies must invest in advanced security solutions and adopt best practices to mitigate these risks effectively.

    What will be the Size of the Data Warehousing Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free SampleThe market continues to evolve, driven by the ever-increasing volume, variety, and velocity of data. ETL processes play a crucial role in data integration, transforming data from various sources into a consistent format for analysis. On-premise data warehousing and cloud data warehousing solutions offer different advantages, with the former providing greater control and the latter offering flexibility and scalability. Data lakes and data warehouses complement each other, with data lakes serving as a source for raw data and data warehouses providing structured data for analysis. Data warehouse optimization is a continuous process, with data stewardship, data transformation, and data modeling essential for maintaining data quality and ensuring compliance. Data mining and analytics extract valuable insights from data, while data visualization makes complex data understandable. Data security, encryption, and data governance frameworks are essential for protecting sensitive data. Data warehousing services and consulting offer expertise in implementing and optimizing data platforms. Data integration, masking, and federation enable seamless data access, while data audit and lineage ensure data accuracy and traceability. Data management solutions provide a comprehensive approach to managing data, from data cleansing to monetization. Data warehousing modernization and migration offer opportunities for improving performance and scalability. Business intelligence and data-driven decision making rely on the insights gained from data warehousing. Hybrid data warehousing offers a flexible approach to data management, combining the benefits of on-premise and cloud solutions. Metadata management and data catalogs facilitate efficient data access and management.

    How is this Data Warehousing Industry segmented?

    The data warehousing industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. DeploymentOn-premisesHybridCloud-basedTypeStructured and semi-structured dataUnstructured dataEnd-userBFSIHealthcareRetail and e-commerceOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth KoreaRest of World (ROW).

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.In the dynamic the market, on-premise data warehousing solutions continue to be a preferred choice for businesses seeking end-to-end control and enhanced security. These solutions, installed and managed on the user's server, offer benefits such as workflow streamlining, speed, and robust data governance. The high cost of implementation and upgradation, coupled with the need for IT specialists, are factors contributing to the segment's popularity. Data security is a primary concern, with the complete ownership and management of servers ensuring that business data remains secure. ETL processes play a crucial role in data warehousing, facilitating data transformation, integration, and loading. Data modeling and mining are essential components, enabling businesses to derive valuable insights from their data. Data stewardship ensures data compliance and accuracy, while optimization techniques enhance performance. Data lake, a large storage repository, offers a flexible and cost-effective approach to managing diverse data types. Data warehousing consulting services help businesses navigate the complexities of im

  5. Cloud Data Warehouse Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Jun 12, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Cloud Data Warehouse Market Analysis, Size, and Forecast 2025-2029: North America (US, Canada, and Mexico), Europe (France, Germany, Italy, and UK), APAC (China, India, and Japan), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/cloud-data-warehouse-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 12, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    Germany, United States
    Description

    Snapshot img

    Cloud Data Warehouse Market Size 2025-2029

    The cloud data warehouse market size is forecast to increase by USD 63.91 billion at a CAGR of 43.3% between 2024 and 2029.

    The market is experiencing significant growth, driven by the increasing penetration of IoT-enabled devices generating vast amounts of data. This data requires efficient storage and analysis, making cloud data warehouses an attractive solution due to their scalability and flexibility. Additionally, the growing need for edge computing further fuels market expansion, as organizations seek to process data closer to its source in real-time. However, challenges persist in the form of company lock-in issues, where businesses may find it difficult to migrate their data from one cloud provider to another, potentially limiting their flexibility and strategic options.
    To capitalize on market opportunities and navigate challenges effectively, companies must stay informed of emerging trends and adapt their strategies accordingly. By focusing on interoperability and data portability, they can mitigate lock-in risks and maintain agility in their data management strategies. The market is experiencing significant growth due to several key trends. The increasing penetration of Internet of Things (IoT) devices is driving the need for more efficient data management solutions, leading to the adoption of cloud data warehouses.
    

    What will be the Size of the Cloud Data Warehouse Market during the forecast period?

