100+ datasets found
  1. Dataset for learning Data cleaning methods

    • kaggle.com
    zip
    Updated Aug 8, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Elsayed taha (2024). Dataset for learning Data cleaning methods [Dataset]. https://www.kaggle.com/datasets/ahmedelsayed3/dataset-for-learning-data-cleaning-methods
    Explore at:
    zip(10133 bytes)Available download formats
    Dataset updated
    Aug 8, 2024
    Authors
    Ahmed Elsayed taha
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    Dataset

    This dataset was created by Ahmed Elsayed taha

    Released under Apache 2.0

    Contents

  2. Data Cleaning Project

    • kaggle.com
    zip
    Updated Aug 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohanad Hazem Qabil (2024). Data Cleaning Project [Dataset]. https://www.kaggle.com/datasets/muhannadhazemqabil/data-cleaning-project
    Explore at:
    zip(79166 bytes)Available download formats
    Dataset updated
    Aug 19, 2024
    Authors
    Mohanad Hazem Qabil
    Description

    Dataset

    This dataset was created by Mohanad Hazem Qabil

    Contents

  3. Is it time to stop sweeping data cleaning under the carpet? A novel...

    • plos.figshare.com
    docx
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). Is it time to stop sweeping data cleaning under the carpet? A novel algorithm for outlier management in growth data [Dataset]. http://doi.org/10.1371/journal.pone.0228154
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    All data are prone to error and require data cleaning prior to analysis. An important example is longitudinal growth data, for which there are no universally agreed standard methods for identifying and removing implausible values and many existing methods have limitations that restrict their usage across different domains. A decision-making algorithm that modified or deleted growth measurements based on a combination of pre-defined cut-offs and logic rules was designed. Five data cleaning methods for growth were tested with and without the addition of the algorithm and applied to five different longitudinal growth datasets: four uncleaned canine weight or height datasets and one pre-cleaned human weight dataset with randomly simulated errors. Prior to the addition of the algorithm, data cleaning based on non-linear mixed effects models was the most effective in all datasets and had on average a minimum of 26.00% higher sensitivity and 0.12% higher specificity than other methods. Data cleaning methods using the algorithm had improved data preservation and were capable of correcting simulated errors according to the gold standard; returning a value to its original state prior to error simulation. The algorithm improved the performance of all data cleaning methods and increased the average sensitivity and specificity of the non-linear mixed effects model method by 7.68% and 0.42% respectively. Using non-linear mixed effects models combined with the algorithm to clean data allows individual growth trajectories to vary from the population by using repeated longitudinal measurements, identifies consecutive errors or those within the first data entry, avoids the requirement for a minimum number of data entries, preserves data where possible by correcting errors rather than deleting them and removes duplications intelligently. This algorithm is broadly applicable to data cleaning anthropometric data in different mammalian species and could be adapted for use in a range of other domains.

  4. Cafe Sales - Dirty Data for Cleaning Training

    • kaggle.com
    zip
    Updated Jan 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Cafe Sales - Dirty Data for Cleaning Training [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/cafe-sales-dirty-data-for-cleaning-training
    Explore at:
    zip(113510 bytes)Available download formats
    Dataset updated
    Jan 17, 2025
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dirty Cafe Sales Dataset

    Overview

    The Dirty Cafe Sales dataset contains 10,000 rows of synthetic data representing sales transactions in a cafe. This dataset is intentionally "dirty," with missing values, inconsistent data, and errors introduced to provide a realistic scenario for data cleaning and exploratory data analysis (EDA). It can be used to practice cleaning techniques, data wrangling, and feature engineering.

