100+ datasets found
  1. B

    Data Cleaning Sample

    • borealisdata.ca
    • dataone.org
    Updated Jul 13, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jul 13, 2023
    Dataset provided by
    Borealis
    Authors
    Rong Luo
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Sample data for exercises in Further Adventures in Data Cleaning.

  2. Nashville Housing Data Cleaning Project

    • kaggle.com
    zip
    Updated Aug 20, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ahmed Elhelbawy (2024). Nashville Housing Data Cleaning Project [Dataset]. https://www.kaggle.com/datasets/elhelbawylogin/nashville-housing-data-cleaning-project/discussion
    Explore at:
    zip(1282 bytes)Available download formats
    Dataset updated
    Aug 20, 2024
    Authors
    Ahmed Elhelbawy
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Area covered
    Nashville
    Description

    Project Overview : This project demonstrates a thorough data cleaning process for the Nashville Housing dataset using SQL. The script performs various data cleaning and transformation operations to improve the quality and usability of the data for further analysis.

    Technologies Used : SQL Server T-SQL

    Dataset: The project uses the Nashville Housing dataset, which contains information about property sales in Nashville, Tennessee. The original dataset includes various fields such as property addresses, sale dates, sale prices, and other relevant real estate information. Data Cleaning Operations The script performs the following data cleaning operations:

    Date Standardization: Converts the SaleDate column to a standard Date format for consistency and easier manipulation. Populating Missing Property Addresses: Fills in NULL values in the PropertyAddress field using data from other records with the same ParcelID. Breaking Down Address Components: Separates the PropertyAddress and OwnerAddress fields into individual columns for Address, City, and State, improving data granularity and queryability. Standardizing Values: Converts 'Y' and 'N' values to 'Yes' and 'No' in the SoldAsVacant field for clarity and consistency. Removing Duplicates: Identifies and removes duplicate records based on specific criteria to ensure data integrity. Dropping Unused Columns: Removes unnecessary columns to streamline the dataset.

    Key SQL Techniques Demonstrated :

    Data type conversion Self joins for data population String manipulation (SUBSTRING, CHARINDEX, PARSENAME) CASE statements Window functions (ROW_NUMBER) Common Table Expressions (CTEs) Data deletion Table alterations (adding and dropping columns)

    Important Notes :

    The script includes cautionary comments about data deletion and column dropping, emphasizing the importance of careful consideration in a production environment. This project showcases various SQL data cleaning techniques and can serve as a template for similar data cleaning tasks.

    Potential Improvements :

    Implement error handling and transaction management for more robust execution. Add data validation steps to ensure the cleaned data meets specific criteria. Consider creating indexes on frequently queried columns for performance optimization.

  3. d

    Data from: Enviro-Champs Formshare Data Cleaning Tool

    • search.dataone.org
    Updated Sep 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Udhav Maharaj (2024). Enviro-Champs Formshare Data Cleaning Tool [Dataset]. http://doi.org/10.7910/DVN/EA5MOI
    Explore at:
    Dataset updated
    Sep 24, 2024
    Dataset provided by
    Harvard Dataverse
    Authors
    Udhav Maharaj
    Time period covered
    Jan 1, 2023 - Jan 1, 2024
    Description

    A data cleaning tool customised for cleaning and sorting the data generated during the Enviro-Champs pilot study as they are downloaded from Formshare, the platform capturing data sent from a customised ODK Collect form collection app. The dataset inclues the latest data from the pilot study as at 14 May 2024.

  4. R

    AI in Data Cleaning Market Research Report 2033

    • researchintelo.com
    csv, pdf, pptx
    Updated Jul 24, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Research Intelo (2025). AI in Data Cleaning Market Research Report 2033 [Dataset]. https://researchintelo.com/report/ai-in-data-cleaning-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Jul 24, 2025
    Dataset authored and provided by
    Research Intelo
    License

    https://researchintelo.com/privacy-and-policyhttps://researchintelo.com/privacy-and-policy

    Time period covered
    2024 - 2033
    Area covered
    Global
    Description

    AI in Data Cleaning Market Outlook



    According to our latest research, the global AI in Data Cleaning market size reached USD 1.82 billion in 2024, demonstrating remarkable momentum driven by the exponential growth of data-driven enterprises. The market is projected to grow at a CAGR of 28.1% from 2025 to 2033, reaching an estimated USD 17.73 billion by 2033. This exceptional growth trajectory is primarily fueled by increasing data volumes, the urgent need for high-quality datasets, and the adoption of artificial intelligence technologies across diverse industries.



    The surging demand for automated data management solutions remains a key growth driver for the AI in Data Cleaning market. As organizations generate and collect massive volumes of structured and unstructured data, manual data cleaning processes have become insufficient, error-prone, and costly. AI-powered data cleaning tools address these challenges by leveraging machine learning algorithms, natural language processing, and pattern recognition to efficiently identify, correct, and eliminate inconsistencies, duplicates, and inaccuracies. This automation not only enhances data quality but also significantly reduces operational costs and improves decision-making capabilities, making AI-based solutions indispensable for enterprises aiming to achieve digital transformation and maintain a competitive edge.



    Another crucial factor propelling market expansion is the growing emphasis on regulatory compliance and data governance. Sectors such as BFSI, healthcare, and government are subject to stringent data privacy and accuracy regulations, including GDPR, HIPAA, and CCPA. AI in data cleaning enables these industries to ensure data integrity, minimize compliance risks, and maintain audit trails, thereby safeguarding sensitive information and building stakeholder trust. Furthermore, the proliferation of cloud computing and advanced analytics platforms has made AI-powered data cleaning solutions more accessible, scalable, and cost-effective, further accelerating adoption across small, medium, and large enterprises.



    The increasing integration of AI in data cleaning with other emerging technologies such as big data analytics, IoT, and robotic process automation (RPA) is unlocking new avenues for market growth. By embedding AI-driven data cleaning processes into end-to-end data pipelines, organizations can streamline data preparation, enable real-time analytics, and support advanced use cases like predictive modeling and personalized customer experiences. Strategic partnerships, investments in R&D, and the rise of specialized AI startups are also catalyzing innovation in this space, making AI in data cleaning a cornerstone of the broader data management ecosystem.



    From a regional perspective, North America continues to lead the global AI in Data Cleaning market, accounting for the largest revenue share in 2024, followed closely by Europe and Asia Pacific. The region’s dominance is attributed to the presence of major technology vendors, robust digital infrastructure, and high adoption rates of AI and cloud technologies. Meanwhile, Asia Pacific is witnessing the fastest growth, propelled by rapid digitalization, expanding IT sectors, and increasing investments in AI-driven solutions by enterprises in China, India, and Southeast Asia. Europe remains a significant market, supported by strict data protection regulations and a mature enterprise landscape. Latin America and the Middle East & Africa are emerging as promising markets, albeit at a relatively nascent stage, with growing awareness and gradual adoption of AI-powered data cleaning solutions.