    Explore in-depth regional segment analysis with market size data - historical 2019-2023 and forecasts 2025-2029 - in the full report.
    Request Free Sample

    In the dynamic market, businesses seek efficient solutions for managing and analyzing their data. Data visualization tools and business intelligence platforms enable users to gain insights through interactive dashboards and reports. Data automation tools streamline data processing, while data enrichment tools enhance data quality by adding external data sources. Data virtualization tools provide a unified view of data from various sources, and data integration tools ensure seamless data flow between systems. NoSQL databases and big data platforms offer scalability and flexibility for handling large volumes of data. Data cleansing tools eliminate errors and inconsistencies, while data encryption tools secure sensitive data.
    Data migration tools facilitate moving data between systems, and data validation tools ensure data accuracy. Real-time analytics platforms and predictive analytics platforms provide insights in near real-time, while prescriptive analytics platforms suggest actions based on data trends. Data deduplication tools eliminate redundant data, and data governance tools ensure compliance with regulations. Data orchestration tools manage workflows, and data science platforms facilitate machine learning and artificial intelligence applications. Data archiving tools store historical data, and data pipeline tools manage data movement between systems. Data fabric and data standardization tools ensure data consistency across the organization, while data replication tools maintain data availability and disaster recovery.
    

    How is this Cloud Data Warehouse Industry segmented?

    The cloud data warehouse industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Industry Application
    
      Large enterprises
      SMEs
    
    
    Deployment
    
      Public
      Private
    
    
    End-user
    
      Cloud server provider
      IT and ITES
      BFSI
      Retail
      Others
    
    
    Application
    
      Customer analytics
      Business intelligence
      Data modernization
      Operational analytics
      Predictive analytics
    
    
    Geography
    
      North America
    
        US
        Canada
        Mexico
    
    
      Europe
    
        France
        Germany
        Italy
        UK
    
    
      APAC
    
        China
        India
        Japan
    
    
      Rest of World (ROW)
    

    By Industry Application Insights

    The large enterprises segment is estimated to witness significant growth during the forecast period. In today's business landscape, cloud data warehouse solutions have gained significant traction among large enterprises, enabling them to efficiently manage and process data across various industries and geographies. Traditional on-premises data warehouses come with high costs due to the need for expensive hardware and physical space. Cloud-based alternatives offer a more cost-effective and convenient solution, allowing organizations to access tools and information remotely and streamline document sharing between multiple workplaces. Predictive analytics, data cost optimization, and data discovery are key drivers for cloud data warehouse adoption. These technologies offer insights into data trends and patterns, helping businesses make data-driven decisions.

    Data timeliness and data standardization ar

  6. Enterprise Data Warehouse (EDW) Market Analysis, Size, and Forecast...

    • technavio.com
    pdf
    Updated May 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Enterprise Data Warehouse (EDW) Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, Italy, and UK), APAC (China, India, Japan, and South Korea), and Rest of World (ROW) [Dataset]. https://www.technavio.com/report/enterprise-data-warehouse-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 15, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Enterprise Data Warehouse (EDW) Market Size 2025-2029

    The enterprise data warehouse (edw) market size is valued to increase USD 43.12 billion, at a CAGR of 28% from 2024 to 2029. Data explosion across industries will drive the enterprise data warehouse (edw) market.

    Major Market Trends & Insights

    APAC dominated the market and accounted for a 32% growth during the forecast period.
    By Product Type - Information and analytical processing segment was valued at USD 4.38 billion in 2023
    By Deployment - Cloud based segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 857.82 million
    Market Future Opportunities: USD 43116.60 million
    CAGR : 28%
    APAC: Largest market in 2023
    

    Market Summary

    The market is a dynamic and ever-evolving landscape, characterized by continuous innovation and adaptation to industry demands. Core technologies, such as cloud computing and big data analytics, are driving the market's growth, enabling organizations to manage and analyze vast amounts of data more effectively. In terms of applications, business intelligence and data mining are leading the way, providing valuable insights for strategic decision-making. Service types, including consulting, implementation, and support, are essential components of the EDW market. According to recent reports, the consulting segment is expected to dominate the market due to the increasing demand for expert advice in implementing and optimizing EDW solutions. However, data security concerns remain a significant challenge, with regulations like GDPR and HIPAA driving the need for robust security measures. Despite these challenges, the market continues to expand, with data explosion across industries fueling the demand for EDW solutions. For instance, the healthcare sector is projected to witness a compound annual growth rate (CAGR) of 15.3% between 2021 and 2028. Furthermore, the market is witnessing a significant focus on new solution launches, with major players like Microsoft, IBM, and Oracle introducing advanced EDW offerings to meet the evolving needs of businesses.