    File Information

    • File Name: dirty_cafe_sales.csv
    • Number of Rows: 10,000
    • Number of Columns: 8

    Columns Description

    Column NameDescriptionExample Values
    Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
    ItemThe name of the item purchased. May contain missing or invalid values (e.g., "ERROR").Coffee, Sandwich
    QuantityThe quantity of the item purchased. May contain missing or invalid values.1, 3, UNKNOWN
    Price Per UnitThe price of a single unit of the item. May contain missing or invalid values.2.00, 4.00
    Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, 12.00
    Payment MethodThe method of payment used. May contain missing or invalid values (e.g., None, "UNKNOWN").Cash, Credit Card
    LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Takeaway
    Transaction DateThe date of the transaction. May contain missing or incorrect values.2023-01-01

    Data Characteristics

    1. Missing Values:

      • Some columns (e.g., Item, Payment Method, Location) may contain missing values represented as None or empty cells.
    2. Invalid Values:

      • Some rows contain invalid entries like "ERROR" or "UNKNOWN" to simulate real-world data issues.
    3. Price Consistency:

      • Prices for menu items are consistent but may have missing or incorrect values introduced.

    Menu Items

    The dataset includes the following menu items with their respective price ranges:

    ItemPrice($)
    Coffee2
    Tea1.5
    Sandwich4
    Salad5
    Cake3
    Cookie1
    Smoothie4
    Juice3

    Use Cases

    This dataset is suitable for: - Practicing data cleaning techniques such as handling missing values, removing duplicates, and correcting invalid entries. - Exploring EDA techniques like visualizations and summary statistics. - Performing feature engineering for machine learning workflows.

    Cleaning Steps Suggestions

    To clean this dataset, consider the following steps: 1. Handle Missing Values: - Fill missing numeric values with the median or mean. - Replace missing categorical values with the mode or "Unknown."

    1. Handle Invalid Values:

      • Replace invalid entries like "ERROR" and "UNKNOWN" with NaN or appropriate values.
    2. Date Consistency:

      • Ensure all dates are in a consistent format.
      • Fill missing dates with plausible values based on nearby records.
    3. Feature Engineering:

      • Create new columns, such as Day of the Week or Transaction Month, for further analysis.

    License

    This dataset is released under the CC BY-SA 4.0 License. You are free to use, share, and adapt it, provided you give appropriate credit.

    Feedback

    If you have any questions or feedback, feel free to reach out through the dataset's discussion board on Kaggle.

  5. Data Cleaning - Feature Imputation

    • kaggle.com
    zip
    Updated Aug 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mr.Machine (2022). Data Cleaning - Feature Imputation [Dataset]. https://www.kaggle.com/datasets/ilayaraja07/data-cleaning-feature-imputation
    Explore at:
    zip(116097 bytes)Available download formats
    Dataset updated
    Aug 13, 2022
    Authors
    Mr.Machine
    Description

    Data Cleaning or Data cleansing is to clean the data by imputing missing values, smoothing noisy data, and identifying or removing outliers. In general, the missing values are found due to collection error or data is corrupted.

    Here some info in details :Feature Engineering - Handling Missing Value

    Wine_Quality.csv dataset have the numerical missing data, and students_Performance.mv.csv dataset have Numerical and categorical missing data's.

  6. Full Dataset prior to Cleaning

    • figshare.com
    zip
    Updated Mar 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Paige Chesshire (2023). Full Dataset prior to Cleaning [Dataset]. http://doi.org/10.6084/m9.figshare.22455616.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 31, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Paige Chesshire
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset includes all of the data downloaded from GBIF (DOIs provided in README.md as well as below, downloaded Feb 2021) as well as data downloaded from SCAN. This dataset has 2,808,432 records and can be used as a reference to the verbatim data before it underwent the cleaning process. The only modifications made to this datset after direct download from the data portals are the following:

    1) for GBIF records, I renamed the countryCode column to be "country" so that the column title is consistent across both GBIF and SCAN 2) A source column was added where I specify if the record came from GBIF or SCAN 3) Duplicate records across SCAN and GBIF were removed by identifying identical instances "catalogNumber" and "institutionCode" 4) Only the Darwin core columns (DwC) that were shared across downloaded datasets were retained. GBIF contained ~249 DwC variables, and SCAN data contained fewer, so this combined dataset only includes the ~80 columns shared between the two datasets

    For GBIF, we downloaded the data in three separate chunks, therefore there are three DOIs. See below:

    GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.6cxfsw GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.b9rfa7 GBIF.org (3 February 2021) GBIF Occurrence Downloadhttps://doi.org/10.15468/dl.w2nndm