    Component Analysis



    The AI in Data Cleaning market is broadly segmented by component into software and services, with each segment playing a pivotal role in shaping the industry’s evolution. The software segment dominates the market, driven by the rapid adoption of advanced AI-based data cleaning platforms that automate complex data preparation tasks. These platforms leverage sophisticated algorithms to detect anomalies, standardize formats, and enrich datasets, thereby enabling organizations to maintain high-quality data repositories. The increasing demand for self-service data cleaning software, which empowers business users to cleanse data without extensive IT intervention, is further fueling growth in this segment. Vendors are continuously enhancing their offerings with intuitive interfaces, integration capabilities, and support for diverse data sources to cater to a wide r

  5. G

    Autonomous Data Cleaning with AI Market Research Report 2033

    • growthmarketreports.com
    csv, pdf, pptx
    Updated Oct 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Growth Market Reports (2025). Autonomous Data Cleaning with AI Market Research Report 2033 [Dataset]. https://growthmarketreports.com/report/autonomous-data-cleaning-with-ai-market
    Explore at:
    pdf, csv, pptxAvailable download formats
    Dataset updated
    Oct 4, 2025
    Dataset authored and provided by
    Growth Market Reports
    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Autonomous Data Cleaning with AI Market Outlook



    According to our latest research, the global Autonomous Data Cleaning with AI market size reached USD 1.68 billion in 2024, with a robust year-on-year growth driven by the surge in enterprise data volumes and the mounting demand for high-quality, actionable insights. The market is projected to expand at a CAGR of 24.2% from 2025 to 2033, which will take the overall market value to approximately USD 13.1 billion by 2033. This rapid growth is fueled by the increasing adoption of artificial intelligence (AI) and machine learning (ML) technologies across industries, aiming to automate and optimize the data cleaning process for improved operational efficiency and decision-making.




    The primary growth driver for the Autonomous Data Cleaning with AI market is the exponential increase in data generation across various industries such as BFSI, healthcare, retail, and manufacturing. Organizations are grappling with massive amounts of structured and unstructured data, much of which is riddled with inconsistencies, duplicates, and inaccuracies. Manual data cleaning is both time-consuming and error-prone, leading businesses to seek automated AI-driven solutions that can intelligently detect, correct, and prevent data quality issues. The integration of AI not only accelerates the data cleaning process but also ensures higher accuracy, enabling organizations to leverage clean, reliable data for analytics, compliance, and digital transformation initiatives. This, in turn, translates into enhanced business agility and competitive advantage.




    Another significant factor propelling the market is the increasing regulatory scrutiny and compliance requirements in sectors such as banking, healthcare, and government. Regulations such as GDPR, HIPAA, and others mandate strict data governance and quality standards. Autonomous Data Cleaning with AI solutions help organizations maintain compliance by ensuring data integrity, traceability, and auditability. Additionally, the evolution of cloud computing and the proliferation of big data analytics platforms have made it easier for organizations of all sizes to deploy and scale AI-powered data cleaning tools. These advancements are making autonomous data cleaning more accessible, cost-effective, and scalable, further driving market adoption.




    The growing emphasis on digital transformation and real-time decision-making is also a crucial growth factor for the Autonomous Data Cleaning with AI market. As enterprises increasingly rely on analytics, machine learning, and artificial intelligence for business insights, the quality of input data becomes paramount. Automated, AI-driven data cleaning solutions enable organizations to process, cleanse, and prepare data in real-time, ensuring that downstream analytics and AI models are fed with high-quality inputs. This not only improves the accuracy of business predictions but also reduces the time-to-insight, helping organizations stay ahead in highly competitive markets.




    From a regional perspective, North America currently dominates the Autonomous Data Cleaning with AI market, accounting for the largest share in 2024, followed closely by Europe and Asia Pacific. The presence of leading technology companies, early adopters of AI, and a mature regulatory environment are key factors contributing to North America’s leadership. However, Asia Pacific is expected to witness the highest CAGR over the forecast period, driven by rapid digitalization, expanding IT infrastructure, and increasing investments in AI and data analytics, particularly in countries such as China, India, and Japan. Latin America and the Middle East & Africa are also gradually emerging as promising markets, supported by growing awareness and adoption of AI-driven data management solutions.





    Component Analysis



    The Autonomous Data Cleaning with AI market is segmented by component into Software and Services. The software segment currently holds the largest market share, driven

  6. t

    Data from: Decoding Wayfinding: Analyzing Wayfinding Processes in the...

    • researchdata.tuwien.at
    html, pdf, zip
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi (2025). Decoding Wayfinding: Analyzing Wayfinding Processes in the Outdoor Environment [Dataset]. http://doi.org/10.48436/m2ha4-t1v92
    Explore at:
    html, zip, pdfAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset provided by
    TU Wien
    Authors
    Negar Alinaghi; Ioannis Giannopoulos; Ioannis Giannopoulos; Negar Alinaghi; Negar Alinaghi; Negar Alinaghi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    How To Cite?

    Alinaghi, N., Giannopoulos, I., Kattenbeck, M., & Raubal, M. (2025). Decoding wayfinding: analyzing wayfinding processes in the outdoor environment. International Journal of Geographical Information Science, 1–31. https://doi.org/10.1080/13658816.2025.2473599

    Link to the paper: https://www.tandfonline.com/doi/full/10.1080/13658816.2025.2473599

    Folder Structure

    The folder named “submission” contains the following:

    1. “pythonProject”: This folder contains all the Python files and subfolders needed for analysis.
    2. ijgis.yml: This file lists all the Python libraries and dependencies required to run the code.

    Setting Up the Environment

    1. Use the ijgis.yml file to create a Python project and environment. Ensure you activate the environment before running the code.
    2. The pythonProject folder contains several .py files and subfolders, each with specific functionality as described below.

    Subfolders

    1. Data_4_IJGIS

    • This folder contains the data used for the results reported in the paper.
    • Note: The data analysis that we explain in this paper already begins with the synchronization and cleaning of the recorded raw data. The published data is already synchronized and cleaned. Both the cleaned files and the merged files with features extracted for them are given in this directory. If you want to perform the segmentation and feature extraction yourself, you should run the respective Python files yourself. If not, you can use the “merged_…csv” files as input for the training.

    2. results_[DateTime] (e.g., results_20240906_15_00_13)

    • This folder will be generated when you run the code and will store the output of each step.
    • The current folder contains results created during code debugging for the submission.
    • When you run the code, a new folder with fresh results will be generated.

    Python Files

    1. helper_functions.py

    • Contains reusable functions used throughout the analysis.
    • Each function includes a description of its purpose and the input parameters required.

    2. create_sanity_plots.py

    • Generates scatter plots like those in Figure 3 of the paper.
    • Although the code has been run for all 309 trials, it can be used to check the sample data provided.
    • Output: A .png file for each column of the raw gaze and IMU recordings, color-coded with logged events.
    • Usage: Run this file to create visualizations similar to Figure 3.