    What will be the Size of the Enterprise Data Warehouse (EDW) Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Enterprise Data Warehouse (EDW) Market Segmented and what are the key trends of market segmentation?

    The enterprise data warehouse (edw) industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments. Product TypeInformation and analytical processingData miningDeploymentCloud basedOn-premisesSectorLarge enterprisesSMEsEnd-userBFSIHealthcare and pharmaceuticalsRetail and E-commerceTelecom and ITOthersGeographyNorth AmericaUSCanadaEuropeFranceGermanyItalyUKAPACChinaIndiaJapanSouth KoreaRest of World (ROW)

    By Product Type Insights

    The information and analytical processing segment is estimated to witness significant growth during the forecast period.

    The market is experiencing significant growth, with data replication strategies becoming increasingly sophisticated to ensure capacity planning models accommodate expanding data volumes. ETL tool selection and business intelligence platforms are crucial components, enabling query optimization strategies and disaster recovery planning. Data warehouse migration, data profiling methods, and real-time data ingestion are essential for maintaining a competitive edge. Data warehouse automation, data quality metrics, and data warehouse modernization are ongoing priorities, with data cleansing techniques and dimensional modeling techniques essential for ensuring data accuracy. Data warehousing architecture, performance monitoring tools, and high availability solutions are integral to ensuring scalability and availability. Audit trail management, data lineage tracking, and data warehouse maintenance are critical for maintaining data security and compliance. Data security protocols and data encryption methods are essential for protecting sensitive information, while data virtualization techniques and access control mechanisms facilitate self-service business intelligence tools. ETL process optimization and data governance policies are key to streamlining operations and ensuring data consistency. The IT, BFSI, education, healthcare, and retail sectors are driving market growth, with information processing and analytical processing becoming increasingly important. The construction of web-based accessing tools integrated with web browsers is a current trend, enabling users to access data warehouses easily. According to recent studies, the market for data warehousing solutions is projected to grow by 18.5%, while the adoption of cloud data warehou

  7. Messy Retail Fashion Data

    • kaggle.com
    Updated Sep 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Van Patangan (2025). Messy Retail Fashion Data [Dataset]. https://www.kaggle.com/datasets/vanpatangan/retail-fashion-data
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 29, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Van Patangan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Overall Dataset Description

    • This dataset is designed for end-to-end retail fashion analytics practice
    • Data Cleaning & Joining: messy values, invalid keys, inconsistent formats.
    • Exploratory Analysis: sales trends, top products, customer demographics.
    • Forecasting: demand planning, sales prediction.
    • Optimization: markdowns, inventory allocation, store benchmarking.

    Possible Deliverables

    product_data - Product segmentation by category, size, or color. - Margin analysis: list vs. cost price. - Supplier performance comparison. - Seasonal assortment optimization.

    store_data - Store performance benchmarking (sales per m²). - Regional sales forecasting. - Channel strategy (online vs. physical).

    customer_data - Customer segmentation (RFM analysis, demographics). - Churn prediction. - Customer Lifetime Value (CLV) modeling. - Targeted marketing campaigns.

    sales_data - Sales forecasting (by product, category, store, or region). - Markdown & promotion analysis (discount impact). - Inventory optimization (demand vs. returns). - Cross-sell & basket analysis.

  8. Bike Warehouse SQL Project

    • kaggle.com
    Updated Jan 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Safae Ahb (2025). Bike Warehouse SQL Project [Dataset]. https://www.kaggle.com/datasets/safaeahb/bike-warehouse-sql-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 13, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Safae Ahb
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    SAP Bikes Sales : SQL Project

    https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2Fdd8e395e5d70bde9279f0f653b4bc2bf%2FGemini_Generated_Image_cvz71ncvz71ncvz7.jpg?generation=1736783649344014&alt=media" alt=""> This project involves analyzing and transforming data from a bike warehouse database using SQL. The goal is to clean, transform, and query the data to generate insights about products, employees, customers, sales, and trends.

    Overview

    The SAP Bikes Sales database contains various tables that represent business data for a bike warehouse, such as information on products, sales, employees, business partners, and more. This project focuses on cleaning and transforming data, optimizing database schema, and generating SQL queries to gain business insights.