  7. f

    Restaurant Menu (Data Cleaning)

    • rochester.figshare.com
    txt
    Updated Sep 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aabha Pandit; Alois Romanowski; Heather Owen (2025). Restaurant Menu (Data Cleaning) [Dataset]. http://doi.org/10.60593/ur.d.26462404.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 17, 2025
    Dataset provided by
    University of Rochester
    Authors
    Aabha Pandit; Alois Romanowski; Heather Owen
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Restaurant Menu DatasetWith approximately 45,000 menus dating from the 1840s to the present, The New York Public Library’s restaurant menu collection is one of the largest in the world. The menu data has been transcribed, dish by dish, into this dataset. For more information, please see http://menus.nypl.org/about.This dataset is not clean and contains many missing values, making it perfect to practice data cleaning tools and techniques.Dataset Variables:id: identifier for menuname: sponsor: who sponsored the meal (organizations, people, name of restaurant)event: categoryvenue: type of place (commercial, social, professional)place: where the meal took place (often a geographic location)physical_description: dimension and material description of the menuoccasion: occasion of the meal (holidays, anniversaries, daily)notes: notes by librarians about the original materialcall_number: call number of the menukeywords: language: date: date of the menulocation: organization or business who produced the menulocation_typecurrency: system of money the menu uses (dollars, etc)currency_symbol: symbol for the currency ($, etc)status: completeness of the menu transcription (transcribed, under review, etc)page_count: how many pages the menu hasdish_count: how many dishes the menu has

  8. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  9. The percentage of gold standard corrections of errors induced into CLOSER...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t005
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The percentage of gold standard corrections of errors induced into CLOSER data with simulated duplications and 1% errors using the algorithmic data cleaning methods.

  10. The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER data with simulated duplications and 1% simulated errors using the NLME-A data cleaning method. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t007
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 1, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The percentage of alterations made to Dogslife, SAVSNET, Banfield and CLOSER data with simulated duplications and 1% simulated errors using the NLME-A data cleaning method.

  11. Cleaning Practice with Errors & Missing Values

    • kaggle.com
    Updated Jun 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Zuhair khan (2025). Cleaning Practice with Errors & Missing Values [Dataset]. https://www.kaggle.com/datasets/zuhairkhan13/cleaning-practice-with-errors-and-missing-values
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jun 5, 2025
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Zuhair khan
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This dataset is designed specifically for beginners and intermediate learners to practice data cleaning techniques using Python and Pandas.

    It includes 500 rows of simulated employee data with intentional errors such as:

    Missing values in Age and Salary

    Typos in email addresses (@gamil.com)

    Inconsistent city name casing (e.g., lahore, Karachi)

    Extra spaces in department names (e.g., " HR ")

    ✅ Skills You Can Practice:

    Detecting and handling missing data

    String cleaning and formatting

    Removing duplicates

    Validating email formats

    Standardizing categorical data

    You can use this dataset to build your own data cleaning notebook, or use it in interviews, assessments, and tutorials.

  12. The mean, standard deviation, preservation of data (PD), sensitivity and...

    • plos.figshare.com
    xls
    Updated May 30, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). The mean, standard deviation, preservation of data (PD), sensitivity and specificity of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in CLOSER data with and without simulated duplications and 1% errors. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The mean, standard deviation, preservation of data (PD), sensitivity and specificity of five data cleaning approaches with and without an algorithm (A) compared to uncleaned longitudinal growth measurements in CLOSER data with and without simulated duplications and 1% errors.