    3. overlapping_sliding_window_loop.py

    • Implements overlapping sliding window segmentation and generates plots like those in Figure 4.
    • Output:
      • Two new subfolders, “Gaze” and “IMU”, will be added to the Data_4_IJGIS folder.
      • Segmented files (default: 2–10 seconds with a 1-second step size) will be saved as .csv files.
      • A visualization of the segments, similar to Figure 4, will be automatically generated.

    4. gaze_features.py & imu_features.py (Note: there has been an update to the IDT function implementation in the gaze_features.py on 19.03.2025.)

    • These files compute features as explained in Tables 1 and 2 of the paper, respectively.
    • They process the segmented recordings generated by the overlapping_sliding_window_loop.py.
    • Usage: Just to know how the features are calculated, you can run this code after the segmentation with the sliding window and run these files to calculate the features from the segmented data.

    5. training_prediction.py

    • This file contains the main machine learning analysis of the paper. This file contains all the code for the training of the model, its evaluation, and its use for the inference of the “monitoring part”. It covers the following steps:
    a. Data Preparation (corresponding to Section 5.1.1 of the paper)
    • Prepares the data according to the research question (RQ) described in the paper. Since this data was collected with several RQs in mind, we remove parts of the data that are not related to the RQ of this paper.
    • A function named plot_labels_comparison(df, save_path, x_label_freq=10, figsize=(15, 5)) in line 116 visualizes the data preparation results. As this visualization is not used in the paper, the line is commented out, but if you want to see visually what has been changed compared to the original data, you can comment out this line.
    b. Training/Validation/Test Split
    • Splits the data for machine learning experiments (an explanation can be found in Section 5.1.1. Preparation of data for training and inference of the paper).
    • Make sure that you follow the instructions in the comments to the code exactly.
    • Output: The split data is saved as .csv files in the results folder.
    c. Machine and Deep Learning Experiments

    This part contains three main code blocks:

    iii. One for the XGboost code with correct hyperparameter tuning:
    Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically test the confidence threshold of

    • MLP Network (Commented Out): This code was used for classification with the MLP network, and the results shown in Table 3 are from this code. If you wish to use this model, please comment out the following blocks accordingly.
    • XGBoost without Hyperparameter Tuning: If you want to run the code but do not want to spend time on the full training with hyperparameter tuning (as was done for the paper), just uncomment this part. This will give you a simple, untuned model with which you can achieve at least some results.
    • XGBoost with Hyperparameter Tuning: If you want to train the model the way we trained it for the analysis reported in the paper, use this block (the plots in Figure 7 are from this block). We ran this block with different feature sets and different segmentation files and created a simple bar chart from the saved results, shown in Figure 6.

    Note: Please read the instructions for each block carefully to ensure that the code works smoothly. Regardless of which block you use, you will get the classification results (in the form of scores) for unseen data. The way we empirically calculated the confidence threshold of the model (explained in the paper in Section 5.2. Part II: Decoding surveillance by sequence analysis) is given in this block in lines 361 to 380.

    d. Inference (Monitoring Part)
    • Final inference is performed using the monitoring data. This step produces a .csv file containing inferred labels.
    • Figure 8 in the paper is generated using this part of the code.

    6. sequence_analysis.py

    • Performs analysis on the inferred data, producing Figures 9 and 10 from the paper.
    • This file reads the inferred data from the previous step and performs sequence analysis as described in Sections 5.2.1 and 5.2.2.

    Licenses

    The data is licensed under CC-BY, the code is licensed under MIT.

  7. Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North...

    • technavio.com
    pdf
    Updated Feb 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). Data Science Platform Market Analysis, Size, and Forecast 2025-2029: North America (US and Canada), Europe (France, Germany, UK), APAC (China, India, Japan), South America (Brazil), and Middle East and Africa (UAE) [Dataset]. https://www.technavio.com/report/data-science-platform-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Feb 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Area covered
    United States
    Description

    Snapshot img

    Data Science Platform Market Size 2025-2029

    The data science platform market size is valued to increase USD 763.9 million, at a CAGR of 40.2% from 2024 to 2029. Integration of AI and ML technologies with data science platforms will drive the data science platform market.

    Major Market Trends & Insights

    North America dominated the market and accounted for a 48% growth during the forecast period.
    By Deployment - On-premises segment was valued at USD 38.70 million in 2023
    By Component - Platform segment accounted for the largest market revenue share in 2023
    

    Market Size & Forecast

    Market Opportunities: USD 1.00 million
    Market Future Opportunities: USD 763.90 million
    CAGR : 40.2%
    North America: Largest market in 2023
    

    Market Summary

    The market represents a dynamic and continually evolving landscape, underpinned by advancements in core technologies and applications. Key technologies, such as machine learning and artificial intelligence, are increasingly integrated into data science platforms to enhance predictive analytics and automate data processing. Additionally, the emergence of containerization and microservices in data science platforms enables greater flexibility and scalability. However, the market also faces challenges, including data privacy and security risks, which necessitate robust compliance with regulations.
    According to recent estimates, the market is expected to account for over 30% of the overall big data analytics market by 2025, underscoring its growing importance in the data-driven business landscape.
    

    What will be the Size of the Data Science Platform Market during the forecast period?

    Get Key Insights on Market Forecast (PDF) Request Free Sample

    How is the Data Science Platform Market Segmented and what are the key trends of market segmentation?

    The data science platform industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Deployment
    
      On-premises
      Cloud
    
    
    Component
    
      Platform
      Services
    
    
    End-user
    
      BFSI
      Retail and e-commerce
      Manufacturing
      Media and entertainment
      Others
    
    
    Sector
    
      Large enterprises
      SMEs
    
    
    Application
    
      Data Preparation
      Data Visualization
      Machine Learning
      Predictive Analytics
      Data Governance
      Others
    
    
    Geography
    
      North America
    
        US
        Canada
    
    
      Europe
    
        France
        Germany
        UK
    
    
      Middle East and Africa
    
        UAE
    
    
      APAC
    
        China
        India
        Japan
    
    
      South America
    
        Brazil
    
    
      Rest of World (ROW)
    

    By Deployment Insights

    The on-premises segment is estimated to witness significant growth during the forecast period.

    In the dynamic and evolving the market, big data processing is a key focus, enabling advanced model accuracy metrics through various data mining methods. Distributed computing and algorithm optimization are integral components, ensuring efficient handling of large datasets. Data governance policies are crucial for managing data security protocols and ensuring data lineage tracking. Software development kits, model versioning, and anomaly detection systems facilitate seamless development, deployment, and monitoring of predictive modeling techniques, including machine learning algorithms, regression analysis, and statistical modeling. Real-time data streaming and parallelized algorithms enable real-time insights, while predictive modeling techniques and machine learning algorithms drive business intelligence and decision-making.