    Key SQL Operations:

    1.**Data Cleaning & Transformation**: - Remove duplicate records from key tables. - Drop unnecessary columns and handle null values. - Populate new columns based on existing data. - Merge related tables to create new insights. 2.**Business Insights Queries**: - Top-selling Products: Identify products with the highest sales quantities and total revenue. - Sales Performance by Product Category: Analyze revenue and order counts by product category. - Employee Sales Performance: Track employees' contribution to sales volumes and revenue. - Customer Segmentation: Examine the number of orders placed by business partners and their total sales value. - Sales Trends: Analyze sales trends over time and calculate average order values.

    Tables Involved

    • Addresses: Contains information about addresses: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2F1a5b39b4f402dfce31ea25d6d53c2f38%2FAdresses%20Table.PNG?generation=1736780543250265&alt=media" alt="">
    • BusinessPartners: Contains details about business partners: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2F416a9be40526650a4167dfdc565dfbe6%2FBusinessPartners%20Table.PNG?generation=1736780656503685&alt=media" alt="">
    • Employees: Contains employee information: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2F5b99849bde2bc052cc1d6cc7d52fb67d%2FEmployees%20Table.PNG?generation=1736780677194831&alt=media" alt="">
    • ProductCategories & ProductCategoryText: Describe product categories and their descriptions: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2F928f9aeb937c2fdc8d8860cc8d23f9d7%2FProductCategories%20Table.PNG?generation=1736780784495223&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2Fe148078e53777ca1180c5adf6cec7dda%2FProductCategory%20Text%20Table.PNG?generation=1736780831995071&alt=media" alt="">
    • Products & ProductTexts: Contain product details and product descriptions: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2Fdd4eb334332ec5d9248ccb8b737dd2df%2FProducts%20Table.PNG?generation=1736780894684724&alt=media" alt=""> https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2Faceb93b69951b1fde1f46bac146a9aa0%2FProductTexts%20Table.PNG?generation=1736782044055973&alt=media" alt="">
    • SalesOrderItems: Contains details of individual items within a sales order: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2Fe0ba42ddc00634ce1728e013dbeb231c%2FSalesOrderItemsTable.PNG?generation=1736781074515668&alt=media" alt="">
    • SalesOrders: Contains information about sales orders: https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F22744129%2F0a67d6ba6ded143676db9f0b4f4dfcb0%2FSalesOrders%20Table.PNG?generation=1736781089531236&alt=media" alt="">

    Key SQL Queries

    1. Data Cleaning and Transformation:

    -**Addresses Table**: -Checking for duplicates ADDRESSID. -**BusinessPartners Table**: -Handled duplicates, missing or incorrect data. -Dropped the unnecessary FAXNUMBER column because it was empty. -**Employee Table**: -Dropped unnecessary columns. -Populated NAME_INITIALS based on employee's first, middle, and last name initials. -Fixed column type issues. -**Product Categories and Product Texts**: -Merged ProductCategories and ProductCategoryText tables into a new CombinedProductCategories table for easy analysis. -**Products Table**: -Dropped irrelevant columns such as WIDTH, DEPTH, HEIGHT, etc. -**Sales Order Items Table**: -Fixed null values in GROSSAMOUNT and created a TOTALGROSSAMOUNT column to track sales volume.

    ###2. Database Diagram and Relationships In addition to the data cleaning and analysis, a database diagram has been create...

  9. Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  10. W

    Warehouse Cleaning and Maintenance Service Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Warehouse Cleaning and Maintenance Service Report [Dataset]. https://www.datainsightsmarket.com/reports/warehouse-cleaning-and-maintenance-service-1393285
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Jan 18, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The size of the Warehouse Cleaning and Maintenance Service market was valued at USD 366 million in 2023 and is projected to reach USD 580.07 million by 2032, with an expected CAGR of 6.8% during the forecast period.

  11. 1,990,000 Groups - Chinese-Czech Parallel Corpus Data

    • nexdata.ai
    Updated Dec 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nexdata (2023). 1,990,000 Groups - Chinese-Czech Parallel Corpus Data [Dataset]. https://www.nexdata.ai/datasets/nlu/1336
    Explore at:
    Dataset updated
    Dec 26, 2023
    Dataset authored and provided by
    Nexdata
    Variables measured
    Language, Data size, Data content, Storage format, Application scenario
    Description

    1,990,000 sets of Chinese and Czech language parallel translation corpus, data storage format is txt document. Data cleaning, desensitization, and quality inspection have been carried out, which can be used as a basic corpus for text data analysis and in fields such as machine translation.