  13. Z

    NoCORA - Northern Cameroon Observed Rainfall Archive

    • data.niaid.nih.gov
    • zenodo.org
    Updated Jul 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel (2024). NoCORA - Northern Cameroon Observed Rainfall Archive [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_10156437
    Explore at:
    Dataset updated
    Jul 10, 2024
    Dataset provided by
    Centre de Coopération Internationale en Recherche Agronomique pour le Développement
    Center for International Forestry Research
    Authors
    Lavarenne, Jérémy; Nenwala, Victor Hugo; Foulna Tcheobe, Carmel
    Area covered
    Cameroon, North Region
    Description

    Description: The NoCORA dataset represents a significant effort to compile and clean a comprehensive set of daily rainfall data for Northern Cameroon (North and Extreme North regions). This dataset, overing more than 1 million observations across 418 rainfall stations on a temporal range going from 1927 to 2022, is instrumental for researchers, meteorologists, and policymakers working in climate research, agricultural planning, and water resource management in the region. It integrates data from diverse sources, including Sodecoton rain funnels, the archive of Robert Morel (IRD), Centrale de Lagdo, the GHCN daily service, and the TAHMO network. The construction of NoCORA involved meticulous processes, including manual assembly of data, extensive data cleaning, and standardization of station names and coordinates, making it a hopefully robust and reliable resource for understanding climatic dynamics in Northern Cameroon. Data Sources: The dataset comprises eight primary rainfall data sources and a comprehensive coordinates dataset. The rainfall data sources include extensive historical and contemporary measurements, while the coordinates dataset was developed using reference data and an inference strategy for variant station names or missing coordinates. Dataset Preparation Methods: The preparation involved manual compilation, integration of machine-readable files, data cleaning with OpenRefine, and finalization using Python/Jupyter Notebook. This process should ensured the accuracy and consistency of the dataset. Discussion: NoCORA, with its extensive data compilation, presents an invaluable resource for climate-related studies in Northern Cameroon. However, users must navigate its complexities, including missing data interpretations, potential biases, and data inconsistencies. The dataset's comprehensive nature and historical span require careful handling and validation in research applications. Access to Dataset: The NoCORA dataset, while a comprehensive resource for climatological and meteorological research in Northern Cameroon, is subject to specific access conditions due to its compilation from various partner sources. The original data sources vary in their openness and accessibility, and not all partners have confirmed the open-access status of their data. As such, to ensure compliance with these varying conditions, access to the NoCORA dataset is granted on a request basis. Interested researchers and users are encouraged to contact us for permission to access the dataset. This process allows us to uphold the data sharing agreements with our partners while facilitating research and analysis within the scientific community. Authors Contributions:

    Data treatment: Victor Hugo Nenwala, Carmel Foulna Tcheobe, Jérémy Lavarenne. Documentation: Jérémy Lavarenne. Funding: This project was funded by the DESIRA INNOVACC project. Changelog:

    v1.0.2 : corrected interversion in column names in the coordinates dataset v1.0.1 : dataset specification file has been updated with complementary information regarding station locations v1.0.0 : initial submission

  14. Retail Store Sales: Dirty for Data Cleaning

    • kaggle.com
    zip
    Updated Jan 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Mohamed (2025). Retail Store Sales: Dirty for Data Cleaning [Dataset]. https://www.kaggle.com/datasets/ahmedmohamed2003/retail-store-sales-dirty-for-data-cleaning
    Explore at:
    zip(226740 bytes)Available download formats
    Dataset updated
    Jan 18, 2025
    Authors
    Ahmed Mohamed
    License

    Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
    License information was derived automatically

    Description

    Dirty Retail Store Sales Dataset

    Overview

    The Dirty Retail Store Sales dataset contains 12,575 rows of synthetic data representing sales transactions from a retail store. The dataset includes eight product categories with 25 items per category, each having static prices. It is designed to simulate real-world sales data, including intentional "dirtiness" such as missing or inconsistent values. This dataset is suitable for practicing data cleaning, exploratory data analysis (EDA), and feature engineering.