    Cloud computing infrastructure, data visualization tools, high-performance computing, and database management systems support scalable data solutions and efficient data warehousing. ETL processes and data integration pipelines ensure data quality assessment and feature engineering techniques. Clustering techniques and natural language processing are essential for advanced data analysis. The market is witnessing significant growth, with adoption increasing by 18.7% in the past year, and industry experts anticipate a further expansion of 21.6% in the upcoming period. Companies across various sectors are recognizing the potential of data science platforms, leading to a surge in demand for scalable, secure, and efficient solutions.

    API integration services and deep learning frameworks are gaining traction, offering advanced capabilities and seamless integration with existing systems. Data security protocols and model explainability methods are becoming increasingly important, ensuring transparency and trust in data-driven decision-making. The market is expected to continue unfolding, with ongoing advancements in technology and evolving business needs shaping its future trajectory.

    Request Free Sample

    The On-premises segment was valued at USD 38.70 million in 2019 and showed

  8. Medical Clean Dataset

    • kaggle.com
    zip
    Updated Jul 6, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Aamir Shahzad (2025). Medical Clean Dataset [Dataset]. https://www.kaggle.com/datasets/aamir5659/medical-clean-dataset
    Explore at:
    zip(1262 bytes)Available download formats
    Dataset updated
    Jul 6, 2025
    Authors
    Aamir Shahzad
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    This is the cleaned version of a real-world medical dataset that was originally noisy, incomplete, and contained various inconsistencies. The dataset was cleaned through a structured and well-documented data preprocessing pipeline using Python and Pandas. Key steps in the cleaning process included:

    • Handling missing values using statistical techniques such as median imputation and mode replacement
    • Converting categorical values to consistent formats (e.g., gender formatting, yes/no standardization)
    • Removing duplicate entries to ensure data accuracy
    • Parsing and standardizing date fields
    • Creating new derived features such as age groups
    • Detecting and reviewing outliers based on IQR
    • Removing irrelevant or redundant columns

    The purpose of cleaning this dataset was to prepare it for further exploratory data analysis (EDA), data visualization, and machine learning modeling.

    This cleaned dataset is now ready for training predictive models, generating visual insights, or conducting healthcare-related research. It provides a high-quality foundation for anyone interested in medical analytics or data science practice.

  9. D

    Autonomous Data Cleaning With AI Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Oct 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Autonomous Data Cleaning With AI Market Research Report 2033 [Dataset]. https://dataintelo.com/report/autonomous-data-cleaning-with-ai-market
    Explore at:
    pptx, pdf, csvAvailable download formats
    Dataset updated
    Oct 1, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Autonomous Data Cleaning with AI Market Outlook




    According to our latest research, the global Autonomous Data Cleaning with AI market size in 2024 reached USD 1.82 billion, reflecting a robust expansion driven by rapid digital transformation across industries. The market is experiencing a CAGR of 25.7% from 2025 to 2033, with forecasts indicating that the market will reach USD 14.4 billion by 2033. This remarkable growth is primarily attributed to the increasing demand for high-quality, reliable data to power advanced analytics and artificial intelligence initiatives, as well as the escalating complexity and volume of data in modern enterprises.




    The surge in the adoption of artificial intelligence and machine learning technologies is a critical growth factor propelling the Autonomous Data Cleaning with AI market. Organizations are increasingly recognizing the importance of clean, accurate data as a foundational asset for digital transformation, predictive analytics, and data-driven decision-making. As data volumes continue to explode, manual data cleaning processes have become unsustainable, leading enterprises to seek autonomous solutions powered by AI algorithms. These solutions not only automate error detection and correction but also enhance data consistency, integrity, and usability across disparate systems, reducing operational costs and improving business agility.




    Another significant driver for the Autonomous Data Cleaning with AI market is the rising regulatory pressure around data governance and compliance. Industries such as banking, finance, and healthcare are subject to stringent data quality requirements, necessitating robust mechanisms to ensure data accuracy and traceability. AI-powered autonomous data cleaning tools are increasingly being integrated into enterprise data management strategies to address these regulatory challenges. These tools help organizations maintain compliance, minimize the risk of data breaches, and avoid costly penalties, further fueling market growth as regulatory frameworks become more complex and widespread across global markets.




    The proliferation of cloud computing and the shift towards hybrid and multi-cloud environments are also accelerating the adoption of Autonomous Data Cleaning with AI solutions. As organizations migrate workloads and data assets to the cloud, ensuring data quality across distributed environments becomes paramount. Cloud-based autonomous data cleaning platforms offer scalability, flexibility, and integration capabilities that are well-suited to dynamic enterprise needs. The growing ecosystem of cloud-native AI tools, combined with the increasing sophistication of data integration and orchestration platforms, is enabling businesses to deploy autonomous data cleaning at scale, driving substantial market expansion.




    From a regional perspective, North America continues to dominate the Autonomous Data Cleaning with AI market, accounting for the largest revenue share in 2024. The region’s advanced technological infrastructure, high concentration of AI innovators, and early adoption by large enterprises are key factors supporting its leadership position. However, Asia Pacific is emerging as the fastest-growing regional market, fueled by rapid digitalization, expanding IT investments, and strong government initiatives supporting AI and data-driven innovation. Europe also remains a significant contributor, with increasing adoption in sectors such as banking, healthcare, and manufacturing. Overall, the global market exhibits a broadening geographic footprint, with opportunities emerging across both developed and developing economies.



    Component Analysis




    The Autonomous Data Cleaning with AI market is segmented by component into Software and Services. The software segment currently holds the largest share of the market, driven by the rapid advancement and deployment of AI-powered data cleaning platforms. These software solutions leverage sophisticated algorithms for anomaly detection, deduplication, data enrichment, and validation, providing organizations with automated tools to ensure data quality at scale. The increasing integration of machine learning and natural language processing (NLP) capabilities further enhances the effectiveness of these platforms, enabling them to address a wide range of data quality issues across structured and unstructured datasets.




    The

  10. Cleaned Kaggle Survey 2019

    • kaggle.com
    zip
    Updated Jan 26, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ramshankar Yadhunath (2020). Cleaned Kaggle Survey 2019 [Dataset]. https://www.kaggle.com/thedatabeast/cleaned-mcr-kaggle-survey-2019
    Explore at:
    zip(1610031 bytes)Available download formats
    Dataset updated
    Jan 26, 2020
    Authors
    Ramshankar Yadhunath
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Context

    The 2019 Kaggle ML & DS Survey data like its predecessors was a wonderful repository of data that helped understand the data science landscape of the world in better sense. However, this analysis was not so apparent because of the significant amount of cleaning needed to convert the data into a format that would aid in quick exploratory analysis. This was especially daunting for beginners like me. So, I took up the chance to try and clean the data up a bit so that it could be beneficial to other beginners like me. In this way, people can save up a great deal of time in the data cleaning process.

    This was my aim. Hope it helps 😄

    P.S : This is also my first core messy-data-cleaning project.