  12. C

    Customer Data Migration Service Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Oct 22, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Customer Data Migration Service Report [Dataset]. https://www.marketresearchforecast.com/reports/customer-data-migration-service-546487
    Explore at:
    ppt, doc, pdfAvailable download formats
    Dataset updated
    Oct 22, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Explore the dynamic Customer Data Migration Service market analysis. Discover key growth drivers, emerging trends, market size projections, and regional insights for 2025-2033.

  13. S

    Global Warehouse Cleaning Services Market Demand and Supply Dynamics...

    • statsndata.org
    excel, pdf
    Updated Nov 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Warehouse Cleaning Services Market Demand and Supply Dynamics 2025-2032 [Dataset]. https://www.statsndata.org/report/warehouse-cleaning-services-market-48450
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Nov 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Warehouse Cleaning Services market has evolved into a critical sector within the broader logistics and supply chain industry, focusing on maintaining cleanliness and safety standards in storage facilities. This specialized cleaning service not only ensures compliance with health and safety regulations but also e

  14. e

    Cleaning Warehouse Export Import Data | Eximpedia

    • eximpedia.app
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Cleaning Warehouse Export Import Data | Eximpedia [Dataset]. https://www.eximpedia.app/companies/cleaning-warehouse/46592518
    Explore at:
    Dataset updated
    Oct 7, 2025
    Description

    Cleaning Warehouse Export Import Data. Follow the Eximpedia platform for HS code, importer-exporter records, and customs shipment details.

  15. G

    Vendor Master Data Management Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Vendor Master Data Management Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/vendor-master-data-management-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Vendor Master Data Management Market Outlook



    According to our latest research, the global Vendor Master Data Management (VMDM) market size is valued at USD 2.75 billion in 2024, reflecting a robust demand for efficient data governance and supplier relationship management across industries. The market is expected to register a compound annual growth rate (CAGR) of 13.2% during the forecast period, reaching a projected value of USD 7.77 billion by 2033. This significant expansion is primarily driven by the increasing need for centralized vendor data, compliance with regulatory frameworks, and the growing adoption of digital transformation initiatives in procurement and supply chain operations worldwide.




    One of the primary growth factors propelling the Vendor Master Data Management market is the rising complexity of global supply chains and the need for organizations to manage vast volumes of vendor information efficiently. As enterprises expand their supplier networks and operate across multiple geographies, maintaining accurate, consistent, and up-to-date vendor data becomes crucial for operational efficiency and risk mitigation. The proliferation of regulatory requirements, such as Know Your Supplier (KYS) and anti-bribery laws, further necessitates robust VMDM solutions to ensure compliance and transparency. Companies are increasingly investing in advanced VMDM platforms that offer comprehensive data governance, automated workflows, and seamless integration with existing enterprise resource planning (ERP) systems to streamline vendor management processes.




    Another key driver is the rapid digital transformation across various industry verticals, including BFSI, healthcare, manufacturing, and retail. Organizations are leveraging Vendor Master Data Management solutions to enhance procurement agility, improve supplier collaboration, and gain actionable insights from unified vendor data. The integration of artificial intelligence (AI), machine learning (ML), and analytics into VMDM platforms enables real-time data validation, anomaly detection, and predictive analytics, empowering businesses to make informed decisions and proactively manage supplier risks. Furthermore, the shift towards cloud-based deployment models is accelerating the adoption of VMDM solutions among small and medium enterprises (SMEs), offering scalability, cost-effectiveness, and ease of implementation without significant IT infrastructure investments.




    The growing focus on data quality and governance is also contributing to market growth. As organizations recognize the strategic value of vendor data in driving competitive advantage, there is an increasing emphasis on establishing standardized data management practices and ensuring data accuracy across the vendor lifecycle. VMDM solutions facilitate centralized data repositories, automated data cleansing, and standardized workflows, minimizing data redundancies and inconsistencies. This not only enhances operational efficiency but also supports better compliance reporting, supplier performance evaluation, and strategic sourcing initiatives. The ongoing trend of mergers and acquisitions, as well as the emergence of new regulatory mandates, further underscore the importance of robust vendor data management capabilities.