    File Information

    • File Name: retail_store_sales.csv
    • Number of Rows: 12,575
    • Number of Columns: 11

    Columns Description

    Column NameDescriptionExample Values
    Transaction IDA unique identifier for each transaction. Always present and unique.TXN_1234567
    Customer IDA unique identifier for each customer. 25 unique customers.CUST_01
    CategoryThe category of the purchased item.Food, Furniture
    ItemThe name of the purchased item. May contain missing values or None.Item_1_FOOD, None
    Price Per UnitThe static price of a single unit of the item. May contain missing or None values.4.00, None
    QuantityThe quantity of the item purchased. May contain missing or None values.1, None
    Total SpentThe total amount spent on the transaction. Calculated as Quantity * Price Per Unit.8.00, None
    Payment MethodThe method of payment used. May contain missing or invalid values.Cash, Credit Card
    LocationThe location where the transaction occurred. May contain missing or invalid values.In-store, Online
    Transaction DateThe date of the transaction. Always present and valid.2023-01-15
    Discount AppliedIndicates if a discount was applied to the transaction. May contain missing values.True, False, None

    Categories and Items

    The dataset includes the following categories, each containing 25 items with corresponding codes, names, and static prices:

    Electric Household Essentials

    Item CodeItem NamePrice
    Item_1_EHEBlender5.0
    Item_2_EHEMicrowave6.5
    Item_3_EHEToaster8.0
    Item_4_EHEVacuum Cleaner9.5
    Item_5_EHEAir Purifier11.0
    Item_6_EHEElectric Kettle12.5
    Item_7_EHERice Cooker14.0
    Item_8_EHEIron15.5
    Item_9_EHECeiling Fan17.0
    Item_10_EHETable Fan18.5
    Item_11_EHEHair Dryer20.0
    Item_12_EHEHeater21.5
    Item_13_EHEHumidifier23.0
    Item_14_EHEDehumidifier24.5
    Item_15_EHECoffee Maker26.0
    Item_16_EHEPortable AC27.5
    Item_17_EHEElectric Stove29.0
    Item_18_EHEPressure Cooker30.5
    Item_19_EHEInduction Cooktop32.0
    Item_20_EHEWater Dispenser33.5
    Item_21_EHEHand Blender35.0
    Item_22_EHEMixer Grinder36.5
    Item_23_EHESandwich Maker38.0
    Item_24_EHEAir Fryer39.5
    Item_25_EHEJuicer41.0

    Furniture

    Item CodeItem NamePrice
    Item_1_FUROffice Chair5.0
    Item_2_FURSofa6.5
    Item_3_FURCoffee Table8.0
    Item_4_FURDining Table9.5
    Item_5_FURBookshelf11.0
    Item_6_FURBed F...
  15. Description of the data entries, individuals, data entries per individual,...

    • plos.figshare.com
    • datasetcatalog.nlm.nih.gov
    xls
    Updated Jun 2, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements (2023). Description of the data entries, individuals, data entries per individual, mean and standard deviation of the longitudinal height or weight measurements in Dogslife, SAVSNET, Banfield and CLOSER data with and without simulated duplications and 1% errors before and after removal of duplicated measurement records. [Dataset]. http://doi.org/10.1371/journal.pone.0228154.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Charlotte S. C. Woolley; Ian G. Handel; B. Mark Bronsvoort; Jeffrey J. Schoenebeck; Dylan N. Clements
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description of the data entries, individuals, data entries per individual, mean and standard deviation of the longitudinal height or weight measurements in Dogslife, SAVSNET, Banfield and CLOSER data with and without simulated duplications and 1% errors before and after removal of duplicated measurement records.

  16. d

    Data from: Enviro-Champs Formshare Data Cleaning Tool

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udhav Maharaj (2024). Enviro-Champs Formshare Data Cleaning Tool [Dataset]. http://doi.org/10.7910/DVN/EA5MOI
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Udhav Maharaj
    Time period covered
    Jan 1, 2023 - Jan 1, 2024
    Description

    A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.

  17. Real Estate Raw Dataset for Cleaning/Exploring

    • kaggle.com
    zip
    Updated Oct 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rumana Amin (2024). Real Estate Raw Dataset for Cleaning/Exploring [Dataset]. https://www.kaggle.com/datasets/rumanaamin/real-estate-raw-dataset-for-cleaningexploring
    Explore at:
    zip(40581 bytes)Available download formats
    Dataset updated
    Oct 2, 2024
    Authors
    Rumana Amin
    Description

    This property rental raw and uncleaned dataset can provide a glimpse various aspects like property price, property size, location etc. of the rental scenario in Dhaka, Bangladesh.