    Content

    Original Survey Data : The multiple_choice_responses.csv file in 2019 Kaggle ML and DS Survey Data

    Sequence of Cleaning : I followed a bit of a sequential process in data cleaning : * Step 1. Removed all the features from the dataset that were "OTHER_TEXT". These features were encoded with -1 or 1, so it was logical to remove these * Step 2. Grouped all the features belonging to a similar question. This was needed as certain questions that had the "Select all that apply" choice, were split as multiple features(each feature corresponded to one of the choices selected by a respondent). * Step 3. Combined all the responses for a given question from multiple features and group them together as a list. * Step 4. Finally, re-arranged the headers in appropriate positions and saved the data.

    Notebook where the Data Cleaning was performed : Kaggle DS and ML Survey 2019 - Data Cleaning

    Bug : There is a slight extra column in the final dataset that was generated due to a small inaccuracy in generating it. The first column is Unnamed: 0. However, this can easily be gotten rid off while you use it. Just use the following code block to load the data :
    ```

    loading data

    df = pd.read_csv(file_path)

    first column is an extra; remove it

    df = df.drop(["Unnamed: 0"], axis=1) ```

    Acknowledgements

    I thank the Kaggle Team for conducting the survey and making the data open. It was great fun working on this data cleaning project.

    Image Credits : Photo by pan xiaozhen on Unsplash

    Inspiration

    Hopefully, you can use this dataset to unearth deeper patterns within it and understand the data science scenario in the world in greater perspective, all by not having to spend too much time on data cleaning!

  11. d

    Mobile Location Data | Asia | +300M Unique Devices | +100M Daily Users |...

    • datarade.ai
    .json, .csv, .xls
    Updated Mar 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2025). Mobile Location Data | Asia | +300M Unique Devices | +100M Daily Users | +200B Events / Month [Dataset]. https://datarade.ai/data-products/mobile-location-data-asia-300m-unique-devices-100m-da-quadrant
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Mar 21, 2025
    Dataset authored and provided by
    Quadrant
    Area covered
    Turkmenistan, Bahrain, United Arab Emirates, Hong Kong, China, India, Macao, Afghanistan, Taiwan, Kyrgyzstan
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  12. m

    Reddit r/AskScience Flair Dataset

    • data.mendeley.com
    Updated May 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sumit Mishra (2022). Reddit r/AskScience Flair Dataset [Dataset]. http://doi.org/10.17632/k9r2d9z999.3
    Explore at:
    Dataset updated
    May 23, 2022
    Authors
    Sumit Mishra
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Reddit is a social news, content rating and discussion website. It's one of the most popular sites on the internet. Reddit has 52 million daily active users and approximately 430 million users who use it once a month. Reddit has different subreddits and here We'll use the r/AskScience Subreddit.

    The dataset is extracted from the subreddit /r/AskScience from Reddit. The data was collected between 01-01-2016 and 20-05-2022. It contains 612,668 Datapoints and 25 Columns. The database contains a number of information about the questions asked on the subreddit, the description of the submission, the flair of the question, NSFW or SFW status, the year of the submission, and more. The data is extracted using python and Pushshift's API. A little bit of cleaning is done using NumPy and pandas as well. (see the descriptions of individual columns below).

    The dataset contains the following columns and descriptions: author - Redditor Name author_fullname - Redditor Full name contest_mode - Contest mode [implement obscured scores and randomized sorting]. created_utc - Time the submission was created, represented in Unix Time. domain - Domain of submission. edited - If the post is edited or not. full_link - Link of the post on the subreddit. id - ID of the submission. is_self - Whether or not the submission is a self post (text-only). link_flair_css_class - CSS Class used to identify the flair. link_flair_text - Flair on the post or The link flair’s text content. locked - Whether or not the submission has been locked. num_comments - The number of comments on the submission. over_18 - Whether or not the submission has been marked as NSFW. permalink - A permalink for the submission. retrieved_on - time ingested. score - The number of upvotes for the submission. description - Description of the Submission. spoiler - Whether or not the submission has been marked as a spoiler. stickied - Whether or not the submission is stickied. thumbnail - Thumbnail of Submission. question - Question Asked in the Submission. url - The URL the submission links to, or the permalink if a self post. year - Year of the Submission. banned - Banned by the moderator or not.

    This dataset can be used for Flair Prediction, NSFW Classification, and different Text Mining/NLP tasks. Exploratory Data Analysis can also be done to get the insights and see the trend and patterns over the years.

  13. D

    Data Preparation Platform Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Sep 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Preparation Platform Report [Dataset]. https://www.datainsightsmarket.com/reports/data-preparation-platform-1368457
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Sep 20, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global Data Preparation Platform market is poised for substantial growth, estimated to reach $15,600 million by the study's end in 2033, up from $6,000 million in the base year of 2025. This trajectory is fueled by a Compound Annual Growth Rate (CAGR) of approximately 12.5% over the forecast period. The proliferation of big data and the increasing need for clean, usable data across all business functions are primary drivers. Organizations are recognizing that effective data preparation is foundational to accurate analytics, informed decision-making, and successful AI/ML initiatives. This has led to a surge in demand for platforms that can automate and streamline the complex, time-consuming process of data cleansing, transformation, and enrichment. The market's expansion is further propelled by the growing adoption of cloud-based solutions, offering scalability, flexibility, and cost-efficiency, particularly for Small & Medium Enterprises (SMEs). Key trends shaping the Data Preparation Platform market include the integration of AI and machine learning for automated data profiling and anomaly detection, enhanced collaboration features to facilitate teamwork among data professionals, and a growing focus on data governance and compliance. While the market exhibits robust growth, certain restraints may temper its pace. These include the complexity of integrating data preparation tools with existing IT infrastructures, the shortage of skilled data professionals capable of leveraging advanced platform features, and concerns around data security and privacy. Despite these challenges, the market is expected to witness continuous innovation and strategic partnerships among leading companies like Microsoft, Tableau, and Alteryx, aiming to provide more comprehensive and user-friendly solutions to meet the evolving demands of a data-driven world. Here's a comprehensive report description on Data Preparation Platforms, incorporating the requested information, values, and structure:

  14. D

    Yield Data Cleaning Software Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Sep 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Yield Data Cleaning Software Market Research Report 2033 [Dataset]. https://dataintelo.com/report/yield-data-cleaning-software-market
    Explore at:
    csv, pdf, pptxAvailable download formats
    Dataset updated
    Sep 30, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Yield Data Cleaning Software Market Outlook



    According to our latest research, the global Yield Data Cleaning Software market size in 2024 stands at USD 1.14 billion, with a robust compound annual growth rate (CAGR) of 13.2% expected from 2025 to 2033. By the end of 2033, the market is forecasted to reach USD 3.42 billion. This remarkable market expansion is being driven by the increasing adoption of precision agriculture technologies, the proliferation of big data analytics in farming, and the rising need for accurate, real-time agricultural data to optimize yields and resource efficiency.