    Data Cleansing for Warehouse Master Data is an essential component in ensuring the accuracy and reliability of vendor information. As organizations manage vast amounts of data across multiple systems, maintaining data quality becomes a critical task. Effective data cleansing processes help eliminate duplicates, correct inaccuracies, and standardize data formats, thereby enhancing the overall integrity of the master data. This is particularly important in warehouse operations where precise data is crucial for inventory management, order fulfillment, and supply chain efficiency. By implementing robust data cleansing strategies, companies can improve decision-making, reduce operational risks, and enhance compliance with industry regulations. The integration of automated data cleansing tools within Vendor Master Data Management platforms further streamlines this process, enabling real-time updates and continuous data quality improvement.




    From a regional perspective, North America continues to dominate the Vendor Master Data Management market, accounting for the largest share in 2

  16. Store Data Analysis using MS excel

    • kaggle.com
    zip
    Updated Mar 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NisshaaChoudhary (2024). Store Data Analysis using MS excel [Dataset]. https://www.kaggle.com/datasets/nisshaachoudhary/store-data-analysis-using-ms-excel/discussion
    Explore at:
    zip(13048217 bytes)Available download formats
    Dataset updated
    Mar 10, 2024
    Authors
    NisshaaChoudhary
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Vrinda Store: Interactive Ms Excel dashboardVrinda Store: Interactive Ms Excel dashboard Feb 2024 - Mar 2024Feb 2024 - Mar 2024 The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022?

    And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel The owner of Vrinda store wants to create an annual sales report for 2022. So that their employees can understand their customers and grow more sales further. Questions asked by Owner of Vrinda store are as follows:- 1) Compare the sales and orders using single chart. 2) Which month got the highest sales and orders? 3) Who purchased more - women per men in 2022? 4) What are different order status in 2022? And some other questions related to business. The owner of Vrinda store wanted a visual story of their data. Which can depict all the real time progress and sales insight of the store. This project is a Ms Excel dashboard which presents an interactive visual story to help the Owner and employees in increasing their sales. Task performed : Data cleaning, Data processing, Data analysis, Data visualization, Report. Tool used : Ms Excel Skills: Data Analysis · Data Analytics · ms excel · Pivot Tables

  17. p

    Jiejie Dry-Cleaning Store Locations Data for China

    • poidata.io
    csv, json
    Updated Nov 9, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Business Data Provider (2025). Jiejie Dry-Cleaning Store Locations Data for China [Dataset]. https://poidata.io/brand-report/jiejie-dry-cleaning-store/china
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Nov 9, 2025
    Dataset authored and provided by
    Business Data Provider
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    2025
    Area covered
    China
    Variables measured
    Website URL, Phone Number, Review Count, Business Name, Email Address, Business Hours, Customer Rating, Business Address, Brand Affiliation, Geographic Coordinates
    Description

    Comprehensive dataset containing 40 verified Jiejie Dry-Cleaning Store locations in China with complete contact information, ratings, reviews, and location data.

  18. M

    Global Warehouse Cleaning Robot Market Growth Drivers and Challenges...

    • statsndata.org
    excel, pdf
    Updated Oct 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stats N Data (2025). Global Warehouse Cleaning Robot Market Growth Drivers and Challenges 2025-2032 [Dataset]. https://www.statsndata.org/report/warehouse-cleaning-robot-market-173432
    Explore at:
    pdf, excelAvailable download formats
    Dataset updated
    Oct 2025
    Dataset authored and provided by
    Stats N Data
    License

    https://www.statsndata.org/how-to-orderhttps://www.statsndata.org/how-to-order

    Area covered
    Global
    Description

    The Warehouse Cleaning Robot market has emerged as a pivotal sector within the automation industry, driven by an increasing demand for efficiency and cleanliness in large-scale warehousing operations. These advanced robots are designed to streamline cleaning processes, ensuring that vast warehouse spaces are maintai

  19. G

    Data Preparation Platform Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Aug 29, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Data Preparation Platform Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/data-preparation-platform-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Aug 29, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Data Preparation Platform Market Outlook



    According to our latest research, the global Data Preparation Platform market size reached USD 4.6 billion in 2024, reflecting robust adoption across diverse industries. The market is expected to expand at a CAGR of 19.8% during the forecast period, with revenue projected to reach USD 17.1 billion by 2033. This accelerated growth is primarily driven by the rising demand for advanced analytics, artificial intelligence, and machine learning applications, which require clean, integrated, and high-quality data as a foundation for actionable insights.