    This tiny and messy dataset is excellent for practicing data cleaning techniques. Here are some tasks you can perform: 1. Identify and handle duplicates, missing values, and ensure proper measurements. 2. Detect and manage outliers. 3. Clean and standardize property size data. 4. Extract details like car parking spaces, availability of lifts, etc. 5. Standardize the 'price' column, which contains values in different formats (e.g., actual amounts, values in lakhs, crores, and per square feet). Note: 1 lakh = 100,000 & 1 crore = 10 million. 6. Tackle cleaning of the 'floor' column. 7. Check and convert data types for accurate analysis. 8. Explore many other cleaning possibilities!

    Be ready to do some data cleaning and exploring! Data Source: https://rents.com.bd/

  18. m

    Data from: Datasets for lot sizing and scheduling problems in the...

    • data.mendeley.com
    • narcis.nl
    Updated Jan 19, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Juan Piñeros (2021). Datasets for lot sizing and scheduling problems in the fruit-based beverage production process [Dataset]. http://doi.org/10.17632/j2x3gbskfw.1
    Explore at:
    Dataset updated
    Jan 19, 2021
    Authors
    Juan Piñeros
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The datasets presented here were partially used in “Formulation and MIP-heuristics for the lot sizing and scheduling problem with temporal cleanings” (Toscano, A., Ferreira, D. , Morabito, R. , Computers & Chemical Engineering) [1], in “A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning” (Toscano, A., Ferreira, D. , Morabito, R. , Flexible Services and Manufacturing Journal) [2], and in “A heuristic approach to optimize the production scheduling of fruit-based beverages” (Toscano et al., Gestão & Produção, 2020) [3]. In fruit-based production processes, there are two production stages: preparation tanks and production lines. This production process has some process-specific characteristics, such as temporal cleanings and synchrony between the two production stages, which make optimized production planning and scheduling even more difficult. In this sense, some papers in the literature have proposed different methods to solve this problem. To the best of our knowledge, there are no standard datasets used by researchers in the literature in order to verify the accuracy and performance of proposed methods or to be a benchmark for other researchers considering this problem. The authors have been using small data sets that do not satisfactorily represent different scenarios of production. Since the demand in the beverage sector is seasonal, a wide range of scenarios enables us to evaluate the effectiveness of the proposed methods in the scientific literature in solving real scenarios of the problem. The datasets presented here include data based on real data collected from five beverage companies. We presented four datasets that are specifically constructed assuming a scenario of restricted capacity and balanced costs. These dataset is supplementary data for the submitted paper to Data in Brief [4]. [1] Toscano, A., Ferreira, D., Morabito, R., Formulation and MIP-heuristics for the lot sizing and scheduling problem with temporal cleanings, Computers & Chemical Engineering. 142 (2020) 107038. Doi: 10.1016/j.compchemeng.2020.107038. [2] Toscano, A., Ferreira, D., Morabito, R., A decomposition heuristic to solve the two-stage lot sizing and scheduling problem with temporal cleaning, Flexible Services and Manufacturing Journal. 31 (2019) 142-173. Doi: 10.1007/s10696-017-9303-9. [3] Toscano, A., Ferreira, D., Morabito, R., Trassi, M. V. C., A heuristic approach to optimize the production scheduling of fruit-based beverages. Gestão & Produção, 27(4), e4869, 2020. https://doi.org/10.1590/0104-530X4869-20. [4] Piñeros, J., Toscano, A., Ferreira, D., Morabito, R., Datasets for lot sizing and scheduling problems in the fruit-based beverage production process. Data in Brief (2021).