    One of the primary growth factors fueling the Yield Data Cleaning Software market is the rapid digital transformation within the agriculture sector. The integration of advanced sensors, IoT devices, and GPS-enabled machinery has led to an exponential increase in the volume of raw agricultural data generated on farms. However, this data often contains inconsistencies, errors, and redundancies due to equipment malfunctions, environmental factors, and human error. Yield Data Cleaning Software plays a critical role by automating the cleansing, validation, and normalization of such datasets, ensuring that only high-quality, actionable information is used for decision-making. As a result, farmers and agribusinesses can make more informed choices, leading to improved crop yields, efficient resource allocation, and reduced operational costs.




    Another significant driver is the growing emphasis on sustainable agriculture and environmental stewardship. Governments and regulatory bodies across the globe are increasingly mandating the adoption of data-driven practices to minimize the environmental impact of farming activities. Yield Data Cleaning Software enables stakeholders to monitor and analyze field performance accurately, track input usage, and comply with sustainability standards. Moreover, the software’s ability to integrate seamlessly with farm management platforms and analytics tools enhances its value proposition. This trend is further bolstered by the rising demand for traceability and transparency in the food supply chain, compelling agribusinesses to invest in robust data management solutions.




    The market is also witnessing substantial investments from technology providers, venture capitalists, and agricultural equipment manufacturers. Strategic partnerships and collaborations are becoming commonplace, with companies seeking to enhance their product offerings and expand their geographical footprint. The increasing awareness among farmers about the benefits of data accuracy and the availability of user-friendly, customizable software solutions are further accelerating market growth. Additionally, ongoing advancements in artificial intelligence (AI) and machine learning (ML) are enabling more sophisticated data cleaning algorithms, which can handle larger datasets and deliver deeper insights, thereby expanding the market’s potential applications.




    Regionally, North America continues to dominate the Yield Data Cleaning Software market, supported by its advanced agricultural infrastructure, high rate of technology adoption, and significant investments in agri-tech startups. Europe follows closely, driven by stringent environmental regulations and a strong focus on sustainable farming practices. The Asia Pacific region is emerging as a high-growth market, fueled by the rapid modernization of agriculture, government initiatives to boost food security, and increasing awareness among farmers about the benefits of digital solutions. Latin America and the Middle East & Africa are also showing promising growth trajectories, albeit from a smaller base, as they gradually embrace precision agriculture technologies.



    Component Analysis



    The Yield Data Cleaning Software market is bifurcated by component into Software and Services. The software segment currently accounts for the largest share of the market, underpinned by the increasing adoption of integrated farm management solutions and the demand for user-friendly platforms that can seamlessly process vast amounts of agricultural data. Modern yield data cleaning software solutions are equipped with advanced algorithms capable of detecting and rectifying data anomalies, thus ensuring the integrity and reliability of yield datasets. As the complexity of agricultural operations grows, the need for scalable, customizable software that can adapt to

  15. l

    LSC (Leicester Scientific Corpus)

    • figshare.le.ac.uk
    Updated Apr 15, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neslihan Suzen (2020). LSC (Leicester Scientific Corpus) [Dataset]. http://doi.org/10.25392/leicester.data.9449639.v2
    Explore at:
    Dataset updated
    Apr 15, 2020
    Dataset provided by
    University of Leicester
    Authors
    Neslihan Suzen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Leicester
    Description

    The LSC (Leicester Scientific Corpus)

    April 2020 by Neslihan Suzen, PhD student at the University of Leicester (ns433@leicester.ac.uk) Supervised by Prof Alexander Gorban and Dr Evgeny MirkesThe data are extracted from the Web of Science [1]. You may not copy or distribute these data in whole or in part without the written consent of Clarivate Analytics.[Version 2] A further cleaning is applied in Data Processing for LSC Abstracts in Version 1*. Details of cleaning procedure are explained in Step 6.* Suzen, Neslihan (2019): LSC (Leicester Scientific Corpus). figshare. Dataset. https://doi.org/10.25392/leicester.data.9449639.v1.Getting StartedThis text provides the information on the LSC (Leicester Scientific Corpus) and pre-processing steps on abstracts, and describes the structure of files to organise the corpus. This corpus is created to be used in future work on the quantification of the meaning of research texts and make it available for use in Natural Language Processing projects.LSC is a collection of abstracts of articles and proceeding papers published in 2014, and indexed by the Web of Science (WoS) database [1]. The corpus contains only documents in English. Each document in the corpus contains the following parts:1. Authors: The list of authors of the paper2. Title: The title of the paper 3. Abstract: The abstract of the paper 4. Categories: One or more category from the list of categories [2]. Full list of categories is presented in file ‘List_of _Categories.txt’. 5. Research Areas: One or more research area from the list of research areas [3]. Full list of research areas is presented in file ‘List_of_Research_Areas.txt’. 6. Total Times cited: The number of times the paper was cited by other items from all databases within Web of Science platform [4] 7. Times cited in Core Collection: The total number of times the paper was cited by other papers within the WoS Core Collection [4]The corpus was collected in July 2018 online and contains the number of citations from publication date to July 2018. We describe a document as the collection of information (about a paper) listed above. The total number of documents in LSC is 1,673,350.Data ProcessingStep 1: Downloading of the Data Online

    The dataset is collected manually by exporting documents as Tab-delimitated files online. All documents are available online.Step 2: Importing the Dataset to R

    The LSC was collected as TXT files. All documents are extracted to R.Step 3: Cleaning the Data from Documents with Empty Abstract or without CategoryAs our research is based on the analysis of abstracts and categories, all documents with empty abstracts and documents without categories are removed.Step 4: Identification and Correction of Concatenate Words in AbstractsEspecially medicine-related publications use ‘structured abstracts’. Such type of abstracts are divided into sections with distinct headings such as introduction, aim, objective, method, result, conclusion etc. Used tool for extracting abstracts leads concatenate words of section headings with the first word of the section. For instance, we observe words such as ConclusionHigher and ConclusionsRT etc. The detection and identification of such words is done by sampling of medicine-related publications with human intervention. Detected concatenate words are split into two words. For instance, the word ‘ConclusionHigher’ is split into ‘Conclusion’ and ‘Higher’.The section headings in such abstracts are listed below:

    Background Method(s) Design Theoretical Measurement(s) Location Aim(s) Methodology Process Abstract Population Approach Objective(s) Purpose(s) Subject(s) Introduction Implication(s) Patient(s) Procedure(s) Hypothesis Measure(s) Setting(s) Limitation(s) Discussion Conclusion(s) Result(s) Finding(s) Material (s) Rationale(s) Implications for health and nursing policyStep 5: Extracting (Sub-setting) the Data Based on Lengths of AbstractsAfter correction, the lengths of abstracts are calculated. ‘Length’ indicates the total number of words in the text, calculated by the same rule as for Microsoft Word ‘word count’ [5].According to APA style manual [6], an abstract should contain between 150 to 250 words. In LSC, we decided to limit length of abstracts from 30 to 500 words in order to study documents with abstracts of typical length ranges and to avoid the effect of the length to the analysis.