    The primary growth factor propelling the data preparation platform market is the increasing volume and complexity of data generated by organizations worldwide. With the proliferation of digital transformation initiatives, businesses are collecting vast amounts of structured and unstructured data from sources such as IoT devices, social media, enterprise applications, and customer interactions. This data deluge presents significant challenges in terms of integration, cleansing, and transformation, necessitating advanced data preparation solutions. As organizations strive to leverage big data analytics for strategic decision-making, the need for automated, scalable, and user-friendly data preparation tools has become paramount. These platforms enable data scientists, analysts, and business users to efficiently prepare and manage data, reducing the time-to-insight and enhancing overall productivity.




    Another critical driver for the data preparation platform market is the growing emphasis on data quality and governance. In regulated industries such as BFSI, healthcare, and government, compliance with data privacy laws and industry standards is non-negotiable. Poor data quality can lead to erroneous analytics, flawed business strategies, and substantial financial penalties. Data preparation platforms address these challenges by providing robust features for data profiling, cleansing, enrichment, and validation, ensuring that only accurate and reliable data is used for analysis. Additionally, the integration of AI and machine learning capabilities within these platforms further automates the identification and correction of anomalies, outliers, and inconsistencies, supporting organizations in maintaining high standards of data integrity and compliance.




    The rapid shift towards cloud-based solutions is also fueling the expansion of the data preparation platform market. Cloud deployment offers unparalleled scalability, flexibility, and cost-efficiency, making it an attractive choice for enterprises of all sizes. Cloud-native data preparation platforms facilitate seamless collaboration among geographically dispersed teams, enable real-time data processing, and support integration with modern data warehouses and analytics tools. As remote and hybrid work models become the norm and organizations pursue digital agility, the adoption of cloud-based data preparation solutions is expected to surge. This trend is particularly pronounced among small and medium enterprises (SMEs), which benefit from the reduced infrastructure costs and simplified deployment offered by cloud platforms.




    From a regional perspective, North America continues to dominate the data preparation platform market, driven by the presence of leading technology vendors, early adoption of advanced analytics, and a strong focus on data-driven business strategies. However, the Asia Pacific region is emerging as the fastest-growing market, fueled by rapid digitalization, increasing investments in AI and big data, and the expansion of cloud infrastructure. Europe also holds a significant share, supported by stringent data protection regulations and a mature enterprise landscape. Latin America and the Middle East & Africa are witnessing steady growth, as organizations in these regions recognize the value of data-driven insights for operational efficiency and competitive advantage.



    Data Wrangling, a crucial aspect of data preparation, involves the process of cleaning and unifying complex data sets for easy access and analysis. In the context of data preparation platforms, data wrangling is essential for transforming raw data into a structured format that can be readily used for analytics. This process includes tasks such as filtering, sorting, aggregating, and enriching data, which are ne

  20. G

    ETL for Emissions Big Data Warehouses Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). ETL for Emissions Big Data Warehouses Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/etl-for-emissions-big-data-warehouses-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    ETL for Emissions Big Data Warehouses Market Outlook



    According to our latest research, the global ETL for Emissions Big Data Warehouses market size reached USD 2.14 billion in 2024 and is projected to grow at a CAGR of 13.2% from 2025 to 2033, culminating in a forecasted market value of USD 6.01 billion by 2033. This robust expansion is driven by the increasing demand for advanced data integration and analytics solutions that support emissions monitoring, regulatory compliance, and sustainability initiatives across industries. The market’s growth is further propelled by the rising adoption of digital transformation strategies, stringent environmental regulations, and the proliferation of big data technologies in environmental monitoring.



    One of the primary growth factors for the ETL for Emissions Big Data Warehouses market is the intensifying regulatory landscape worldwide. Governments and regulatory bodies are imposing stricter emissions standards and reporting requirements, compelling organizations across sectors such as oil & gas, power generation, and manufacturing to invest in robust data management solutions. ETL (Extract, Transform, Load) platforms are essential for aggregating disparate emissions data from various sources, transforming it into standardized formats, and loading it into centralized big data warehouses for comprehensive analysis. This capability not only ensures compliance but also enhances the accuracy and timeliness of emissions reporting, which is critical for avoiding penalties and maintaining corporate reputation in an increasingly environmentally conscious market.