  19. Data and tools for studying isograms

    • figshare.com
    Updated Jul 31, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florian Breit (2017). Data and tools for studying isograms [Dataset]. http://doi.org/10.6084/m9.figshare.5245810.v1
    Explore at:
    application/x-sqlite3Available download formats
    Dataset updated
    Jul 31, 2017
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Florian Breit
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    A collection of datasets and python scripts for extraction and analysis of isograms (and some palindromes and tautonyms) from corpus-based word-lists, specifically Google Ngram and the British National Corpus (BNC).Below follows a brief description, first, of the included datasets and, second, of the included scripts.1. DatasetsThe data from English Google Ngrams and the BNC is available in two formats: as a plain text CSV file and as a SQLite3 database.1.1 CSV formatThe CSV files for each dataset actually come in two parts: one labelled ".csv" and one ".totals". The ".csv" contains the actual extracted data, and the ".totals" file contains some basic summary statistics about the ".csv" dataset with the same name.The CSV files contain one row per data point, with the colums separated by a single tab stop. There are no labels at the top of the files. Each line has the following columns, in this order (the labels below are what I use in the database, which has an identical structure, see section below):

    Label Data type Description

    isogramy int The order of isogramy, e.g. "2" is a second order isogram

    length int The length of the word in letters

    word text The actual word/isogram in ASCII

    source_pos text The Part of Speech tag from the original corpus

    count int Token count (total number of occurences)

    vol_count int Volume count (number of different sources which contain the word)

    count_per_million int Token count per million words

    vol_count_as_percent int Volume count as percentage of the total number of volumes

    is_palindrome bool Whether the word is a palindrome (1) or not (0)

    is_tautonym bool Whether the word is a tautonym (1) or not (0)

    The ".totals" files have a slightly different format, with one row per data point, where the first column is the label and the second column is the associated value. The ".totals" files contain the following data:

    Label

    Data type

    Description

    !total_1grams

    int

    The total number of words in the corpus

    !total_volumes

    int

    The total number of volumes (individual sources) in the corpus

    !total_isograms

    int

    The total number of isograms found in the corpus (before compacting)

    !total_palindromes

    int

    How many of the isograms found are palindromes

    !total_tautonyms

    int

    How many of the isograms found are tautonyms

    The CSV files are mainly useful for further automated data processing. For working with the data set directly (e.g. to do statistics or cross-check entries), I would recommend using the database format described below.1.2 SQLite database formatOn the other hand, the SQLite database combines the data from all four of the plain text files, and adds various useful combinations of the two datasets, namely:• Compacted versions of each dataset, where identical headwords are combined into a single entry.• A combined compacted dataset, combining and compacting the data from both Ngrams and the BNC.• An intersected dataset, which contains only those words which are found in both the Ngrams and the BNC dataset.The intersected dataset is by far the least noisy, but is missing some real isograms, too.The columns/layout of each of the tables in the database is identical to that described for the CSV/.totals files above.To get an idea of the various ways the database can be queried for various bits of data see the R script described below, which computes statistics based on the SQLite database.2. ScriptsThere are three scripts: one for tiding Ngram and BNC word lists and extracting isograms, one to create a neat SQLite database from the output, and one to compute some basic statistics from the data. The first script can be run using Python 3, the second script can be run using SQLite 3 from the command line, and the third script can be run in R/RStudio (R version 3).2.1 Source dataThe scripts were written to work with word lists from Google Ngram and the BNC, which can be obtained from http://storage.googleapis.com/books/ngrams/books/datasetsv2.html and [https://www.kilgarriff.co.uk/bnc-readme.html], (download all.al.gz).For Ngram the script expects the path to the directory containing the various files, for BNC the direct path to the *.gz file.2.2 Data preparationBefore processing proper, the word lists need to be tidied to exclude superfluous material and some of the most obvious noise. This will also bring them into a uniform format.Tidying and reformatting can be done by running one of the following commands:python isograms.py --ngrams --indir=INDIR --outfile=OUTFILEpython isograms.py --bnc --indir=INFILE --outfile=OUTFILEReplace INDIR/INFILE with the input directory or filename and OUTFILE with the filename for the tidied and reformatted output.2.3 Isogram ExtractionAfter preparing the data as above, isograms can be extracted from by running the following command on the reformatted and tidied files:python isograms.py --batch --infile=INFILE --outfile=OUTFILEHere INFILE should refer the the output from the previosu data cleaning process. Please note that the script will actually write two output files, one named OUTFILE with a word list of all the isograms and their associated frequency data, and one named "OUTFILE.totals" with very basic summary statistics.2.4 Creating a SQLite3 databaseThe output data from the above step can be easily collated into a SQLite3 database which allows for easy querying of the data directly for specific properties. The database can be created by following these steps:1. Make sure the files with the Ngrams and BNC data are named “ngrams-isograms.csv” and “bnc-isograms.csv” respectively. (The script assumes you have both of them, if you only want to load one, just create an empty file for the other one).2. Copy the “create-database.sql” script into the same directory as the two data files.3. On the command line, go to the directory where the files and the SQL script are. 4. Type: sqlite3 isograms.db 5. This will create a database called “isograms.db”.See the section 1 for a basic descript of the output data and how to work with the database.2.5 Statistical processingThe repository includes an R script (R version 3) named “statistics.r” that computes a number of statistics about the distribution of isograms by length, frequency, contextual diversity, etc. This can be used as a starting point for running your own stats. It uses RSQLite to access the SQLite database version of the data described above.