    Step 6: [Version 2] Cleaning Copyright Notices, Permission polices, Journal Names and Conference Names from LSC Abstracts in Version 1Publications can include a footer of copyright notice, permission policy, journal name, licence, author’s right or conference name below the text of abstract by conferences and journals. Used tool for extracting and processing abstracts in WoS database leads to attached such footers to the text. For example, our casual observation yields that copyright notices such as ‘Published by Elsevier ltd.’ is placed in many texts. To avoid abnormal appearances of words in further analysis of words such as bias in frequency calculation, we performed a cleaning procedure on such sentences and phrases in abstracts of LSC version 1. We removed copyright notices, names of conferences, names of journals, authors’ rights, licenses and permission policies identified by sampling of abstracts.Step 7: [Version 2] Re-extracting (Sub-setting) the Data Based on Lengths of AbstractsThe cleaning procedure described in previous step leaded to some abstracts having less than our minimum length criteria (30 words). 474 texts were removed.Step 8: Saving the Dataset into CSV FormatDocuments are saved into 34 CSV files. In CSV files, the information is organised with one record on each line and parts of abstract, title, list of authors, list of categories, list of research areas, and times cited is recorded in fields.To access the LSC for research purposes, please email to ns433@le.ac.uk.References[1]Web of Science. (15 July). Available: https://apps.webofknowledge.com/ [2]WoS Subject Categories. Available: https://images.webofknowledge.com/WOKRS56B5/help/WOS/hp_subject_category_terms_tasca.html [3]Research Areas in WoS. Available: https://images.webofknowledge.com/images/help/WOS/hp_research_areas_easca.html [4]Times Cited in WoS Core Collection. (15 July). Available: https://support.clarivate.com/ScientificandAcademicResearch/s/article/Web-of-Science-Times-Cited-accessibility-and-variation?language=en_US [5]Word Count. Available: https://support.office.com/en-us/article/show-word-count-3c9e6a11-a04d-43b4-977c-563a0e0d5da3 [6]A. P. Association, Publication manual. American Psychological Association Washington, DC, 1983.

  16. Google Data Analytics Capstone Project: Netflix

    • kaggle.com
    zip
    Updated Jan 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Doga Celik (2024). Google Data Analytics Capstone Project: Netflix [Dataset]. https://www.kaggle.com/datasets/dogacelik/google-data-analytics-capstone-project-netflix
    Explore at:
    zip(59851 bytes)Available download formats
    Dataset updated
    Jan 25, 2024
    Authors
    Doga Celik
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    Introduction:

    In this case study the skills that I acquired from Google Data Analytics Professional Certificate Course is demonstrated. These skills will be used to complete the imagined task which was given by Netflix. The analysis process of this task will be consisted of following steps. Ask, Prepare, Process, Analyze, Share and Act.

    Scenario:

    The Netflix Chief Content Officer, Bela Bajaria, believes that companies success depends on to provide the customers what they want. Bajaria stated that the goal of this task is to find most wanted contents of the movies which will be added to the portfolio. Most of the movie contracts are signed before they come to the theaters, and it is hard to know if the customers really want to watch that movie and if the movie will be successful. There for my team wants to understand what type of content a movies success depends on. From these insights my team will design an investment strategy to choose the most popular movies that are expected to be in theaters in the near future. But first, Netflix executives must approve our recommendations. To be able to do that we must provide satisfying data insights along with professional data visualizations.

    About the Company:

    At Netflix, we want to entertain the world. Whatever your taste, and no matter where you live, we give you access to best-in-class TV series, documentaries, feature films and games. Our members control what they want to watch, when they want it, in one simple subscription. We’re streaming in more than 30 languages and 190 countries, because great stories can come from anywhere and be loved everywhere. We are the world’s biggest fans of entertainment, and we’re always looking to help you find your next favorite story.

    As a company Netflix knows that it is important to acquire or produce movies that people want to watch.

    There for Bajaria has set a clear goal: Define an investment strategy that will allow Netflix to provide customers the movies what they want to watch which will maximize the Sales.

    Ask:

    Business Task: To find out what kind of movie customers wants to watch and if the content type really has a correlation with the movie success. Stakeholders:

    Bela Bajaria: She joined Netflix in 2016 to oversee unscripted and scripted series. Bajaria also responsible from the content selection and strategy for different regions.

    Netflix content analytics team: A team of data analysts who are responsible for collecting, analyzing, and reporting data that helps guide Netflix content strategy.

    Netflix executive team: The notoriously detail-oriented executive team will decide whether to approve the recommended content program.

    Prepare:

    I start my preparation procedure by downloading every piece of data I'll need for the study. Top 1000 Highest-Grossing Movies of All Time.csv will be used. Additionally, 15 Lowest-Grossing Movies of All Time.csv was found during the data research and this dataset will be analyst as well. The data has been made available by IMDB and shared this two following URL addresses: https://www.imdb.com/list/ls098063263/ and https://www.imdb.com/list/ls069238222/ .

    Process:

    Data Cleaning:

    SQL: To begin the data cleaning process, I opened both csv file in SQL and conducted following operations:

    • Checked for and removed any duplicates. • Checked if there any null values. • Removed the columns that are not necessary. • Trim the Description column to have only gross profit in it. (This cleaning procedure only used for 1000 Highest-Grossing Movies of All Time.csv dataset.)

    • Renamed the Description column as Gross_Profit. (This cleaning procedure only used for 1000 Highest-Grossing Movies of All Time.csv dataset.)

    Follwing SQL codes were used during the data cleaning:

    SQL CODE used for Highest Grossing Movies DATASET

    SELECT Position, SUBSTR(Description,34,12) as Gross_Profit, Title, IMDb_Rating, Runtime_mins_, Year, Genres, Num_Votes, Release_Date FROM even-electron-400301.Highest_Gross_Movies.1

    SQL CODE used for Lowest Grossing Movies DATASET

    SELECT Position, Title, IMDb_Rating, Runtime_mins_, Year, Genres, Num_Votes, Release_Date FROM even-electron-400301.Lowest_Grossing_Movies.2 Order By Position

    Analyze:

    As a starter, I want to reemphasize the business task once again. Is content has a big impact on a movie’s success?

    To answer this question, there were a few information that I projected that I could pull of and use it during my analysis.

    • Average gross profit • Number of Genres • Total Gross Profit of the most popular genres • The distribution of the Gross income on Genres

    I used Microsoft Excel for the bullet points above. The operations to achieve the values above are as follows:

    • Average function for Average Gross profit in 1000 Highest-Grossing Movies of All Time. • Created a pivot table to work on Genres and Gross_Pr...