    Another significant driver is the surge in corporate sustainability and ESG (Environmental, Social, and Governance) initiatives. Enterprises are under mounting pressure from stakeholders, investors, and consumers to demonstrate their commitment to reducing carbon footprints and improving energy efficiency. ETL solutions for emissions big data warehouses enable organizations to seamlessly integrate real-time data from IoT sensors, legacy systems, and third-party sources, providing actionable insights for carbon footprint analysis and energy management. This empowers companies to identify inefficiencies, optimize resource utilization, and implement targeted sustainability strategies, thereby gaining a competitive edge in their respective markets.



    Technological advancements and the integration of artificial intelligence and machine learning into ETL platforms are further accelerating market growth. Modern ETL tools are equipped with advanced analytics capabilities, automated data cleansing, and anomaly detection features that streamline the data pipeline and enhance the quality of emissions data. Cloud-based ETL solutions, in particular, offer scalability, flexibility, and cost-effectiveness, making them increasingly attractive to organizations with geographically dispersed operations. The convergence of big data analytics, cloud computing, and IoT is creating new opportunities for real-time emissions monitoring, predictive analytics, and proactive environmental management, fueling the adoption of ETL for emissions big data warehouses across diverse industry verticals.



    From a regional perspective, North America currently leads the market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The dominance of these regions can be attributed to the presence of stringent environmental regulations, high technology adoption rates, and significant investments in digital infrastructure. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by rapid industrialization, urbanization, and growing environmental awareness. Emerging economies in Latin America and the Middle East & Africa are also anticipated to experience steady growth, supported by government initiatives aimed at improving air quality and reducing greenhouse gas emissions.





    Component Analysis



    The ETL for Emissions Big Data Warehouses market is segmented by component into <

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ahmed Mohamed (2025). Retail Store Sales: Dirty for Data Cleaning [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/retail-store-sales-dirty-for-data-cleaning
Organization logo

Retail Store Sales: Dirty for Data Cleaning

Dirty Retail Store Sales Dataset

Explore at:
zip(226740 bytes)Available download formats
Dataset updated
Jan 18, 2025
Authors
Ahmed Mohamed
License

Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically

Description

Dirty Retail Store Sales Dataset

Overview

The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.

File Information

  • File Name: retail_store_sales.csv
  • Number of Rows: 12,575
  • Number of Columns: 11

Columns Description

Column NameDescriptionExample Values
Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
Customer IDA unique identifier for each customer. 25 unique customers.CUST_01
CategoryThe category of the purchased item.Food, Furniture
ItemThe name of the purchased item. May contain missing values or None.Item_1_FOOD, None
Price Per UnitThe static price of a single unit of the item. May contain missing or None values.4.00, None
QuantityThe quantity of the item purchased. May contain missing or None values.1, None
Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, None
Payment MethodThe method of payment used. May contain missing or invalid values.Cash, Credit Card
LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Online
Transaction DateThe date of the transaction. Always present and valid.2023-01-15
Discount AppliedIndicates if a discount was applied to the transaction. May contain missing values.True, False, None

Categories and Items

The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:

Electric Household Essentials

Item CodeItem NamePrice
Item_1_EHEBlender5.0
Item_2_EHEMicrowave6.5
Item_3_EHEToaster8.0
Item_4_EHEVacuum Cleaner9.5
Item_5_EHEAir Purifier11.0
Item_6_EHEElectric Kettle12.5
Item_7_EHERice Cooker14.0
Item_8_EHEIron15.5
Item_9_EHECeiling Fan17.0
Item_10_EHETable Fan18.5
Item_11_EHEHair Dryer20.0
Item_12_EHEHeater21.5
Item_13_EHEHumidifier23.0
Item_14_EHEDehumidifier24.5
Item_15_EHECoffee Maker26.0
Item_16_EHEPortable AC27.5
Item_17_EHEElectric Stove29.0
Item_18_EHEPressure Cooker30.5
Item_19_EHEInduction Cooktop32.0
Item_20_EHEWater Dispenser33.5
Item_21_EHEHand Blender35.0
Item_22_EHEMixer Grinder36.5
Item_23_EHESandwich Maker38.0
Item_24_EHEAir Fryer39.5
Item_25_EHEJuicer41.0

Furniture

Item CodeItem NamePrice
Item_1_FUROffice Chair5.0
Item_2_FURSofa6.5
Item_3_FURCoffee Table8.0
Item_4_FURDining Table9.5
Item_5_FURBookshelf11.0
Item_6_FURBed F...
Search
Clear search
Close search
Google apps
Main menu