  20. o

    Data and Code for: All Forecasters Are Not the Same: Systematic Patterns in...

    • openicpsr.org
    Updated Apr 17, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Robert W. Rich; Joseph Tracy (2025). Data and Code for: All Forecasters Are Not the Same: Systematic Patterns in Predictive Performance [Dataset]. http://doi.org/10.3886/E227001V1
    Explore at:
    Dataset updated
    Apr 17, 2025
    Dataset provided by
    Federal Reserve Bank of Cleveland
    American Enterprise Institute
    Authors
    Robert W. Rich; Joseph Tracy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Overview and Contents This replication package was assembled in January of 2025. The code in this repository generates the 13 figures and content of the 3 tables for the paper “All Forecasters Are Not the Same: Systematic Patterns in Predictive Performance”. It also generates the 2 figures and content of the 5 tables in the appendix to this paper. The main contents of the repository are the following: Code/: folder of scripts to prepare and clean data as well as generate tables and figures. Functions/: folder of subroutines for use with MATLAB scripts. Data/: data folder. Raw/: ECB SPF forecast data, realizations of target variables, and start and end bins for density forecasts. Intermediate/: Data used at intermediate steps in the cleaning process. These datasets are generated with x01_Raw_Data_Shell.do, x02a_Individual_Uncertainty_GDP.do, x02b_Individual_Uncertainty_HICP.do, x02c_Individual_Uncertainty_Urate.do, x03_Pull_Data.do, x04_Data_Clean_And_Merge, and x05_Drop_Low_Counts.do in the Code/ folder. Ready/: Data used to conduct regressions, statistical tests, and generate figures. Output/: folder of results. Figures/: .jpg files for each figure used in the paper and its appendix. HL Results/: Results from applying the Hounyo and Lahiri (2023) testing procedure for equal predictive performance to ECB SPF forecast data. This folder contains the material for Tables 1A-4A. Regressions/: Regression results, as well as material for Tables 3 and 5A. Simulations/: Results from simulation exercise as well as the datasets used to create Figures 9-12. Statistical Tests/: Results displayed in Tables 1 and 2. The repository also contains the manuscript, appendix, and this read-me file.DisclaimerThis replication package was produced by the authors and is not an official product of the Federal Reserve Bank of Cleveland. The analysis and conclusions set forth are those of the authors and do not indicate concurrence by the Federal Reserve Bank of Cleveland or the Federal Reserve System.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Ahmed Elsayed taha (2024). Dataset for learning Data cleaning methods [Dataset]. https://www.kaggle.com/datasets/ahmedelsayed3/dataset-for-learning-data-cleaning-methods
Organization logo

Dataset for learning Data cleaning methods

small dataset containing various issues to be cleaned

Explore at:
zip(10133 bytes)Available download formats
Dataset updated
Aug 8, 2024
Authors
Ahmed Elsayed taha
License

Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically

Description

Dataset

This dataset was created by Ahmed Elsayed taha

Released under Apache 2.0

Contents

Search
Clear search
Close search
Google apps
Main menu