  17. m

    Dataset Question Answering for Admission of Higher Education Institution

    • data.mendeley.com
    Updated Sep 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emny Yossy (2023). Dataset Question Answering for Admission of Higher Education Institution [Dataset]. http://doi.org/10.17632/jc4df8srcb.2
    Explore at:
    Dataset updated
    Sep 26, 2023
    Authors
    Emny Yossy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The data collection process commenced with web scraping of a selected higher education institution's website, collecting any data that relates to the admission topic of higher education institutions, during the period from July to September 2023. This resulted in a raw dataset primarily cantered around admission-related content. Subsequently, meticulous data cleaning and organization procedures were implemented to refine the dataset. The primary data, in its raw form before annotation into a question-and-answer format, was predominantly in the Indonesian language. Following this, a comprehensive annotation process was conducted to enrich the dataset with specific admission-related information, transforming it into secondary data. Both primary and secondary data predominantly remained in the Indonesian language. To enhance data quality, we added filters to remove or exclude: 1) data not in the Indonesian language, 2) data unrelated to the admission topic, and 3) redundant entries. This meticulous curation has culminated in the creation of a finalized dataset, meticulously prepared and now readily available for research and analysis in the domain of higher education admission.

  18. d

    Mobility Data | Global | +1B Unique Devices | +300M Daily Users | +500B...

    • datarade.ai
    .json, .csv, .xls
    Updated Dec 25, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Quadrant (2022). Mobility Data | Global | +1B Unique Devices | +300M Daily Users | +500B Events / Month [Dataset]. https://datarade.ai/data-products/aggregated-foot-traffic-data-global-raw-location-data-650-quadrant
    Explore at:
    .json, .csv, .xlsAvailable download formats
    Dataset updated
    Dec 25, 2022
    Dataset authored and provided by
    Quadrant
    Area covered
    Guadeloupe, Dominica, Gibraltar, Panama, Kazakhstan, Swaziland, Pakistan, Jersey, Curaçao, Venezuela (Bolivarian Republic of)
    Description

    Quadrant provides Insightful, accurate, and reliable mobile location data.

    Our privacy-first mobile location data unveils hidden patterns and opportunities, provides actionable insights, and fuels data-driven decision-making at the world's biggest companies.

    These companies rely on our privacy-first Mobile Location and Points-of-Interest Data to unveil hidden patterns and opportunities, provide actionable insights, and fuel data-driven decision-making. They build better AI models, uncover business insights, and enable location-based services using our robust and reliable real-world data.

    We conduct stringent evaluations on data providers to ensure authenticity and quality. Our proprietary algorithms detect, and cleanse corrupted and duplicated data points – allowing you to leverage our datasets rapidly with minimal processing or cleaning. During the ingestion process, our proprietary Data Filtering Algorithms remove events based on a number of both qualitative factors, as well as latency and other integrity variables to provide more efficient data delivery. The deduplicating algorithm focuses on a combination of four important attributes: Device ID, Latitude, Longitude, and Timestamp. This algorithm scours our data and identifies rows that contain the same combination of these four attributes. Post-identification, it retains a single copy and eliminates duplicate values to ensure our customers only receive complete and unique datasets.

    We actively identify overlapping values at the provider level to determine the value each offers. Our data science team has developed a sophisticated overlap analysis model that helps us maintain a high-quality data feed by qualifying providers based on unique data values rather than volumes alone – measures that provide significant benefit to our end-use partners.

    Quadrant mobility data contains all standard attributes such as Device ID, Latitude, Longitude, Timestamp, Horizontal Accuracy, and IP Address, and non-standard attributes such as Geohash and H3. In addition, we have historical data available back through 2022.

    Through our in-house data science team, we offer sophisticated technical documentation, location data algorithms, and queries that help data buyers get a head start on their analyses. Our goal is to provide you with data that is “fit for purpose”.

  19. Google Certificate BellaBeats Capstone Project

    • kaggle.com
    zip
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Porzelius (2023). Google Certificate BellaBeats Capstone Project [Dataset]. https://www.kaggle.com/datasets/jasonporzelius/google-certificate-bellabeats-capstone-project
    Explore at:
    zip(169161 bytes)Available download formats
    Dataset updated
    Jan 5, 2023
    Authors
    Jason Porzelius
    Description

    Introduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.

    Section 1 - Ask:

    A. Guiding Questions:
    1. Who are the key stakeholders and what are their goals for the data analysis project? 2. What is the business task that this data analysis project is attempting to solve?

    B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.

    1. Identify the business task. *The business task is: -As provided by co-founder Urška Sršen, the business task for this project is to gain insight into how consumers are using their non-BellaBeats smart devices in order to guide upcoming marketing strategies for the company which will help drive future growth. Specifically, the researcher was tasked with applying insights driven by the data analysis process to 1 BellaBeats product and presenting those insights to BellaBeats stakeholders.

    Section 2 - Prepare:

    A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?

    B. Key Tasks:

    1. Research and communicate the source of the data, and how it is stored/organized to stakeholders. *The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
      *Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were: -sleepDay_merged.csv -dailyActivity_merged.csv

    2. Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...

  20. d

    Cleaned Water Quality and Weather Dataset for AI-based Alum Prediction...

    • search.dataone.org
    • hydroshare.org
    Updated Oct 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    saikumar payyavula; Jeff Sadler (2025). Cleaned Water Quality and Weather Dataset for AI-based Alum Prediction (2011–2024) [Dataset]. https://search.dataone.org/view/sha256%3A151fa0ed96ffbc1609c16d3ec965f20e79c48d12ad3773cc535692e0a5c8a012
    Explore at:
    Dataset updated
    Oct 18, 2025
    Dataset provided by
    Hydroshare
    Authors
    saikumar payyavula; Jeff Sadler
    Time period covered
    May 18, 2011 - Jul 31, 2024
    Description

    This dataset was developed to support research on predicting alum dosage in small water treatment plants. It combines daily plant records with weather data, including maximum temperature (TMAX). To make the data reliable for analysis and modeling, outliers and incorrect readings were carefully removed using logical and domain-based rules.

    Records with clearly impossible or error values, such as extremely high or negative numbers, were deleted. Each variable was kept within realistic operating limits—for example, alum between 0 and 3500 mg/L, hardness between 5 and 1000 mg/L, and alkalinity between 2 and 1000 mg/L. Unusual readings like pH = 0.54 were also removed. Missing value rows were entirely removed from the dataset.

    Through this cleaning process, the dataset became consistent, accurate, and ready for machine-learning models that can better predict chemical dosing and support safer, more efficient water treatment operations.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Rong Luo (2023). Data Cleaning Sample [Dataset]. http://doi.org/10.5683/SP3/ZCN177

Data Cleaning Sample

Explore at:
167 scholarly articles cite this dataset (View in Google Scholar)
CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
Dataset updated
Jul 13, 2023
Dataset provided by
Borealis
Authors
Rong Luo
License

CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically

Description

Sample data for exercises in Further Adventures in Data Cleaning.

Search
Clear search
Close search
Google apps
Main menu